High-efficiency heat exchange in compressed-gas energy storage systems

Information

  • Patent Grant
  • 8661808
  • Patent Number
    8,661,808
  • Date Filed
    Tuesday, July 24, 2012
    12 years ago
  • Date Issued
    Tuesday, March 4, 2014
    10 years ago
Abstract
In various embodiments, efficiency of energy storage and recovery systems employing compressed air and liquid heat exchange is improved via control of the system operation and/or the properties of the heat-exchange liquid.
Description
FIELD OF THE INVENTION

In various embodiments, the present invention relates to pneumatics, power generation, and energy storage, and more particularly, to compressed-gas energy-storage systems and methods using pneumatic or pneumatic/hydraulic cylinders.


BACKGROUND

Storing energy in the form of compressed gas has a long history and components tend to be well tested and reliable, and have long lifetimes. The general principle of compressed-gas or compressed-air energy storage (CAES) is that generated energy (e.g., electric energy) is used to compress gas (e.g., air), thus converting the original energy to pressure potential energy; this potential energy is later recovered in a useful form (e.g., converted back to electricity) via gas expansion coupled to an appropriate mechanism. Advantages of compressed-gas energy storage include low specific-energy costs, long lifetime, low maintenance, reasonable energy density, and good reliability.


If a body of gas is at the same temperature as its environment, and expansion occurs slowly relative to the rate of heat exchange between the gas and its environment, then the gas will remain at approximately constant temperature as it expands. This process is termed “isothermal” expansion. Isothermal expansion of a quantity of high-pressure gas stored at a given temperature recovers approximately three times more work than would “adiabatic expansion,” that is, expansion where no heat is exchanged between the gas and its environment—e.g., because the expansion happens rapidly or in an insulated chamber. Gas may also be compressed isothermally or adiabatically.


An ideally isothermal energy-storage cycle of compression, storage, and expansion would have 100% thermodynamic efficiency. An ideally adiabatic energy-storage cycle would also have 100% thermodynamic efficiency, but there are many practical disadvantages to the adiabatic approach. These include the production of higher temperature and pressure extremes within the system, heat loss during the storage period, and inability to exploit environmental (e.g., cogenerative) heat sources and sinks during expansion and compression, respectively. In an isothermal system, the cost of adding a heat-exchange system is traded against resolving the difficulties of the adiabatic approach. In either case, mechanical energy from expanding gas must usually be converted to electrical energy before use.


An efficient and novel design for storing energy in the form of compressed gas utilizing near isothermal gas compression and expansion has been shown and described in U.S. patent application Ser. Nos. 12/421,057 (the '057 application) and 12/639,703 (the '703 application), the disclosures of which are hereby incorporated herein by reference in their entireties. The '057 and '703 applications disclose systems and methods for expanding gas isothermally in staged cylinders and intensifiers over a large pressure range in order to generate electrical energy when required. Mechanical energy from the expanding gas may be used to drive a hydraulic pump/motor subsystem that produces electricity. Systems and methods for hydraulic-pneumatic pressure intensification that may be employed in systems and methods such as those disclosed in the '057 and '703 applications are shown and described in U.S. patent application Ser. No. 12/879,595 (the '595 application), the disclosure of which is hereby incorporated herein by reference in its entirety.


In the systems disclosed in the '057 and '703 applications, reciprocal mechanical motion is produced during recovery of energy from storage by expansion of gas in the cylinders. This reciprocal motion may be converted to electricity by a variety of means, for example as disclosed in the '595 application as well as in U.S. patent application Ser. No. 12/938,853 (the '853 application), the disclosure of which is hereby incorporated herein by reference in its entirety. The ability of such systems to either store energy (i.e., use energy to compress gas into a storage reservoir) or produce energy (i.e., expand gas from a storage reservoir to release energy) will be apparent to any person reasonably familiar with the principles of electrical and pneumatic machines.


Gas undergoing expansion tends to cool, while gas undergoing compression tends to heat. To maximize efficiency (i.e., the fraction of elastic potential energy in the compressed gas that is converted to work, or vice versa), gas expansion and compression should be as near isothermal (i.e., constant-temperature) as possible. Several techniques of approximating isothermal expansion and compression may be employed.


First, as described in U.S. Pat. No. 7,802,426 (the '426 patent), the disclosure of which is hereby incorporated by reference herein in its entirety, gas undergoing either compression or expansion may be directed, continuously or in installments, through a heat-exchange subsystem external to the cylinder. The heat-exchange subsystem either rejects heat to the environment (to cool gas undergoing compression) or absorbs heat from the environment (to warm gas undergoing expansion). An isothermal process may be approximated via judicious selection of this heat-exchange rate.


Additionally, as described in the '703 application, droplets of a liquid (e.g., water) may be sprayed into a chamber of the cylinder in which gas is presently undergoing compression (or expansion) in order to transfer heat to or from the gas. As the liquid droplets exchange heat with the gas around them, the temperature of the gas is raised or lowered; the temperature of the droplets is also raised or lowered. The liquid is evacuated from the cylinder through a suitable mechanism. The heat-exchange spray droplets may be introduced through a spray head (m, e.g., a vertical cylinder), through a spray rod arranged coaxially with the cylinder piston (m, e.g., a horizontal cylinder), or by any other mechanism that permits formation of a liquid spay within the cylinder. Droplets may be used to either warm gas undergoing expansion or to cool gas undergoing compression. Again, an isothermal process may be approximated via judicious selection of this heat-exchange rate.


However, reductions in energy-conversion efficiency may still result in systems utilizing liquid-spray heat exchange. For example, portions of the gas undergoing compression or expansion may dissolve into the liquid utilized for heat exchange, and hence the total amount of energy storable or recoverable by the system is diminished. Moreover, the energy-storage-and-recovery system generally must consume power in order to form and maintain a suitable liquid heat-exchange spray, reducing the overall energy efficiency of the system. Thus, there is a need for systems utilizing liquid-based heat exchange that operate with higher efficiency and reduced power requirements.


SUMMARY

Embodiments of the invention reduce energetic losses caused by dissolution of air in heat-exchange liquids under high pressure, enabling more-efficient, substantially isothermal gas compression and expansion. The heat-exchange liquid may be water and/or another suitable liquid. Although the ensuing discussion refers to water as the heat-exchange liquid, it should be understood that this is merely for simplicity of presentation, and that other liquids—such as oils (natural and/or synthetic) or glycols—may be alternatively or additionally employed. Specifically, various embodiments diminish the effects of air solubility in water in liquid sprays that are injected into high-pressure gas (e.g., 3,000 pounds per square inch gauge [psig]) for heat exchange. Salts or other substances may be added to the water to reduce the solubility of air in the water (or other heat-exchange liquid) and/or to slow the dissolution of air in the water (or other heat-exchange liquid); the temperature of the liquid and gas within the system may be raised, reducing the solubility of air in the water; the system may be operated so as to reduce the time available for air to dissolve in the water, thus reducing the amount of air ultimately dissolved in the water; and/or the system may be operated so as to recover energy from dissolved gas using a regenerative piston stroke. Such techniques, applied separately or together in any of a variety of combinations, enable more-efficient, substantially isothermal gas compression and expansion.


Embodiments of the present invention also increase the heat-transfer potential of the liquid sprays provided to enable substantially isothermal expansion and compression inside cylinders or other mechanical devices for expanding or compressing gas, with resulting gain in the efficiency of the overall energy-storage and energy-recovery process. Specifically, various embodiments increase the heat-transfer potential of the liquid sprays. By altering the properties of the heat-exchange liquid itself by using additives, the efficiency of liquid-based heat-transfer systems may be increased by reducing the power needed to produce a suitably atomized spray of liquid.


The amount of heat that can be transferred to a given mass of liquid from a surrounding body of gas, or from the liquid to the gas, is primarily governed by the specific heat capacity of each (assuming that changes of phase can be ignored) and the temperature difference between the liquid and gas. Water has a high specific heat (1.00 cal/g-° C.) relative to most other liquids (e.g., ethyl alcohol, ˜0.6 cal/g-° C.), making it particularly suitable as a heat-transfer medium.


Moreover, the rate at which heat can be transferred from a liquid to a gas, or from a gas to a liquid, is governed in large part by the area of contact between the two (i.e., the liquid surface area). In the heat-transfer systems described in the '703 application, a given mass of water is transformed into a spray in order to maximize surface area and thus heat transfer rate. For a given spherical volume of liquid V reduced to N spherical droplets, the total surface area of the liquid is proportional to N2/3. Atomization of the liquid during spray generation (i.e., large N) is, therefore, generally conducive to increased heat transfer.


Spray quality—i.e., the effectiveness with which a given volume of heat-transfer liquid has been reduced to a large number of small droplets, approximately given by N/V—may be increased by utilizing a higher spray pressure drop, i.e., a larger change in pressure from the input of the spray-generating device to the output, with a concomitant increase in liquid velocity. However, increasing spray quality in this way requires increased power. Thus, there is a tradeoff between improved heat transfer due to better spray quality and the energy cost of increased pumping power.


The physics of single- and multiphase-flow of a liquid, as discussed below, are relevant to various embodiments of the invention. In general, at the point where a liquid exits a tube through a hole or orifice, it will generally be in a state of either laminar (streamline) or turbulent flow. In laminar flow, the particles (e.g., molecules) of the fluid flow in concentric streams parallel to the axis of the tube. Whether the flow is laminar or turbulent depends on, e.g., liquid viscosity, flow velocity, tube surface roughness, tube interior diameter, and changes in tube interior diameter along the tube axis. After exiting the orifice as a contiguous stream (i.e., a jet), the liquid will, in general, disintegrate, forming drops. The form, location, number, and motions of the resultant drops depend with complexity on the character of liquid flow at the exit point and the physical properties (e.g., viscosity, surface tension, etc.) of the liquid and also of the gas, if any, into which the liquid has been introduced.


Three basic types or regimes of liquid breakup and their relationship to liquid properties were usefully defined by W. Ohnesorge (“Formation of drops by nozzles and the breakup of liquid jets,” 1936, Zeitschrifi für Angewandte Mathematik and Mechanik [Applied Mathematics and Mechanics] (Berlin: Akademie Verlag) 16: 355-358 (the “Ohnesorge reference”), the entire disclosure of which is incorporated by reference herein. The first regime is large-droplet formation; the second is waves-and-droplet formation (irregular droplets form, varying widely in size and often joined by ligaments); and the third is spray or atomization (formation of a large number of small droplets, which may have approximately uniform size). In the figures, adapted from the Ohnesorge reference, the three regimes are shown as functions of two dimensionless numbers, namely, the Reynolds number (horizontal axis) and the Ohnesorge number (vertical axis). The Reynolds number (Re) is a function of the liquid velocity at exit from the hole (V), hole diameter (D), liquid density (ρ), and liquid dynamic viscosity (μ): Re=ρVD/μ. The Ohnesorge number (O) is a function of hole diameter (D), liquid density (ρ), liquid dynamic viscosity (μ), and liquid surface tension (δ): O=μ/(δρD)1/2. For a given liquid flow, the ratio of Re and O determines the breakup regime. The chart, shown in FIG. 4A, and the dimensionless numbers associated with it will be readily understood by any person familiar with the science of fluid mechanics. The three types of liquid breakup denoted above and in FIG. 4A are illustrated in FIG. 4B.


