1. Field of the Invention
The present invention pertains to a high efficiency furnace and a low profile furnace that each comprise an air distribution blower housing that is designed with an enlarged air outlet opening. The enlarged outlet opening slows down and spreads out the airflow from the blower housing over a greater area of the secondary heat exchanger and the primary heat exchanger of the high efficiency furnace, and over a greater area of the heat exchanger of a low profile furnace. Thus, the blower housing enables less air pressure drop through the heat exchangers, which increases the efficiency of the blower operation. The design of the blower housing also efficiently turns the velocity head of the air flow to usable static pressure at the housing air outlet. The enlarged air outlet opening of the blower housing is achieved without increasing the exterior dimensions of the blower housing. This is accomplished by utilizing a unique design volute outer wall of the blower housing that has an exponentially increasing expansion angle in the direction of airflow through the blower housing.
2. Description of Related Art
High efficiency residential natural gas powered furnaces are becoming more and more common. A furnace of this type is defined in the industry as a 90+ AFUE (Annul Fuel Utilization Efficiency) furnace. A 90+ furnace converts more than 90% of the fuel supplied to the furnace to heat, with the remainder being lost through the chimney or exhaust flue. These particular types of furnaces employ a primary heat exchanger found in most any type of furnace, plus an additional secondary heat exchanger. The secondary heat exchanger increases the capacity of the furnace to convert the heat of the gas combustion to the distribution airflow from the furnace, and thereby defines the furnace as a high efficiency furnace.
The typical construction of a high efficiency furnace 10 is shown in
An air inlet opening is typically provided in a side wall of the furnace enclosure. The air inlet opening can be covered by a grill or is a vaned opening that allows ambient air in the environment surrounding the enclosure 12 to easily pass through the opening and enter the enclosure interior 14. Alternatively and more frequently, the air inlet opening of the furnace enclosure communicates with a cold air return duct system of the residence. The cold air return duct system channels ambient air from throughout the residence to the furnace enclosure. The direction of ambient airflow into the furnace enclosure interior 14 is represented by the arrow 16 labeled (AIRFLOW) in
The furnace enclosure also has an air distribution outlet opening 18. The outlet opening communicates with an air distribution conduit or duct system of the residence in which the furnace is installed. In
In the typical construction of a high efficiency furnace represented in
An air distribution blower 26 that draws ambient air into the furnace enclosure 12 is positioned just below the secondary heat exchanger 24. A motor (not shown) of the blower rotates a fan wheel 28 in the interior of the blower in a clockwise direction as viewed in
A typical blower 26 includes a blower housing that contains the fan wheel 28. The typical blower housing includes an exterior or outer wall 32 having a scroll or volute configuration. The outer wall 32 spirals around the fan wheel 28 in the direction of fan wheel rotation. A pair of side walls 34, only one of which is shown in
As shown in
The air distribution blower 26 of the typical high efficiency furnace represented in
The present invention overcomes the efficiency problems associated with the constructions of prior art furnace blowers by providing a blower with a unique housing design that spreads out the distribution airflow over the secondary heat exchanger to a larger extent than the existing blowers of the prior art. This enables the blower to operate with less of a pressure drop through the heat exchangers than that of prior art blowers. The scroll design of the blower housing also efficiently turns the velocity head of the air flow through the housing to usable static air pressure. In addition, it has been found through testing that the blower housing design of the invention applied to a low profile blower has a similar static efficiency to that of a regular profile blower. This enables the design of the blower housing to be employed in low profile 80+ furnaces to provide an efficiency gain, even though there is no secondary heat exchanger in the low profile furnace.
In the typical construction of an air distribution blower, the pressure loss is proportional to the airflow velocity squared through a given restriction of the blower housing. Just a 15 percent increase in a two dimensional rectangular plane that represents the effective flow area across the secondary heat exchanger of the furnace can potentially create a (1.15×1.15=1.3225), (1/1.3225=0.756) 25% increase in efficiency due to air pressure loss at the secondary heat exchanger.
With this in mind, the high efficiency furnace of the present invention employs a blower housing with an enlarged air outlet opening, while the exterior dimensions of the blower housing remain substantially the same as those of the prior art blower housing used in a high efficiency furnace.
The blower housing of the present invention employs a fan wheel with forward curved impeller blades for low noise and for reducing the size of the fan wheel. Fan wheels with forward curved impeller blades are known to create large amounts of pressure and airflow for a relatively small size of fan wheel.