As explained above, efficient liquid-gas heat transfer may be achieved utilizing a fine (atomized) spray of the liquid. Overall efficiency may be increased by expending the least possible energy to create the highest quality spray. A given liquid flow through a given orifice may be moved toward the “spray” regime in FIGS. 4A and 4B by increasing its Reynolds number, by increasing its Ohnesorge number, or both. Alternatively, a flow already in the spray regime may remain there even if its Reynolds number is decreased, as long as its Ohnesorge number is increased sufficiently at the same time, and vice versa.


As is evident from the definitional equations given above, the Reynolds number may be increased by increasing liquid velocity, increasing liquid density, or decreasing liquid viscosity. Similarly, the Ohnesorge number may be increased by increasing liquid viscosity or decreasing liquid surface tension or density. Changing liquid viscosity alone produces complementary changes in the Reynolds and Ohnesorge numbers and so produces movement on FIG. 4A parallel to the breakup-regime boundaries (i.e., it generally does not change the type of breakup). Velocity, density, and surface tension are, therefore, three variables that may be altered in embodiments of the present invention. Assuming a fixed orifice design, increasing liquid velocity generally requires increased power input, and changing the density of a liquid (e.g., water) is generally difficult. However, the surface tension of the liquid may be altered in order to increase its Ohnesorge number without affecting its Reynolds number. Increasing the Ohnesorge number in this way effectively enables the production of a spray (i.e., placement of the operating point in the spray regime) at a lower Reynolds number, e.g., at a lower liquid velocity. For example, reducing the surface tension of the liquid to one-third of the pure-liquid value increases the Ohnesorge number by a factor of 31/2.


The surface tension of water, in particular, may be readily altered by dissolving certain chemicals therein. For example, dissolved surfactants reduce the surface tension of water, even in low concentrations. In a heat-transfer system, if a surfactant is added to the heat-exchange liquid (e.g., water), spray formation will occur with lower liquid injection velocity, therefore with lower power input, therefore with higher overall system efficiency, than would be the case without the addition of the surfactant. Simultaneously, additional system benefits (e.g., continuous surface cleaning to prevent or retard mineral deposit buildup or organic fouling) may be realized by appropriate choice of the surfactant chemical.


Thus, in general, various embodiments of the invention relate to systems and methods for decreasing the power required to produce an atomized spray in a liquid-gas heat-exchange system through the addition to the liquid of a substance such as a surfactant. For a given spray apparatus, a lower liquid injection velocity is thus needed to produce a fine or atomized spray than would be needed without the addition of the surfactant. The lower power required for spray production in an energy storage-and-retrieval system employing this method of heat transfer increases the overall efficiency of the system. The efficient generation of a liquid spray containing a surfactant chemical may be employed during the transfer of heat to a gas (e.g., during expansion of the gas) or during the removal of heat from a gas (e.g., during compression of the gas).


Embodiments of the present invention are typically utilized in energy storage and generation systems utilizing compressed gas. In a compressed-gas energy storage system, gas is stored at high pressure (e.g., approximately 3,000 psi). This gas may be expanded into a cylinder having a first compartment (or “chamber”) and a second compartment separated by a piston slidably disposed within the cylinder (or by another boundary mechanism). A shaft may be coupled to the piston and extend through the first compartment and/or the second compartment of the cylinder and beyond an end cap of the cylinder, and a transmission mechanism may be coupled to the shaft for converting a reciprocal motion of the shaft into a rotary motion, as described in the '595 and '853 applications. Moreover, a motor/generator may be coupled to the transmission mechanism. Alternatively or additionally, the shaft of the cylinders may be coupled to one or more linear generators, as described in the '853 application.


As also described in the '853 application, the range of forces produced by expanding a given quantity of gas in a given time may be reduced through the addition of multiple, series-connected cylinder stages. That is, as gas from a high-pressure reservoir is expanded in one chamber of a first, high-pressure cylinder, gas from the other chamber of the first cylinder is directed to the expansion chamber of a second, lower-pressure cylinder. Gas from the lower-pressure chamber of this second cylinder may either be vented to the environment or directed to the expansion chamber of a third cylinder operating at still lower pressure; the third cylinder may be similarly connected to a fourth cylinder; and so on.


The principle may be extended to more than two cylinders to suit particular applications. For example, a narrower output force range for a given range of reservoir pressures is achieved by having a first, high-pressure cylinder operating between, for example, approximately 3,000 psig and approximately 300 psig and a second, larger-volume, lower-pressure cylinder operating between, for example, approximately 300 psig and approximately 30 psig. When two expansion cylinders are used, the range of pressure within either cylinder (and thus the range of force produced by either cylinder) is reduced as the square root relative to the range of pressure (or force) experienced with a single expansion cylinder, e.g., from approximately 100:1 to approximately 10:1 (as set forth in the '853 application). Furthermore, as set forth in the '595 application, N appropriately sized cylinders can reduce an original operating pressure range R to R1/N. Any group of N cylinders staged in this manner, where N≧2, is herein termed a cylinder group.


All of the approaches described above for converting potential energy in compressed gas into mechanical and electrical energy may, if appropriately designed, be operated in reverse to store electrical energy as potential energy in a compressed gas. Since the accuracy of this statement will be apparent to any person reasonably familiar with the principles of electrical machines, power electronics, pneumatics, and the principles of thermodynamics, the operation of these mechanisms to both store energy and recover it from storage will not be described for each embodiment. Such operation is, however, contemplated and within the scope of the invention and may be straightforwardly realized without undue experimentation.


Embodiments of the invention may be implemented using any of the integrated heat-transfer systems and methods described in the '703 application and/or with the external heat-transfer systems and methods described in the '426 patent.


The compressed-air energy storage and recovery systems described herein are preferably “open-air” systems, i.e., systems that take in air from the ambient atmosphere for compression and vent air back to the ambient atmosphere after expansion, rather than systems that compress and expand a captured volume of gas in a sealed container (i.e., “closed-air” systems). Thus, the systems described herein generally feature one or more cylinder assemblies for the storage and recovery of energy via compression and expansion of gas. Selectively fluidly connected to the cylinder assembly are (i) means for storage of compressed gas after compression and supply of compressed gas for expansion thereof, and (ii) a vent for exhausting expanded gas to atmosphere after expansion and supply of gas for compression. The means for storage of compressed gas may include or consist essentially of, e.g., one or more pressure vessels or caverns. Open-air systems typically provide superior energy density relative to closed-air systems.


Furthermore, the systems described herein may be advantageously utilized to harness and recover sources of renewable energy, e.g., wind and solar energy. For example, energy stored during compression of the gas may originate from an intermittent renewable energy source of, e.g., wind or solar energy, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional (i.e., either not producing harnessable energy or producing energy at lower-than-nominal levels). As such, the systems described herein may be connected to, e.g., solar panels or wind turbines, in order to store the renewable energy generated by such systems.


In one aspect, embodiments of the invention feature a method for improving efficiency of a compressed-gas energy storage and recovery system. Gas is compressed within a cylinder assembly from a first pressure to a second pressure, thereby storing energy. During the compression, a heat-transfer fluid is introduced into the cylinder assembly to exchange heat with the gas, thereby increasing efficiency of the energy storage. A portion of the gas dissolves into the heat-transfer fluid. Gas is exhausted from the cylinder assembly at the second pressure, and at least a portion of the heat-transfer fluid remains in the cylinder assembly. Thereafter, energy is recovered from gas effervescing from the heat-transfer fluid in the cylinder assembly.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. Energy may be recovered from effervescing gas using a regenerative stroke. During the exhausting of gas from the cylinder assembly, a portion of the gas may be trapped in dead volume in the cylinder assembly, and the regenerative stroke may recover energy from the gas disposed in the dead volume. The cylinder assembly may include a piston within the cylinder assembly, and the energy recovered during the regenerative stroke may drive a mechanism mechanically coupled to the piston and/or a hydraulic system coupled to the cylinder assembly. After energy recovery, additional gas may be introduced at the first pressure into the cylinder assembly, and the additional gas may be compressed from the first pressure to the second pressure. Exhausting gas from the cylinder assembly may include or consist essentially of transferring gas from the cylinder assembly to a compressed-gas reservoir (e.g., a pressure vessel and/or a cavern). Exhausting gas from the cylinder assembly may include or consist essentially of transferring gas from the cylinder assembly to a second cylinder assembly, and gas may be compressed within the second cylinder assembly from the second pressure to a third pressure larger than the second pressure.


The heat-transfer fluid may be introduced into the cylinder assembly at least by spraying. Energy recovery may be terminated when the pressure within the cylinder assembly reaches the first pressure. The first pressure may be approximately atmospheric pressure. The heat-transfer fluid may be conditioned to reduce solubility of the gas in the heat-transfer fluid and/or reduce the rate of dissolution of the gas into the heat-transfer fluid. Conditioning may include or consist essentially of heating the heat-transfer fluid to reduce the solubility of the gas in the heat-transfer fluid. The heat-transfer fluid may include a solute therein. The solute may include or consist essentially of a salt (e.g., sodium chloride and/or calcium chloride) and/or a surfactant (e.g., sodium dodecyl sulphate, iso-amyl alcohol, and/or sodium tetradecyl sulphate). The heat-transfer fluid may be heated to increase the solubility of the solute in the heat-transfer fluid.


Prior to compression, gas may be introduced at the first pressure into the cylinder assembly substantially isobarically, and during the introduction, heat-transfer fluid may not be introduced into the cylinder assembly. Gas may be exhausted from the cylinder assembly substantially isobarically, and during the exhausting, heat-transfer fluid may not be introduced into the cylinder assembly. Energy stored during compression of the gas may originate from an intermittent renewable energy source (e.g., of wind or solar energy), and gas may be expanded within the cylinder assembly to recover energy when the intermittent renewable energy source is nonfunctional.


The heat-transfer fluid may include an additive to reduce the surface tension of the heat-transfer fluid. The additive may include or consist essentially of a surfactant, e.g., a low-foaming surfactant, and may also include a defoaming agent. The heat-transfer fluid may be introduced into the cylinder assembly as a spray, and the injection velocity of the spray may be less than the injection velocity required to form a spray from the heat-transfer fluid without the additive. Heat exchange between the heat-transfer fluid and the gas may render the compression of the gas substantially isothermal. The heat-transfer fluid may include or consist essentially of water.


In another aspect, embodiments of the invention feature a method for improving efficiency of a compressed-gas energy storage and recovery system that includes providing a heat-transfer fluid conditioned to reduce the solubility of a gas in the heat-transfer fluid and/or reduce the rate of dissolution of a gas into the heat-transfer fluid. Gas is compressed to store energy and/or gas is expanded to recover energy, and during the compression and/or expansion, heat is exchanged between the gas and the conditioned heat-transfer fluid, thereby increasing efficiency of the energy storage and recovery.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. The conditioned heat-transfer fluid may include a solute therein. The solute may include or consist essentially of a salt (e.g., sodium chloride and/or calcium chloride) and/or a surfactant (e.g., sodium dodecyl sulphate, iso-amyl alcohol, and/or sodium tetradecyl sulphate). The solute may reduce the surface tension of the heat-transfer fluid. Exchanging heat between the gas and the conditioned heat-transfer fluid may include or consist essentially of spraying the conditioned heat-transfer fluid into the gas, and the injection velocity of the spraying may be less than the injection velocity required to form a spray from the heat-transfer fluid without the solute. The conditioned heat-transfer fluid may be heated to increase the solubility of the solute in the conditioned heat-transfer fluid.


Expanded gas may be vented to atmosphere, and/or compressed gas may be stored in a compressed-gas reservoir. Energy stored during compression of the gas may originate from an intermittent renewable energy source (e.g., of wind or solar energy), and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. Exchanging heat between the gas and the conditioned heat-transfer fluid may include or consist essentially of spraying the conditioned heat-transfer fluid into the gas. The heat exchange between the gas and the conditioned heat-transfer fluid may render the compression and/or expansion substantially isothermal. The gas may be compressed and/or expanded within a cylinder assembly. Prior to the compression and/or expansion, the gas may be introduced into the cylinder assembly substantially isobarically, and heat may not be exchanged between the gas and the conditioned heat-transfer fluid during the introduction. After the compression and/or expansion, the gas may be exhausted from the cylinder assembly substantially isobarically, and heat may not be exchanged between the gas and the conditioned heat-transfer fluid during the exhausting of the gas. The heat-transfer fluid may include or consist essentially of water.


In yet another aspect, embodiments of the invention feature a method for improving efficiency of a compressed-gas energy storage and recovery system. Gas may be compressed to store energy and/or expanded to recover energy within a cylinder assembly. During the compression and/or expansion, heat may be exchanged between the gas and a heat-transfer fluid, thereby increasing efficiency of the energy storage and recovery. Prior to the compression and/or expansion, the gas may be introduced into the cylinder assembly substantially isobarically, and heat may not be exchanged between the gas and the heat-transfer fluid during the introduction. After the compression and/or expansion, the gas may be exhausted from the cylinder assembly substantially isobarically, and heat may not be exchanged between the gas and the heat-transfer fluid during the exhausting of the gas.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. Exhausting gas from the cylinder assembly may include or consist essentially of transferring gas from the cylinder assembly to a compressed-gas reservoir (e.g., a pressure vessel and/or a cavern). Exhausting gas from the cylinder assembly may include or consist essentially of transferring gas from the cylinder assembly to a second cylinder assembly. Gas may be compressed and/or expanded within the second cylinder assembly over a pressure range different from the pressure range of compressing or expanding gas within the cylinder assembly. Exchanging heat between the gas and the heat-transfer fluid may include or consist essentially of spraying the heat-transfer fluid into the gas. The heat-transfer fluid may be heated to reduce the solubility of the gas in the heat-transfer fluid. Energy stored during compression of the gas may originate from an intermittent renewable energy source (e.g., of wind or solar energy), and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional.


The heat-transfer fluid may include an additive to reduce its surface tension, and the additive may include or consist essentially of a surfactant (e.g., a low-foaming surfactant). The additive may also include a defoaming agent. Exchanging heat between the gas and the heat-transfer fluid may include or consist essentially of spraying the heat-transfer fluid into the gas, and the injection velocity of the spraying may be less than the injection velocity required to form a spray from the heat-transfer fluid without the additive. The heat exchange between the heat-transfer fluid and the gas may render the compression of the gas substantially isothermal. The heat-transfer fluid may include or consist essentially of water.


In a further aspect, various embodiments of the invention feature a method for improving efficiency of a compressed-gas energy storage and recovery system that includes providing a heat-transfer fluid including an additive for reducing its surface tension. Gas is compressed to store energy and/or expanded to recover energy, and during the compression and/or expansion, heat is exchanged between the gas and the additive-containing heat-transfer fluid, thereby increasing efficiency of the energy storage and recovery.


Embodiments of the invention may feature one or more of the following in any of a variety of combinations. Energy stored during compression of the gas may originate from an intermittent renewable energy source (e.g., of wind or solar energy), and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. Expanded gas may be vented to atmosphere, and/or compressed gas may be stored in a compressed-gas reservoir. The additive-containing heat-transfer fluid may be heated to reduce the solubility of the gas in the heat-transfer fluid. The additive may include or consist essentially of a surfactant (e.g., sodium dodecyl sulphate, iso-amyl alcohol, and/or sodium tetradecyl sulphate). The surfactant may be a low-foaming surfactant. The additive may further include a defoaming agent. Exchanging heat between the gas and the additive-containing heat-transfer fluid may include or consist essentially of spraying the additive-containing heat-transfer fluid into the gas, and the injection velocity of the spraying may be less than the injection velocity required to form a spray from the heat-transfer fluid without the additive. The heat exchange between the additive-containing heat-transfer fluid and the gas may render the compression of the gas substantially isothermal. The heat-transfer fluid may include or consist essentially of water.


In yet a further aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and expanding gas to recover energy, a heat-transfer subsystem, and a control system. The cylinder assembly includes or consists essentially of two separated chambers. The heat-transfer system introduces heat-transfer fluid within the cylinder assembly to exchange heat with gas in the cylinder assembly, thereby increasing efficiency of the energy storage and recovery. The control system directs the cylinder assembly to compress gas and thereafter to recover energy from gas effervescing from the heat-transfer fluid in the cylinder assembly.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. The control system may direct performance of a compression stroke to compress the gas and a regenerative stroke to recover the energy. The control system may control the cylinder assembly and the heat-transfer subsystem to enforce substantially isothermal compression and expansion of gas in the cylinder assembly. A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of the gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. The heat-transfer subsystem may include a circulation apparatus for circulating a heat-transfer fluid through the cylinder assembly. The heat-transfer subsystem may include a mechanism (e.g., a spray head and/or a spray rod) disposed within the cylinder assembly for introducing the heat-transfer fluid. The heat-transfer subsystem may include or consist essentially of a heat exchanger and a circulation apparatus for circulating gas from the cylinder assembly through the heat exchanger and back to the cylinder assembly. The two separated chambers may be a pneumatic chamber and a hydraulic chamber, or both chambers may be pneumatic chambers. A movable boundary mechanism (e.g., a piston) may separate the two chambers, and a crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the boundary mechanism. A motor/generator may be coupled to the crankshaft. The system may include a sensor for detecting a pressure within the cylinder assembly, and the control system may be responsive to the sensor.


In another aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and expanding gas to recover energy, a spray mechanism, and a control system. The cylinder assembly includes or consists essentially of two separated chambers. The spray mechanism introduces a spray of heat-transfer fluid within the cylinder assembly to exchange heat with gas in the cylinder assembly, thereby increasing efficiency of the energy storage and recovery. The control system controls the velocity of the spray based at least in part on the surface tension of the heat-transfer fluid.


Embodiments of the invention feature one or more of the following in any of a variety of combinations. The control system may control the cylinder assembly and the spray mechanism to enforce substantially isothermal compression and expansion of gas in the cylinder assembly. A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of the gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. The spray mechanism may include or consist essentially of a spray head and/or a spray rod. The system may include a circulation apparatus for circulating the heat-transfer fluid to the spray mechanism. The system may include a heat exchanger for maintaining the heat-transfer fluid at a substantially constant temperature, and the circulation apparatus may circulate heat-transfer fluid from the cylinder assembly through the heat exchanger and back to the cylinder assembly. The two separated chambers may be a pneumatic chamber and a hydraulic chamber, or both chambers may be pneumatic chambers. A movable boundary mechanism (e.g., a piston) may separate the two chambers, and a crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the boundary mechanism. A motor/generator may be coupled to the crankshaft.


The system may include a heat-transfer fluid for spraying through the spray mechanism. The heat-transfer fluid may include an additive for reducing the surface tension of the heat-transfer fluid. The additive may include or consist essentially of a surfactant (e.g., sodium dodecyl sulphate, iso-amyl alcohol, and/or sodium tetradecyl sulphate). The surfactant may be a low-foaming surfactant. The additive may further include a defoaming agent. The heat-transfer fluid may include or consist essentially of water.


In yet another aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and expanding gas to recover energy, a heat-transfer subsystem, and a control system. The cylinder assembly includes or consists essentially of two separated chambers and a mechanism for controlling the introduction of gas into and exhausting of gas out of the cylinder assembly. The heat-transfer subsystem introduces heat-transfer fluid within the cylinder assembly to exchange heat with gas in the cylinder assembly, thereby increasing efficiency of the energy storage and recovery. The control system causes the heat-transfer subsystem to introduce heat-transfer fluid within the cylinder assembly during compression and expansion of the gas, and it prevents the heat-transfer subsystem from introducing heat-transfer fluid within the cylinder assembly when the mechanism is allowing introduction of gas into or exhausting gas out of the cylinder assembly.


Embodiments of the invention feature one or more of the following in any of a variety of combinations. The control system may control the cylinder assembly and the heat-transfer subsystem to enforce substantially isothermal compression and expansion of gas in the cylinder assembly. A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of the gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. The heat-transfer subsystem may include a circulation apparatus for circulating heat-transfer fluid through the cylinder assembly. The heat-transfer subsystem may include a mechanism (e.g., a spray head and/or a spray rod) disposed within the cylinder assembly for introducing the heat-transfer fluid. The two separated chambers may be a pneumatic chamber and a hydraulic chamber, or both chambers may be pneumatic chambers. A movable boundary mechanism (e.g., a piston) may separate the two chambers, and a crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the boundary mechanism. A motor/generator may be coupled to the crankshaft. The introduction of gas into and exhausting of gas out of the cylinder assembly may be substantially isobaric.