To obtain a large air outlet opening in the blower housing without increasing the exterior dimensions of the blower housing, the present invention utilizes an exponentially increasing expansion angle along the length of the blower housing volute shaped outer wall. Where the expansion angle of the volute outer wall of prior art blower housings increases at a constant rate, the expansion angle of the volute outer wall of the blower housing of the present invention increases exponentially as the outer wall extends around the fan wheel in the rotation direction of the fan wheel. The exponentially increasing expansion angle of the volute outer wall provides a very large air outlet opening while still having a volute shape around the entire length of the blower housing outer wall following the outer wall cutoff.
In a preferred embodiment, the expansion angle of the volute outer wall increases at a first exponential rate as it extends around the fan wheel from the cutoff of the housing through more than one-half of the outer wall circumference, and then increases at a second, larger exponential rate through to the end of the volute shape of the outer wall.
Further features of the invention are set forth in the following detailed description of the invention and in the drawing figures.
The high efficiency furnace 10′ of the present invention also includes an external housing enclosure 12′ that contains the interior volume 14′ of the furnace. Only a rear wall and a left side wall of the furnace enclosure 12′ are shown in
The primary heat exchanger 22′ is positioned at the top of the enclosure interior volume 14′ adjacent the distribution air outlet opening 18′. The secondary heat exchanger 24′ is positioned just below the primary heat exchanger 22′. The use of both a primary heat exchanger and a secondary heat exchanger qualifies the furnace of the invention as a high efficiency furnace, or a 90+ AFUE furnace.
The blower 38 of the invention is positioned in the enclosure interior 14′ at the same position as the prior art blower 26, i.e., just below the secondary heat exchanger 24′. Comparing the prior art of
The overall size of the blower housing 48 of the invention remains substantially the same size as the distribution blower 26 of the prior art, and maintains approximately the same blower only efficiency. This enables the blower 38 to be used in a conventionally sized furnace enclosure. With these size restrictions, enlarging the air outlet opening of the blower housing is a goal not easily achieved.
The apparent way to increase the exhaust area size of the blower housing air outlet opening is to increase the expansion angle of the blower housing outer wall. However, the prior art practice has been to design blower housings with a constant expansion angle. Increasing the expansion angle of the blower housing outer wall creates an extremely large blower housing that does not fit adequately in the typical furnace enclosure. The resultant additional size of the furnace enclosure needed to house a blower housing having an increased expansion angle creates a negative aspect for the consumer, i.e., the furnace enclosure requires more space in the consumer residence. Additionally, the manufacturer of the furnace must add cost to make the larger enclosure to accommodate the blower housing. Thus, merely increasing the exhaust area of the air outlet opening of a blower housing by increasing the expansion angle of the blower housing outer wall is not a viable option.
To obtain a large exhaust area of the blower housing air outlet opening, the blower housing 48 of the present invention utilizes an exponentially increasing expansion angle in the design of the blower housing volute outer wall 56.
As stated earlier, the larger air distribution outlet opening 58 is achieved by employing an exponentially increasing expansion angle in the design of the volute shaped outer wall 56 of the blower housing, as opposed to the constant increasing expansion angle employed in the design of prior art blower housings. The enlarged air outlet opening 58 is also achieved with the overall blower housing width dimension, the length dimension and the depth dimension of the blower housing 48 being the same as that of prior art blower housings. As the blower housing volute outer wall 56 extends around the blower housing in the rotation direction of the fan wheel, the scroll volume aggressively becomes larger in the interior of the housing. This is especially true as the outer wall 56 approaches the air outlet opening 58. This increase in the interior volume enables exhaust velocities of air flow to be reduced, and creates a blower housing where a greater portion of the air flow velocity head is converted to static pressure. This increases efficiency because the air flow velocity head energy would have been lost outside of the scroll interior. This further increases the overall efficiency of the blower housing of the invention.
The blower housing outer wall 56 has a volute shaped portion that defines a majority of the length of the outer wall. The volute shaped portion of the outer wall 56 could also be described as having a scroll configuration or a spiral configuration. These general configurations are common to blower housings of the prior art. However, the novel configuration of the blower housing outer wall 56 of the invention is defined as having an exponentially increasing expansion angle as the volute shaped wall 56 extends in the rotation direction around the fan wheel axis of rotation 44. As viewed in
Beginning from the fan wheel reference point (a) at the zero degree circumference of the fan wheel, and extending around the fan wheel circumference in the clockwise direction of rotation of the fan wheel shown in
The beginning of the volute or scroll shaped configuration of the outer wall 56 begins just past the cut-off portion 82 in the direction of rotation of the fan wheel 42. The beginning end of the volute shaped portion of the outer wall 56 begins at a point (B) on the outer wall 56. Point (B) is radially aligned with the 73 degree point (b) on the circumference of the fan wheel 42. From this beginning point (B) on the volute shaped portion on the outer wall 56, the outer wall has points (C, D, E, F, G, H, I, J, K, L, M, N, O) that are radially spaced outwardly from and correspond to the respective circumferentially spaced points (c, d, e, f, g, h, i, j, k, l, m, n, o) on the circumference on the fan wheel 42. The volute shaped portion of the outer wall 56 has an ending point (O) that is radially aligned with the zero degree fan wheel beginning point (a) and the 360 degree fan wheel ending point (o).