In a further aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and expanding gas to recover energy, a heat-transfer fluid, and a heat-transfer subsystem for introducing the heat-transfer fluid within the cylinder assembly to exchange heat with gas in the cylinder assembly, thereby increasing efficiency of the energy storage and recovery. The cylinder assembly includes or consists essentially of two separated chambers. The heat-transfer fluid includes a solute for reducing the solubility of the gas in the heat-transfer fluid and/or reducing the rate of dissolution of the gas into the heat-transfer fluid.


Embodiments of the invention feature one or more of the following in any of a variety of combinations. A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of the gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. The heat-transfer subsystem may include a mechanism (e.g., a spray head and/or a spray rod) disposed within the cylinder assembly for introducing the heat-transfer fluid. The heat-transfer subsystem may include a circulation apparatus for circulating heat-transfer fluid through the cylinder assembly. The heat-transfer subsystem may include a heat exchanger for maintaining the heat-transfer fluid at a substantially constant temperature. The circulation apparatus may circulate heat-transfer fluid from the cylinder assembly through the heat exchanger and back to the cylinder assembly. The two separated chambers may be a pneumatic chamber and a hydraulic chamber, or both chambers may be pneumatic chambers. A movable boundary mechanism (e.g., a piston) may separate the two chambers, and a crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the boundary mechanism. A motor/generator may be coupled to the crankshaft.


The solute may include or consist essentially of a salt (e.g., sodium chloride and/or calcium chloride) and/or a surfactant (e.g., sodium dodecyl sulphate, iso-amyl alcohol, and/or sodium tetradecyl sulphate). The solute may reduce the surface tension of the heat-transfer fluid. The heat-transfer fluid may include or consist essentially of water.


In yet a further aspect, embodiments of the invention feature a compressed-gas energy storage and recovery system including or consisting essentially of a cylinder assembly for compressing gas to store energy and expanding gas to recover energy, a heat-transfer fluid, and a spray mechanism for introducing a spray of the heat-transfer fluid within the cylinder assembly to exchange heat with gas therein, thereby increasing efficiency of the energy storage and recovery. The cylinder assembly includes or consists essentially of two separated chambers. The heat-transfer fluid includes an additive for reducing its surface tension.


Embodiments of the invention may include one or more of the following, in any of a variety of combinations. A compressed-gas reservoir for storage of gas after compression and supply of compressed gas for expansion may be selectively fluidly connected to the cylinder assembly. A vent for exhausting expanded gas to atmosphere and supply of gas for compression may be selectively fluidly connected to the cylinder assembly. An intermittent renewable energy source (e.g., of wind or solar energy) may be connected to the cylinder assembly. Energy stored during compression of the gas may originate from the intermittent renewable energy source, and energy may be recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional. The spray mechanism may include or consist essentially of a spray head and/or a spray rod. The system may include a circulation apparatus for circulating heat-transfer fluid through the cylinder assembly. The system may include a heat exchanger for maintaining the heat-transfer fluid at a substantially constant temperature, and the circulation apparatus may circulate heat-transfer fluid from the cylinder assembly through the heat exchanger and back to the cylinder assembly. The two separated chambers may be a pneumatic chamber and a hydraulic chamber, or both chambers may be pneumatic chambers. A movable boundary mechanism (e.g., a piston) may separate the two chambers, and a crankshaft for converting reciprocal motion of the boundary mechanism into rotary motion may be mechanically coupled to the boundary mechanism. A motor/generator may be coupled to the crankshaft.


The additive may include or consist essentially of a surfactant (e.g., sodium dodecyl sulphate, iso-amyl alcohol, and/or sodium tetradecyl sulphate). The surfactant may be a low-foaming surfactant. The additive may further include a defoaming agent. The heat-transfer fluid may include or consist essentially of water. The system may include a control system for controlling the injection velocity of the spray of heat-transfer fluid, e.g., based on the surface tension of the heat-transfer fluid.


These and other objects, along with advantages and features of the invention, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. Note that as used herein, the terms “pipe,” “piping” and the like shall refer to one or more conduits that are rated to carry gas or liquid between two points. Thus, the singular term should be taken to include a plurality of parallel conduits where appropriate. Herein, the terms “liquid” and “water” interchangeably connote any mostly or substantially incompressible liquid, the terms “gas” and “air” are used interchangeably, and the term “fluid” may refer to a liquid or a gas unless otherwise indicated. As used herein unless otherwise indicated, the term “substantially” means±10%, and, in some embodiments, ±5%. A “valve” is any mechanism or component for controlling fluid communication between fluid paths or reservoirs, or for selectively permitting control or venting. The term “cylinder” refers to a chamber, of uniform but not necessarily circular cross-section, which may contain a slidably disposed piston or other mechanism that separates the fluid on one side of the chamber from that on the other, preventing fluid movement from one side of the chamber to the other while allowing the transfer of force/pressure from one side of the chamber to the next or to a mechanism outside the chamber. A “cylinder assembly” may be a simple cylinder or include multiple cylinders, and may or may not have additional associated components (such as mechanical linkages among the cylinders). The shaft of a cylinder may be coupled hydraulically or mechanically to a mechanical load (e.g., a hydraulic motor/pump or a crankshaft) that is in turn coupled to an electrical load (e.g., rotary or linear electric motor/generator attached to power electronics and/or directly to the grid or other loads), as described in the '595 and '853 applications.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. Cylinders, rods, and other components are depicted in cross section in a manner that will be intelligible to all persons familiar with the art of pneumatic and hydraulic cylinders. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:



FIG. 1 is a schematic cross-section of a cylinder for compressing or expanding air in accordance with various embodiments of the invention;



FIG. 2 is a chart depicting the solubility of air in water as a function of pressure;



FIG. 3 is a schematic cross-section of a cylinder with a closed-loop liquid-injection system within a compressed-air energy storage and recovery system in accordance with various embodiments of the invention;



FIG. 4A is a chart showing the relationship of liquid-flow breakup to two dimensionless constants, with one operating point indicated;



FIG. 4B illustrates three types of liquid-flow breakup;



FIG. 5 is a chart showing the relationship of liquid-flow breakup to two dimensionless constants, with two operating points indicated; and



FIG. 6 is a chart showing the relationship of liquid-flow breakup to two dimensionless constants, with three operating points indicated.





DETAILED DESCRIPTION


FIG. 1 is a schematic representation of a system 100 that includes a vertically-oriented cylinder 110 containing a mobile piston 120 that divides the interior of the cylinder 110 into a pneumatic (i.e., typically gas-filled) chamber 130 and a second chamber 140. The second chamber 140 may also be pneumatic, or, alternatively, may be hydraulic (i.e., typically liquid-filled). The system 100 is an illustrative example of a device or class of devices in which embodiments of the invention may be employed. A spray head 150 injects a spray 160 of liquid droplets into the upper chamber 130 of the cylinder 110. This spray 160 may produce an accumulation of liquid (not shown) on top of piston 120. A port or ports 170 with associated pipes and valves (not shown) enables gas to be admitted to or exhausted from chamber 130 as desired. Port or ports 170 may communicate through pipes and valves (not depicted, but see, e.g., the '703 application or FIG. 3) to place chamber 130 in fluid communication with ambient air, a storage vessel (not depicted) containing pressurized gas, or a chamber within another cylinder (not depicted). A port or ports 180 with associated pipes and valves (not shown) enables fluid to be admitted to or withdrawn from chamber 140 as desired.


During air expansion, gas in chamber 130 expands, performing work on piston 120, which in turn performs work on the fluid in chamber 140, forcing the fluid out through port 180. As the gas in chamber 130 expands, its temperature tends to fall according to the ideal gas law. If during expansion the spray 160 enters chamber 130 at a suitable temperature (e.g., the temperature of the gas in chamber 130 before compression begins), then the spray 160 is at a higher temperature during expansion than the gas in chamber 130, and the spray 160 transfers thermal energy to the gas in chamber 130. The transfer of thermal energy from the spray 160 to the gas in chamber 130 will increase the amount of work performed by the expanding gas on the piston 120. In effect, this transfer of thermal energy from the spray 160 to the gas in chamber 130 enables the conversion of some of the thermal energy in the spray 160 into work.


During air compression, liquid flows through port 180 into chamber 140, forcing piston 120 upward and thus compressing the gas in chamber 130. While the gas in chamber 130 is being compressed by the piston 120, its temperature tends to rise (again, according to the ideal gas law). If during compression the liquid spray 160 enters chamber 130 at a suitable temperature (e.g., the temperature of the gas in chamber 130 before compression begins), then the gas in chamber 130 will be at a higher temperature during compression than the spray 160, and the gas in chamber 130 will transfer thermal energy to the spray 160. The transfer of thermal energy to the spray 160 from the gas in chamber 130 will reduce the amount of work that the piston 120 must perform on the gas in chamber 130 in order to compress the gas.


During expansion, if some of the gas in chamber 130 dissolves into the liquid introduced into chamber 130 as spray 160, then the pressure of the remaining, undissolved gas in chamber 130 will be lower than if no dissolution occurred. During expansion, this loss of pressure will reduce the amount of work performed by the gas in chamber 130 on the piston 120. In effect, some of the work theoretically available from the pressurized gas introduced into chamber 130 will have been expended on forcing gas into solution, and will not be extracted from the gas as work.


During compression, if some of the gas in chamber 130 dissolves into the liquid introduced into chamber 130 as a spray 160, then less gas will be available to pass through port or ports 170 to an external storage vessel. In effect, some of the work performed by piston 120 on the contents of chamber 130 will have been expended on forcing gas into solution, and will not be stored in the external storage vessel (or transferred to another cylinder) as pressure potential energy.


The loss of energy to gas dissolution during either expansion or compression may advantageously be mitigated utilizing various embodiments of the present invention. The solubility of a gas in a liquid is approximately described by Henry's law, which may in one form be stated as c=p×kH, where c is the concentration of the gas (solute) in the liquid, p is the partial pressure of the gas above the liquid (solvent), and kH is Henry's coefficient (units of L·atm/mol). Henry's law implies that at a given temperature, the solubility of a gas in a liquid solution is directly proportional to the liquid's partial pressure. Henry's coefficient kH depends on the temperature of the system, the identity of the solvent, the identity of the solute, and other factors. For example, in aqueous solutions, the solubility of air tends to decrease with increasing temperature (i.e., Henry's coefficient tends to decrease). The accuracy of these statements and of other statements herein regarding the solubility of gases and other substances will be clear to any person familiar with the art of physical chemistry.



FIG. 2 is a graph of the steady-state solubility of air in water over a range of pressures at a fixed temperature (25° C.), based on data from V. I. Baranenko et al., “Solubility of oxygen and carbon dioxide in water,” translated from Atomnaya Énergiya, Vol. 68, No. 4, pp. 291-294, April, 1990 and W. Eichelberger, “Solubility of Air in Brine at High Pressures,” Industrial and Engineering Chemistry vol. 47, No. 10, pp 2223-2228 (October 1955), the entire disclosure of which is incorporated by reference herein. As shown, the solubility of air in water increases in approximately direct proportion to pressure, as predicted by Henry's law. In FIG. 2, the instantaneous slope of the line is Henry's coefficient, which decreases slightly with increasing pressure.



FIG. 2 indicates that a greater mass of gas will tend to be dissolved in a given amount of heat-transfer liquid at higher pressures. For example, doubling the pressure will approximately double the steady-state quantity of gas dissolved in a given quantity of heat-transfer liquid at a given temperature.


Additionally, when a given volume of liquid is reduced to N spherical droplets, the total surface area of the liquid is increased in proportion to N2/3. Therefore, in a system employing liquid sprays in high-pressure gas to achieve heat transfer, a large liquid-gas surface area generally exists. Indeed, one purpose of generating a spray is to create this large surface area in order to expedite heat transfer between the liquid and the gas. As a side effect, this large surface area also expedites dissolution of the gas in the liquid and evaporation of the liquid into the gas. The amount of gas dissolved in the liquid may thus, after the spray is produced, rapidly approximate the steady-state maximum predicted by Henry's law. That is, the heat-transfer liquid will tend to rapidly become a saturated solution with respect to the gas with which it is in contact.


Embodiments of the invention include methods to reduce the effect of gas-in-liquid solubility on a spray-based isothermal compressed air energy storage system by reducing the solubility of air (or other gas) in the heat-transfer fluid (e.g., water). Such methods may include or consist essentially of (1) adding one or more solutes to the water that decrease Henry's coefficient (i.e., reduce the solubility of air in water) and/or decrease the speed with which air dissolves in water; (2) increasing the operating temperature of the compressed-air energy storage system in order to decrease Henry's coefficient; (3) operating the system so as to shorten the time during which liquid and gas are in contact with each other; and/or (4) operating the system during compression so as to recover energy from dissolved gas via a regenerative piston stroke.


Solubility of a gas in a liquid may be altered by the presence of additional solutes, such as salts, in the solution. In particular, the solubility of several gases, including molecular nitrogen (N2), the most abundant component of air, has been shown to decrease with increasing concentration of salts such as NaCl (sodium chloride) and calcium chloride (CaCl) (see, e.g., Smith, N. O., Kelemen. S., and Nagy. B., “Solubility of natural gases in aqueous salt solutions—I: Nitrogen in aqueous NaCl, CaCl2, Na2SO4, and MgSO4, at room temperatures and at pressures below 1000 psia,” Geochimica et Cosmochimica Acta 26:921-926 [1962], the entire disclosure of which is incorporated by reference herein). Solubility of N2 in an aqueous solution may be reduced by 50% or more at a given pressure by the addition of salts to the solution. A similar effect has been documented for many salts and gases, including O2 (the second most abundant component of air): see, e.g., Battino, R. and Clever, H. L., “Solubility of Gases in Liquids,” Chem. Ret. 66:395-463 (1966), the entire disclosure of which is incorporated by reference herein. The amount of energy lost due to dissolution of air in water in a system employing a water heat-exchange spray in high-pressure air may, therefore, be reduced by 50% or more by the addition of an appropriate solute or solutes, in appropriate concentrations, to the water.


Moreover, surfactants or surface-active-agents (i.e., substances whose molecules, when dissolved in liquid, accumulate preferentially on the surface of the liquid) depress liquid-gas mass transfer by presenting a physical barrier layer. That is, a surfactant slows both evaporation of the liquid into the gas and dissolution of the gas into the liquid. See, e.g., Rosso, D., Huo, D. L., and Stenstrom, M. K., “Effects of interfacial surfactant contamination on bubble gas transfer,” Chemical Engineering Science 61:5500-5514 (2006), the entire disclosure of which is incorporated by reference herein. Commercially available surfactants such as sodium dodecyl sulphate, iso-amyl alcohol, and sodium tetradecyl sulphate may reduce gas-transfer rates at the gas-water interface by, e.g., up to 70% relative to rates for pure water. Slowing dissolution of air in water prevents dissolved-air saturation of droplets during their time of residence within the air undergoing expansion and/or postpones the onset of saturation from the time of droplet formation. Whether saturation is prevented or merely postponed, more work (during expansion) will be extracted from a given amount of air. (Energy savings may also be realized by these methods during gas compression.) As detailed below, the addition of one or more surfactants to the heat-exchange liquid may also advantageously reduce the liquid's surface tension, thereby reducing the amount of power needed to form an atomized spray of the liquid and increasing overall system efficiency.


The solubility of gas in liquid tends to decrease with increasing temperature (i.e., Henry's coefficient is decreased). In particular, Henry's coefficient as a function of temperature may be approximated as kH(T)=kH(TS)exp[C(1/T−1/TS)], where TS=298 K (standard temperature) and C is a constant. Raising the temperature of the air-water mixture will thus decrease the solubility of the air in the water. Simultaneously, raising the temperature increases the solubility of many salts and other solutes in the water. Increased operating temperature therefore may confer a double benefit, lowering Henry's coefficient directly and enabling increased non-gas solute concentrations that may further lower Henry's coefficient. As mentioned above, decreasing Henry's coefficient tends to lower the amount of dissolved air and thus the amount of work lost.


Operation with heat-transfer fluid temperatures slightly higher than ambient, e.g., ranging from approximately 40° C. to approximately 70° C., will typically have little impact on system components and design, but may facilitate improved system efficiency by decreasing the solubility of gases such as air in the heat-transfer fluid. These temperatures are typical for operation of a hydraulic oil pump and most seal technology is stable at these temperatures. With water as the heat-transfer fluid, temperatures up to approximately 100° C. may be approached without boiling the heat-transfer fluid. Heat-transfer fluids may be utilized at temperatures ranging from approximately 70° C. to approximately 90° C., and may be heated to such temperatures via, e.g., cogeneration. For example, waste heat from, e.g., power plants, may be available to pre-heat heat-transfer fluids to such temperatures. Even higher temperatures may be utilized, particularly in conjunction with heat-resistant seals and/or other system components.


During admission of gas into a pneumatic or pneumatic-hydraulic cylinder for expansion of the gas, the initial introduction of the heat-exchange spray into the gas may be postponed as long as additional gas is being admitted to the chamber (a phase of operation herein referred to as “direct-drive”). Since the direct-drive phase is approximately isobaric (i.e., constant-pressure), heat exchange is generally not required, or is of relatively less importance, to maintain an isothermal gas process, and the heat-exchange spray may be stopped without loss of efficiency. Furthermore, during compression, introduction of the heat-exchange spray into the gas may be terminated when the contents of the compression chamber have approximated the pressure of the gas in the external storage vessel to which the compressed gas is to be directed: a valve may then be opened to allow the pressurized gas to pass approximately isobarically into the storage vessel. During this approximately isobaric transfer of gas, heat exchange is generally not required, or is of relatively less importance, to maintain an isothermal gas process, and the heat-exchange spray may be stopped without loss of efficiency.


Reference is now made to FIG. 3, which illustrates a pneumatic cylinder with a closed-loop water-injection system within a compressed air energy storage and recovery system 300. The system 300 includes a cylinder assembly 302, a heat-transfer subsystem 304, and a control system 305 for controlling operation of the various components of system 300. During system operation, compressed air is either directed into vessel 306 during storage of energy or released from vessel 306 during recovery of stored energy. Vessel 306 may be, e.g., one or more pressure vessels (i.e., containers for compressed gas that may have rigid exteriors or may be inflatable, and that may be formed of various suitable materials such as metal or plastic) or caverns (i.e., naturally occurring or artificially created cavities that are typically located underground). Air is admitted to the system 300 through vent 308 during storage of energy, or exhausted from the system 300 through vent 308 during release of energy.


The control system 305 may be any acceptable control device with a human-machine interface. For example, the control system 305 may include a computer (for example a PC-type) that executes a stored control application in the form of a computer-readable software medium. More generally, control system 305 may be realized as software, hardware, or some combination thereof. For example, control system 305 may be implemented on one or more computers, such as a PC having a CPU board containing one or more processors such as the Pentium, Core, Atom, or Celeron family of processors manufactured by Intel Corporation of Santa Clara, Calif., the 680×0 and POWER PC family of processors manufactured by Motorola Corporation of Schaumburg, Ill., and/or the ATHLON line of processors manufactured by Advanced Micro Devices, Inc., of Sunnyvale, Calif. The processor may also include a main memory unit for storing programs and/or data relating to the methods described above. The memory may include random access memory (RAM), read only memory (ROM), and/or FLASH memory residing on commonly available hardware such as one or more application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), electrically erasable programmable read-only memories (EEPROM), programmable read-only memories (PROM), programmable logic devices (PLD), or read-only memory devices (ROM). In some embodiments, the programs may be provided using external RAM and/or ROM such as optical disks, magnetic disks, or other storage devices.


For embodiments in which the functions of controller 305 are provided by software, the program may be written in any one of a number of high level languages such as FORTRAN, PASCAL, JAVA, C, C++, C#, LISP, PERL, BASIC or any suitable programming language. Additionally, the software can be implemented in an assembly language and/or machine language directed to the microprocessor resident on a target device.


The control system 305 may receive telemetry from sensors monitoring various aspects of the operation of system 300 (as described below), and may provide signals to control valve actuators, valves, motors, and other electromechanical/electronic devices. Control system 305 may communicate with such sensors and/or other components of system 300 via wired or wireless communication. An appropriate interface may be used to convert data from sensors into a form readable by the control system 305 (such as RS-232 or network-based interconnects). Likewise, the interface converts the computer's control signals into a form usable by valves and other actuators to perform an operation. The provision of such interfaces, as well as suitable control programming, is clear to those of ordinary skill in the art and may be provided without undue experimentation.


The cylinder assembly 302 includes a piston 310 slidably disposed therein with a center-drilled rod 312 extending from piston 310 and preferably defining a fluid passageway. The piston 310 divides the cylinder assembly 302 into a first chamber (or “compartment”) 314 and a second chamber 316. The rod 312 may be attached to a mechanical load, for example, a crankshaft or hydraulic system (as previously described). Alternatively or in addition, the second chamber 316 may contain hydraulic fluid that is coupled through other pipes 318 and valves to a hydraulic system 320. The heat-transfer subsystem 304 includes or consists essentially of a heat exchanger 322 and a booster-pump assembly 324.