The radial spacing between the points on the fan wheel circumference and their radially aligned corresponding points on the volute shaped portion of the outer wall 56 is determined by the equation:
Y=A+Bxc
In the above equation, the “x” value is the circumferential distance from point (b) on the fan wheel circumference at which the radial spacing between the fan wheel and the volute shaped portion of the outer wall is being calculated. This value is raised to the exponential power of (c). In the preferred embodiment of the invention, it has been determined empirically that the value (c) for points on the circumference of the fan wheel 42 from the fan wheel point (b) to the 270 degree fan wheel point (k) is an exponent in the range of 1.2 to 1.4. Preferably, the exponent is 1.3. For points on the circumference of the fan wheel from the 270 degree fan wheel point (k) to the fan wheel point corresponding to 360 degrees (o), the value of the exponent “c” is in the range of 1.5 to 2.1. Preferably, the exponent is 1.81.
In the above-referenced equation, the “A” factor is a minimum height factor for the blower housing 48. In the disclosed embodiment, the minimum height factor “A” is 0.625 inches. The factor “B” in the above equation is a factor picked by the furnace designer to create as large of an exhaust opening as is practical, along with keeping the blower housing within size restrictions of the furnace enclosure 12′. The furnace designer designs the blower housing to allow a reasonable flow of air around the blower housing in the enclosure 12′, while trying to hold down the exponential expansion of the blower housing outer wall 56 as much as possible, while at the same time obtaining the primary objective of a large air outlet opening 58. In the disclosed embodiment, the factor “B” is 0.05645 for points on the circumference of the fan wheel 42 from the fan wheel point (b) to the 270 degree fan wheel point (k), and is 0.0128 for the points on the circumference of the fan wheel from the 270 degree point (k) to the 360 degree fan wheel point (o).
The exponentially increasing expansion angle of the volute shaped portion of the outer wall 56 of the invention is based on a fan wheel 42 having a diameter dimension D of 10.625 inches. The size of the fan wheel influences the circumferential dimensions measured to the fan wheel points (b, c, d, e, f, g, h, i, j, k, l, m, n, o) which are raised to an exponential value to obtain the radial spacing between each of the respective points on the circumference of the fan wheel 42 and a radially aligned point on the volute outer wall 56. A blower housing having a volute outer wall 56 designed according to the earlier set forth equation provides an enlarged air outlet opening 58 without significantly increasing the overall dimensions of the blower housing 48 from that of prior art blower housings.
In alternate embodiments of the invention, the expansion angle of the volute outer wall 56 of the blower housing could increase exponentially with there being a single exponent value for the entire length of the volute shaped outer wall 56.
In further embodiments of the invention, the blower housing of the invention could be employed in a low profile furnace, specifically an 80+ AFUE furnace, as well as in other types of furnaces and air handlers, and also in AC units. The alternate embodiment of a 80+ furnace is illustrated in
Although the above equation and the above described method of designing the volute shaped outer wall of a blower housing based on the circumference dimensions of the fan wheel are described with reference to a particular fan wheel diameter dimension, there are particular blower housing and fan wheel dimension relationships that provide the synergistic effect of the increased efficiency of the blower housing of the invention. In the blower housing of the invention these synergistic results are achieved when the ratio of the minimum radial dimension of the air outlet opening (for example, the minimum dimension between the cutoff 72 and the straight portion of the blower housing outer wall 48 shown in
The dimensional relationships between the fan wheel and the blower housing outer wall of the invention set forth above result in the synergistic increase in the efficiency of the blower housing of the invention. This synergistic increase in efficiency is the result of three basic principles.
(1) The enlarged air outlet opening of the blower housing spreads out the flow of air exiting the blower housing over the furnace heat exchanger to a greater extent than prior art blower housings, and thereby reduces the pressure loss across the furnace. This lowers the required pressure that the blower must generate.