At any time during an expansion or compression phase of gas within the first or upper chamber 314 of the cylinder assembly 302, the chamber 314 will typically contain a gas 326 (e.g., previously admitted from storage vessel 306 during the expansion phase or from vent 308 during the compression phase) and (e.g., an accumulation of) heat-transfer fluid 328 at substantially equal pressure Ps, (e.g., up to approximately 3,000 psig). The heat-transfer fluid 328 may be drawn through the center-drilled rod 312 and through a pipe 330 by the pump 324. The pump 324 raises the pressure of the heat-transfer fluid 328 to a pressure Pi′ (e.g., up to approximately 3,015 psig) somewhat higher than Ps, as described in U.S. patent application Ser. No. 13/009,409, filed on Jan. 19, 2011 (the '409 application), the entire disclosure of which is incorporated by reference herein. The heat-transfer fluid 328 is then sent through the heat exchanger 322, where its temperature is altered, and then through a pipe 332 to a spray mechanism 334 disposed within the cylinder assembly 302. In various embodiments, when the cylinder assembly 302 is operated as an expander, a spray 336 of the heat-transfer fluid 328 is introduced into the cylinder assembly 302 at a higher temperature than the gas 326 and, therefore, transfers thermal energy to the gas 326 and increases the amount of work done by the gas 326 on the piston 310 as the gas 326 expands. In an alternative mode of operation, when the cylinder assembly 302 is operated as a compressor, the heat-transfer fluid 328 is introduced at a lower temperature than the gas 326. Control system 305 may enforce substantially isothermal operation, i.e., expansion and/or compression of gas in cylinder assembly 302, via control over, e.g., the introduction of gas into and the exhausting of gas out of cylinder assembly 302, the rates of compression and/or expansion, and/or the operation of heat-transfer subsystem 304 in response to sensed conditions. For example, control system 305 may be responsive to one or more sensors disposed in or on cylinder assembly 302 for measuring the temperature of the gas and/or the heat-transfer fluid within cylinder assembly 302, responding to deviations in temperature by issuing control signals that operate one or more of the system components noted above to compensate, in real time, for the sensed temperature deviations. For example, in response to a temperature increase within cylinder assembly 302, control system 305 may issue commands to increase the flow rate of spray 336 of heat-transfer fluid 328.


The circulating system 324 described above will typically have higher efficiency than a system which pumps liquid from a low intake pressure (e.g., approximately 0 psig) to Pi′, as detailed in the '409 application.


Depending on the current amount of gas saturated in the liquid 328, a certain fraction of gas 326 may dissolve in the liquid 328 as it enters the cylinder assembly 302 as spray 336. In various embodiments, when the cylinder assembly 302 is operated as an expander, this dissolution will reduce the amount of work that may be performed by the gas 326 on the piston 310 and hence on an external mechanical load or provided to the hydraulic system 320. In the case where the dissolved gas does not come out of solution prior to completion of the expansion stroke, but does come out of solution prior to the next expansion stroke, the efficiency of the system 300 will typically be diminished.


At or near the beginning of the expansion stroke, high-pressure gas is admitted into upper chamber 314 of cylinder 302 from the storage vessel 306 via the opening of valve 338, while the piston 310 is forced downward. Assuming that the storage vessel 306 volume is much larger than the volume of cylinder 302, a period of approximately isobaric flow from the storage vessel 306 to chamber 314 may ensue, during which the gas in both the storage vessel 306 and chamber 314 are expanded slightly, and the total mass of gas in the storage vessel 306 is decreased. As most of the gas during this period of approximately isobaric flow (actually slight expansion) is within the storage vessel 306, embodiments of the invention discontinue the heat exchange within the cylinder 302 during this period. That is, during this period of approximately isobaric flow, generation of the heat-exchange spray 336 in cylinder 302 may be ended via control of heat-exchange subsystem 304 by control system 305, thus limiting the quantity of heat-exchange liquid 328 sprayed into chamber 314 and subsequently the amount of gas 326 that dissolves in the liquid 328.


In an alternative mode of operation in accordance with various embodiments, the cylinder assembly 302 is operated as a compressor. For compression, the piston 310 may be impelled by means such as liquid pressurized by the hydraulic system 320 and communicated to chamber 316 through pipe 318 or other mechanical force from an external source (e.g., a crankshaft) communicated mechanically to the piston 310 by shaft 312. When the cylinder assembly 302 is operated as a compressor, depending on the current amount of gas saturated in the liquid 328, a certain fraction of gas 326 may likewise dissolve as the liquid 328 enters the cylinder assembly 302 as a spray 336. This dissolution tends to decrease the mass of free compressed gas at the end of the stroke. The work performed by the piston 310 to compress the portion of the gas that later enters solution may be considered non-useful work by an external mechanical source or the hydraulic system 320 if that energy is not recovered. In the case where the dissolved gas comes out of solution during the next intake stroke such that more gas can enter solution in the next compression stroke, the efficiency of the system 300 will generally be diminished.


At or near the end of the compression stroke, when the gas 326 has been raised to a pressure approximately equal to or slightly higher than that of the gas in the storage vessel 306, valve 338 may be opened while the piston 310 continues to move upward. Assuming that the storage vessel 306 volume is much larger than the cylinder 302 volume, a period of approximately isobaric flow from chamber 314 to the storage vessel 306 may ensue, during which the gas in both the storage vessel 306 and chamber 314 is compressed slightly, and the total mass of gas in the storage vessel 306 is increased. As most of the gas during this period of approximately isobaric flow (actually slight compression) is within the storage vessel 306, embodiments of the invention discontinue the heat exchange within the cylinder 302 during this period. That is, during this period of approximately isobaric flow, generation of the heat-exchange spray 336 may be ended via control of heat-exchange subsystem 304 by control system 305, thus limiting the quantity of heat exchange liquid 328 sprayed into chamber 314 and subsequently the amount of gas 326 that dissolves in the liquid 328.


In both the expansion and compression phases of operation, the addition of one or more selected solutes (e.g., salts and/or surfactants) to the heat transfer fluid 328, with or without operation of the system with its gaseous and liquid contents at a higher temperature, may reduce the quantity of gas 326 that dissolves in the liquid 328 and/or postpone its dissolution, increasing system efficiency. With or without the addition of solutes or the use of higher fluid operating temperatures, during approximately isobaric phases of transfer of gas 326 into or out of the chamber 314 (e.g., out of or into the storage vessel 306), the spray 336 may be terminated, reducing dissolution of gas into liquid.


During the approximately isobaric stage of the compression mode, where compressed gas 326 is transferred to the storage vessel 306, in some instances not all the compressed gas 326 may be successfully transferred. When gas 326 has ceased to flow into the storage vessel 306 and/or piston 310 reaches the top of its stroke, valve 338 is closed. A quantity of gas 326 may remain in the pipes 340, 342 and in any residual gas-filled volume (i.e., dead volume) above the piston 310 within cylinder 302. In addition, the heat-exchange fluid 328 may contain dissolved gas at all points in the loop that circulates the heat-exchange fluid 328. This dissolved gas, as well as the gas in the pipes 340, 342 and in the residual gas-filled volume above piston 310, may not be transferred to the storage vessel 306.


In an operating state subsequent to the completion of a compression stroke in accordance with various embodiments, the upper chamber 314 is to be refilled with environmental air admitted through vent 308. To admit this air, valve 344 is opened and the piston 310 moves downward to the position occupied at the beginning of a compression stroke, refilling chamber 314 with air. If the valve 344 is opened at the top of the stroke, pressurized gas 326 in the pipes 340, 342 and the residual volume above piston 310 exits the system 300 through pipe 342, valve 344, and vent 308, performing work on the environment that is not recovered. As the pressure of the heat-exchange liquid 328 decreases to approximately atmospheric pressure, gas that entered the liquid 328 at high pressure may exit solution and be vented to the environment. This loss of dissolved gas also represents lost work.


The amount of work lost from residual volumes and from gas exiting solution during refilling of the upper chamber 314 of cylinder 302 for a new compression stroke is reduced in accordance with embodiments of the invention. Solutes that reduce the solubility of the gas (e.g., air) in the heat-exchange liquid (e.g., water), and/or that slow the dissolution of the gas in the liquid, may be added to the heat-exchange liquid; liquid and gas may be raised to a higher temperature, also reducing the amount of gas dissolved in the liquid; and/or the system may be operated in such a way as to reduce energy loss from whatever dissolution of gas in liquid does occur. In particular, if in a state subsequent to a compression stroke, while valves 338 and 344 remain closed, the piston 310 is allowed to move downward, the pressurized-fluid contents 326, 328 of the upper chamber 314 of cylinder 302 will perform work on the piston 310. The pressure of the upper chamber 314 declines during this expansion, allowing more gas 326 to effervesce from the liquid 328 (as utilized herein, to “effervesce” means to emerge from solution with liquid, and does not necessarily imply the formation of macroscopic bubbles). The work performed on the piston 310 may be recovered either by attaching a mechanical load to the shaft 312, or by allowing the piston 310 to pressurize liquid in chamber 316 that passes through pipe 318 to the hydraulic system 320, or by both means simultaneously. Such a stroke is herein termed a “regenerative stroke.” Control system 305 may initiate a regenerative stroke after one or more (or even every) compression strokes, and control system 305 may terminate a regenerative stroke after the pressure inside upper chamber 314 reaches a desired value (which may be measured by, e.g., one or more sensors disposed in or on cylinder assembly 302 for measuring pressure within cylinder assembly 302). For example, the regenerative stroke may be completed when the contents of chamber 314 have neared or reached approximately atmospheric pressure. In a subsequent state of operation, the valve 344 may be opened and the piston 310 may be moved downward to the position it occupies at the beginning of a compression stroke, filling chamber 314 with gas at substantially atmospheric pressure. The completed regenerative and refill strokes may then be followed by a compression stroke.


The addition of solutes (and/or other additives), the use of a higher operating temperature, the termination of spray generation during isobaric flow, and the performance of a regenerative stroke may be used singly or in any combination to reduce energy losses caused by the dissolution of gas in the heat exchange liquid.


Furthermore, in another mode of operation, where the system 300 is used to expand gas from the vessel 306, the invention may also be employed to reduce energy losses by the dissolution of gas in the heat-exchange liquid. The mechanisms by which energy loss is prevented during this mode of operation are similar to those already described for the mode of operation during which system 300 is used to compress gas.


Furthermore, embodiments of the invention may be applied to systems in which chamber 314 is in fluid communication through pipe 340 and valve 338 with a pneumatic chamber of a second cylinder (rather than with vessel 306). That second cylinder, in turn, may communicate similarly with a third cylinder, and so forth. Any number of cylinders may be linked in this way. These cylinders may be connected in parallel or in a series configuration, where the compression and expansion is done in multiple stages. In a multiple stage expander, for example, the regenerative stroke may be terminated when the pressure in the next stage is equal to the pressure in the previous stage.


The efficiency of compressed-gas energy storage and recovery systems incorporating liquid-based heat exchange may also be advantageously increased by increasing the heat-transfer potential of the heat-exchange liquid. FIG. 4A is a chart adapted from the Ohnesorge reference showing the relationship of liquid-flow breakup to two dimensionless constants, the Ohnesorge number and the Reynolds number. A liquid-injection operating point in the spray (atomization) regime is indicated as operating point (A) in a system for injecting a liquid spray through an orifice into a volume of gas (such as system 300), in accordance with various embodiments of the invention. The horizontal axis of the chart in FIG. 4A corresponds to the Reynolds number of the injected liquid, which is a function of orifice diameter, liquid velocity at exit from orifice, liquid density, and liquid dynamic viscosity. The vertical axis corresponds to the Ohnesorge number of the injected liquid, which is a function of liquid dynamic viscosity, surface tension, density, and orifice diameter. In this illustrative embodiment, at operating state A the Reynolds number is approximately 2×104 and the Ohnesorge number is approximately 1×10−2. No surfactant has been added to the liquid (e.g., pure water) in operating state A.



FIG. 4B is a chart adapted from the Ohnesorge reference illustrating the three liquid spray regions listed in FIG. 4A, i.e., (i) droplet, (ii) wave and droplets, and (iii) spray. To minimize individual drop sizing and optimize heat transfer, spray (atomization) of the liquid is generally desired, as previously described.



FIG. 5 is the same chart as FIG. 4A showing a second operating state (B) in which the Ohnesorge number of the injected liquid of the illustrative embodiment is increased by the addition of a chemical (e.g., a surfactant) to the liquid, thereby reducing the surface tension of the liquid. All other variables have been held constant. Operating state A is also indicated for comparison. In this illustrative case, the surface tension of the liquid has been reduced to one-third of the value for the pure liquid, increasing the Ohnesorge number by a factor of 31/2, i.e., from approximately 1×10−2 to approximately 1.73×10−2. This degree of reduction in surface tension is readily achievable in water with existing surfactants, e.g., commercially available surfactants such as sodium dodecyl sulphate, iso-amyl alcohol, and sodium tetradecyl sulphate.


Large amounts of foaming in the system may be undesirable, as they might have undesirable effects such as impeding air circulation and droplet movement (and thus heat transfer). They may also become entrained in liquid flows and cause pump cavitation. Therefore, a low-foaming industrial surfactant is utilized in some embodiments of the invention. Industrially available low-foaming surfactants include, but are not limited to, the Pluronic®, Plurafac®, and Degressal® surfactants manufactured by the BASF Group and the Tergitol™ L-64 and L-64 E high-temperature, low-foaming surfactants manufactured by the Dow Chemical Company. A low-foaming surfactant or combination of surfactants may also be combined with a defoaming agent or combination of defoaming agents, such as the Tramfloc® series of antifoams and defoamers manufactured by Tramfloc, Inc.



FIG. 6 depicts the chart of FIG. 5 showing operating states A (FIG. 4A) and B (FIG. 5) for clarity, as well as a third operating state (C) that is achieved after adding a surfactant to operating state A and reducing the liquid injection velocity by a factor of two. In operating states A and B the Reynolds number is approximately 2×104; in operating state C, it is approximately 1×104. All three operating states or points (A, B, and C) are in the spray regime, but production of the spray in operating state C typically requires less power than in operating state A. An arrow indicates the movement of operating state from A to C that is influenced by simultaneously reducing the surface tension of the liquid by a factor of three and reducing the liquid injection velocity by a factor of two. As evident from FIG. 6, reduction of the injection velocity by a factor of two from operating state A (i.e., horizontal movement to the left to a Reynolds number of approximately 1×104, Ohnesorge number of approximately 1×10−2) without reducing the surface tension of the liquid would not have allowed continued reliable operation in the spray regime.


Reductions in required heat-transfer fluid injection power may manifest as the ability to achieve similar spray quality (i.e., atomization) at lower pumping powers. For example, if 250 gpm of atomized water flow is utilized to achieve a desired rate of heat transfer within a 30 gallon cylinder compressing air from 250 to 3000 psig in approximately 1 second, that 250 gpm flow may be divided over a set of nozzles each with, e.g., a 10 psid pressure drop or a 20 psid pressure drop. In general, 10 psid pressure drop nozzles have a larger passage area and lower injection velocity. But with decreased surface tension of the heat-transfer fluid, atomization may still occur. For example, dividing the above 250 gpm flow rate through a set of nozzles with total equivalent orifice area of 2.4 in2 and approximate injection velocity of 33 ft/s, may result in a 10 psid pressure drop across the nozzle. Atomization may not occur for such an arrangement with a high-surface-tension fluid, but may occur with a fluid with lower surface tension. To achieve atomization with a high-surface-tension fluid (e.g., substantially pure water), the 250 gpm flow may be divided among a set of nozzles with a total equivalent orifice area of 1.72 in2 and approximate injection velocity of 47 ft/s, which may result in a 20 psid pressure drop across the nozzle, essentially doubling the required pumping power.


Also referring back to FIG. 3, control system 305 may control the injection velocity of spray 336 from spray mechanism 334 based on, e.g., the surface tension of the heat-transfer fluid 328 and/or the type of spray being produced by spray mechanism 334 (e.g., one of the types illustrated in FIG. 4B). For example, control system 305 may reduce the injection velocity of spray 336 to approximately the minimum speed at which an atomized spray 336 results, and/or may make other adjustments to the injection velocity as desired (e.g., in response to variations in the concentration of an additive in heat-transfer fluid 328 or such variations among batches of heat-transfer fluid 328). Control system 305 may be responsive to a sensor disposed in or on cylinder assembly 302 (or in heat-transfer subsystem 304) for measuring the chemical and/or physical properties (e.g., surface tension, chemical composition, etc.) of the heat-transfer fluid within cylinder assembly 302 (and/or portions of heat-transfer subsystem 304).


The solutes, additives, and/or surfactants utilized in various embodiments of the invention may also be selected to have (and/or utilized in conjunction with another additive that has) other advantageous properties. For example, such substances may also retard or prevent corrosion, enhance lubricity, and/or prevent formation of or kill microorganisms such as bacteria.


Generally, the systems described herein may be operated in both an expansion mode and in the reverse compression mode as part of a full-cycle energy storage system with high efficiency. For example, the systems may be operated as both compressor and expander, storing electricity in the form of the potential energy of compressed gas and producing electricity from the potential energy of compressed gas. Alternatively, the systems may be operated independently as compressors or expanders.


In addition, the systems described above, and/or other embodiments employing liquid-spray heat exchange or external gas heat exchange (as detailed above), may draw or deliver thermal energy via their heat-exchange mechanisms to external systems (not shown) for purposes of cogeneration, as described in the '513 application.


The terms and expressions employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.

Claims
  • 1. A method for improving efficiency of a compressed-gas energy storage and recovery system, the method comprising: providing a heat-transfer fluid conditioned to at least one of (i) reduce a solubility of a gas in the heat-transfer fluid or (ii) reduce a rate of dissolution of a gas into the heat-transfer fluid;at least one of (i) compressing the gas to store energy or (ii) expanding the gas to recover energy; andthereduring, exchanging heat between the gas and the conditioned heat-transfer fluid, thereby increasing efficiency of the energy storage and recovery.
  • 2. The method of claim 1, wherein the conditioned heat-transfer fluid comprises a solute therein.
  • 3. The method of claim 2, wherein the solute comprises a salt.
  • 4. The method of claim 3, wherein the salt comprises at least one of sodium chloride or calcium chloride.
  • 5. The method of claim 2, wherein the solute comprises a surfactant.
  • 6. The method of claim 5, wherein the surfactant comprises at least one of sodium dodecyl sulphate, iso-amyl alcohol, or sodium tetradecyl sulphate.
  • 7. The method of claim 2, wherein the solute reduces a surface tension of the heat-transfer fluid.
  • 8. The method of claim 7, wherein exchanging heat between the gas and the conditioned heat-transfer fluid comprises spraying the conditioned heat-transfer fluid into the gas, an injection velocity of the spraying being less than an injection velocity required to form a spray from the heat-transfer fluid without the solute.
  • 9. The method of claim 2, further comprising heating the conditioned heat-transfer fluid to increase a solubility of the solute in the conditioned heat-transfer fluid.
  • 10. The method of claim 1, further comprising at least one of (i) venting expanded gas to atmosphere or (ii) storing compressed gas in a compressed-gas reservoir.
  • 11. The method of claim 1, wherein (i) energy stored during compression of the gas originates from an intermittent renewable energy source of wind or solar energy, and (ii) energy is recovered via expansion of the gas when the intermittent renewable energy source is nonfunctional.
  • 12. The method of claim 1, wherein exchanging heat between the gas and the conditioned heat-transfer fluid comprises spraying the conditioned heat-transfer fluid into the gas.
  • 13. The method of claim 1, wherein the heat exchange between the gas and the conditioned heat-transfer fluid renders the at least one of compression or expansion substantially isothermal.
  • 14. The method of claim 1, wherein the gas is at least one of compressed or expanded within a cylinder assembly.
  • 15. The method of claim 14, further comprising, prior to the at least one of compression or expansion, introducing the gas into the cylinder assembly substantially isobarically, wherein heat is not exchanged between the gas and the conditioned heat-transfer fluid thereduring.
  • 16. The method of claim 14, further comprising, after the at least one of compression or expansion, exhausting the gas from the cylinder assembly substantially isobarically, wherein heat is not exchanged between the gas and the conditioned heat-transfer fluid thereduring.
  • 17. The method of claim 1, wherein the heat-transfer fluid comprises water.
  • 18. The method of claim 1, wherein providing the heat-transfer fluid conditioned to at least one of (i) reduce a solubility of a gas in the heat-transfer fluid or (ii) reduce a rate of dissolution of a gas into the heat-transfer fluid comprises heating the heat-transfer fluid to an elevated temperature.
  • 19. The method of claim 18, wherein the gas is at least one of expanded or compressed at approximately the elevated temperature.
  • 20. The method of claim 18, wherein the elevated temperature is selected from the range of approximately 40° C. to approximately 70° C.
  • 21. The method of claim 18, wherein the elevated temperature is selected from the range of approximately 70° C. to approximately 100° C.
  • 22. The method of claim 18, further comprising spraying the conditioned heat-transfer fluid into the gas.
  • 23. The method of claim 1, further comprising spraying the conditioned heat-transfer fluid into the gas.
  • 24. The method of claim 1, wherein the heat-transfer fluid contains an additive therein, the additive at least one of (i) retarding or preventing corrosion, (ii) preventing formation of or killing microorganisms, or (iii) comprising a defoaming agent.
  • 25. The method of claim 10, wherein compressed gas is stored in the compressed-gas reservoir, the compressed-gas reservoir comprising a pressure vessel.
  • 26. The method of claim 10, wherein compressed gas is stored in the compressed-gas reservoir, the compressed-gas reservoir comprising a cavern.
  • 27. The method of claim 1, wherein the conditioned heat-transfer fluid forms a foam with the gas.
  • 28. The method of claim 27, further comprising defoaming the gas after the at least one of compressing or expanding the gas.
  • 29. The method of claim 28, wherein defoaming the gas comprises introducing a defoaming additive into the heat-transfer fluid.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/087,936, filed on Apr. 15, 2011, now U.S. Pat. No. 8,245,508 which is a continuation of U.S. patent application Ser. No. 13/082,808, filed on Apr. 8, 2011, issued as U.S. Pat. No. 8,171,728, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/322,033, filed Apr. 8, 2010, and U.S. Provisional Patent Application No. 61/361,096, filed Jul. 2, 2010. The entire disclosure of each of these applications is hereby incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under IIP-0810590 and IIP-0923633 awarded by the NSF and DE-OE0000231 awarded by the DOE. The government has certain rights in the invention.