(2) The flow of air moving through the fan wheel is concentrated in the last half of the scroll configuration of the blower housing, and especially in the last 90° of the scroll configuration where the outer wall increases at an expansion angle of 10° or greater. This creates a higher air flow velocity through the forward-curved blades of the fan wheel, which increases static pressure gained on the fan wheel due to the coriollis effect. The higher air flow velocity also increases the velocity head off of the forwarded-curved blades of the fan wheel. This effect reduces the size of the fan wheel required in the blower housing for an equal powered blower, and increases the efficiency due to greater pressure being generated on the fan wheel blades.
(3) The blower housing volume aggressively becomes larger in the direction of fan wheel rotation in the blower housing of the invention, especially toward the air outlet opening. This enables the exhaust velocities of the air flow to be reduced, and creates a blower housing where a greater portion of the air flow velocity head is converted to static pressure. This increases the efficiency of the blower housing because this velocity head energy would have been lost outside of the blower housing. This further increases the overall efficiency of the system.
The above described embodiments of the invention were chosen in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
As various modifications could be made in the constructions herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
17664 | Braugh | Jun 1857 | A |
82736 | Mitchell | Oct 1868 | A |
662395 | Davidson | Nov 1900 | A |
675375 | Davidson | Jun 1901 | A |
839273 | Davidson | Dec 1906 | A |
RE12796 | Davidson | May 1908 | E |
RE12797 | Davidson | May 1908 | E |
RE12798 | Davidson | May 1908 | E |
1111250 | Davidson | Sep 1914 | A |
1138083 | Carrier | May 1915 | A |
1462557 | Kuenzel, Jr. | Jul 1923 | A |
1892930 | Burman | Feb 1930 | A |
1875881 | Morse | Sep 1932 | A |
1877905 | le Grand | Sep 1932 | A |
1895488 | Reisinger | Jan 1933 | A |
1935120 | Hagen | Nov 1933 | A |
2155631 | Anderson | Apr 1939 | A |
2165069 | Reynolds | Jul 1939 | A |
2225398 | Hamblin | Dec 1940 | A |
2301857 | Criqui | Nov 1942 | A |
2322357 | Hagen | Jun 1943 | A |
2441411 | Hagen | May 1948 | A |
2564775 | Besser | Aug 1951 | A |
3098603 | Baker | Jul 1963 | A |
3191851 | Wood | Jun 1965 | A |
3227150 | Reznick et al. | Jan 1966 | A |
3382862 | Martz | May 1968 | A |
3407995 | Kinsworthy | Oct 1968 | A |
3481321 | Reichelderfer | Dec 1969 | A |
3561906 | Fermer | Feb 1971 | A |
3638636 | Marshall et al. | Feb 1972 | A |
3820526 | Van Vliet | Jun 1974 | A |
3846040 | Dennis | Nov 1974 | A |
3950835 | Bennink et al. | Apr 1976 | A |
4035610 | Roth | Jul 1977 | A |
4419049 | Gerboth et al. | Dec 1983 | A |
4828456 | Bodzian et al. | May 1989 | A |
4917572 | Van Houten | Apr 1990 | A |
5141397 | Sullivan | Aug 1992 | A |
5257904 | Sullivan | Nov 1993 | A |
5301654 | Weber et al. | Apr 1994 | A |
5309890 | Rieke et al. | May 1994 | A |
5368010 | Weber et al. | Nov 1994 | A |
5375586 | Schumacher et al. | Dec 1994 | A |
5377662 | Mills et al. | Jan 1995 | A |
5379750 | Larsen et al. | Jan 1995 | A |
5379751 | Larsen et al. | Jan 1995 | A |
5380193 | Williams et al. | Jan 1995 | A |
5406933 | Lu | Apr 1995 | A |
5448986 | Christopher et al. | Sep 1995 | A |
5570996 | Smiley, III | Nov 1996 | A |
5601400 | Kondo et al. | Feb 1997 | A |
5813834 | Hopfensperger et al. | Sep 1998 | A |
6318358 | Gatley, Jr. | Nov 2001 | B1 |
6439839 | Song et al. | Aug 2002 | B1 |
6578629 | Trent | Jun 2003 | B1 |
6585484 | Rosenthal et al. | Jul 2003 | B2 |
6821088 | Sakai et al. | Nov 2004 | B2 |
7334986 | Sohn et al. | Feb 2008 | B2 |
7500825 | Hanai | Mar 2009 | B2 |
20020014233 | Gatley et al. | Feb 2002 | A1 |
20030012649 | Sakai et al. | Jan 2003 | A1 |
20040062646 | Nomura | Apr 2004 | A1 |
20070274833 | Sakai et al. | Nov 2007 | A1 |
20090252605 | Lyons | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
19709193 | Oct 1997 | DE |
61138900 | Jun 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20090114205 A1 | May 2009 | US |