US Referenced Citations (743)
Number Name Date Kind
114297 Ivens et al. May 1871 A
224081 Eckart Feb 1880 A
233432 Pitchford Oct 1880 A
1353216 Carlson Sep 1920 A
1635524 Aikman Jul 1927 A
2141703 Bays Dec 1938 A
2280100 Singleton Apr 1942 A
2280845 Parker Apr 1942 A
2404660 Rouleau Jul 1946 A
2420098 Rouleau May 1947 A
2486081 Weenen Oct 1949 A
2539862 Rushinq Jan 1951 A
2628564 Jacobs Feb 1953 A
2632995 Noe Mar 1953 A
2712728 Lewis et al. Jul 1955 A
2813398 Wilcox Nov 1957 A
2829501 Walls Apr 1958 A
2880759 Wisman Apr 1959 A
3041842 Heinecke Jul 1962 A
3100965 Blackburn Aug 1963 A
3236512 Caslav et al. Feb 1966 A
3269121 Ludwig Aug 1966 A
3538340 Lang Nov 1970 A
3608311 Roesel, Jr. Sep 1971 A
3648458 McAlister Mar 1972 A
3650636 Eskeli Mar 1972 A
3672160 Kim Jun 1972 A
3677008 Koutz Jul 1972 A
3704079 Berlyn Nov 1972 A
3757517 Rigollot Sep 1973 A
3793848 Eskeli Feb 1974 A
3801793 Goebel Apr 1974 A
3803847 McAlister Apr 1974 A
3839863 Frazier Oct 1974 A
3847182 Greer Nov 1974 A
3895493 Riqollot Jul 1975 A
3903696 Carman Sep 1975 A
3935469 Haydock Jan 1976 A
3939356 Loane Feb 1976 A
3942323 Maillet Mar 1976 A
3945207 Hyatt Mar 1976 A
3948049 Ohms et al. Apr 1976 A
3952516 Lapp Apr 1976 A
3952723 Browning Apr 1976 A
3958899 Coleman, Jr. et al. May 1976 A
3986354 Erb Oct 1976 A
3988592 Porter Oct 1976 A
3988897 Strub Nov 1976 A
3990246 Wilmers Nov 1976 A
3991574 Frazier Nov 1976 A
3996741 Herberg Dec 1976 A
3998049 McKinley et al. Dec 1976 A
3999388 Nystrom Dec 1976 A
4008006 Bea Feb 1977 A
4027993 Wolff Jun 1977 A
4030303 Kraus et al. Jun 1977 A
4031702 Burnett et al. Jun 1977 A
4031704 Moore et al. Jun 1977 A
4041708 Wolff Aug 1977 A
4050246 Bourquardez Sep 1977 A
4055950 Grossman Nov 1977 A
4058979 Germain Nov 1977 A
4075844 Schiferli Feb 1978 A
4089744 Cahn May 1978 A
4094356 Ash et al. Jun 1978 A
4095118 Ratbun Jun 1978 A
4100745 Gyarmathy et al. Jul 1978 A
4104955 Murphy Aug 1978 A
4108077 Laing Aug 1978 A
4109465 Plen Aug 1978 A
4110987 Cahn et al. Sep 1978 A
4112311 Theyse Sep 1978 A
4117342 Melley, Jr. Sep 1978 A
4117696 Fawcett et al. Oct 1978 A
4118637 Tackett Oct 1978 A
4124182 Loeb Nov 1978 A
4126000 Funk Nov 1978 A
4136432 Melley, Jr. Jan 1979 A
4142368 Mantegani Mar 1979 A
4147204 Pfenninger Apr 1979 A
4149092 Cros Apr 1979 A
4150547 Hobson Apr 1979 A
4154292 Herrick May 1979 A
4167372 Tackett Sep 1979 A
4170878 Jahniq Oct 1979 A
4173431 Smith Nov 1979 A
4189925 Long Feb 1980 A
4194889 Wanner Mar 1980 A
4195481 Gregory Apr 1980 A
4197700 Jahniq Apr 1980 A
4197715 Fawcett et al. Apr 1980 A
4201514 Huetter May 1980 A
4204126 Diggs May 1980 A
4206608 Bell Jun 1980 A
4209982 Pitts Jul 1980 A
4220006 Kindt Sep 1980 A
4229143 Pucher Oct 1980 A
4229661 Mead et al. Oct 1980 A
4232253 Mortelmans Nov 1980 A
4237692 Ahrens et al. Dec 1980 A
4242878 Brinkerhoff Jan 1981 A
4246978 Schulz et al. Jan 1981 A
4262735 Courrege Apr 1981 A
4273514 Shore et al. Jun 1981 A
4274010 Lawson-tancred Jun 1981 A
4275310 Summers et al. Jun 1981 A
4281256 Ahrens Jul 1981 A
4293323 Cohen Oct 1981 A
4299198 Woodhull Nov 1981 A
4302684 Gogins Nov 1981 A
4304103 Hamrick et al. Dec 1981 A
4311011 Lewis Jan 1982 A
4316096 Syverson Feb 1982 A
4317439 Emmerlinq Mar 1982 A
4335867 Bihlmaier Jun 1982 A
4340822 Gregg Jul 1982 A
4341072 Clyne Jul 1982 A
4348863 Taylor et al. Sep 1982 A
4353214 Gardner Oct 1982 A
4354420 Bianchetta Oct 1982 A
4355956 Ringrose et al. Oct 1982 A
4358250 Payne Nov 1982 A
4367786 Hafner et al. Jan 1983 A
4368692 Kita Jan 1983 A
4368775 Ward Jan 1983 A
4370559 Langley, Jr. Jan 1983 A
4372114 Burnham Feb 1983 A
4375387 deFilippi et al. Mar 1983 A
4380419 Morton Apr 1983 A
4392062 Bervig Jul 1983 A
4393752 Meier Jul 1983 A
4411136 Funk Oct 1983 A
4416114 Martini Nov 1983 A
4421661 Claar et al. Dec 1983 A
4428711 Archer Jan 1984 A
4435131 Ruben Mar 1984 A
4444011 Kolin Apr 1984 A
4446698 Benson May 1984 A
4447738 Allison May 1984 A
4449372 Rilett May 1984 A
4452046 Valentin Jun 1984 A
4452047 Hunt et al. Jun 1984 A
4454429 Buonome Jun 1984 A
4454720 Leibowitz Jun 1984 A
4455834 Earle Jun 1984 A
4462213 Lewis Jul 1984 A
4474002 Perry Oct 1984 A
4476851 Brugger et al. Oct 1984 A
4478553 Leibowitz et al. Oct 1984 A
4489554 Otters Dec 1984 A
4491739 Watson Jan 1985 A
4492539 Specht Jan 1985 A
4493189 Slater Jan 1985 A
4496847 Parkings Jan 1985 A
4498848 Petrovsky Feb 1985 A
4502284 Chrisoqhilos Mar 1985 A
4503673 Schachle Mar 1985 A
4515516 Perrine et al. May 1985 A
4520840 Michel Jun 1985 A
4525631 Allison Jun 1985 A
4530208 Sato Jul 1985 A
4547209 Netzer Oct 1985 A
4574592 Eskeli Mar 1986 A
4585039 Hamilton Apr 1986 A
4589475 Jones May 1986 A
4593202 Dickinson Jun 1986 A
4619225 Lowther Oct 1986 A
4624623 Wagner Nov 1986 A
4648801 Wilson Mar 1987 A
4651525 Cestero Mar 1987 A
4653986 Ashton Mar 1987 A
4671742 Gyimesi Jun 1987 A
4676068 Funk Jun 1987 A
4679396 Heggie Jul 1987 A
4691524 Holscher Sep 1987 A
4693080 Van Hooff Sep 1987 A
4706456 Backe Nov 1987 A
4707988 Palmers Nov 1987 A
4710100 Laing et al. Dec 1987 A
4735552 Watson Apr 1988 A
4738101 Kubik Apr 1988 A
4739620 Pierce Apr 1988 A
4751818 Kubik Jun 1988 A
4760697 Heggie Aug 1988 A
4761118 Zanarini Aug 1988 A
4765142 Nakhamkin Aug 1988 A
4765143 Crawford et al. Aug 1988 A
4767938 Bervig Aug 1988 A
4792700 Ammons Dec 1988 A
4849648 Longardner Jul 1989 A
4870816 Nakhamkin Oct 1989 A
4872307 Nakhamkin Oct 1989 A
4873828 Lainq et al. Oct 1989 A
4873831 Dehne Oct 1989 A
4876992 Sobotowski Oct 1989 A
4877530 Moses Oct 1989 A
4885912 Nakhamkin Dec 1989 A
4886534 Castan Dec 1989 A
4907495 Sugahara Mar 1990 A
4936109 Lonqardner Jun 1990 A
4942736 Bronicki Jul 1990 A
4947977 Raymond Aug 1990 A
4955195 Jones et al. Sep 1990 A
4984432 Corey Jan 1991 A
5016441 Pinto May 1991 A
5048292 Kubik Sep 1991 A
5056601 Grimmer Oct 1991 A
5058385 Everett, Jr. Oct 1991 A
5062498 Tobias Nov 1991 A
5107681 Wolfbauer, III Apr 1992 A
5133190 Abdelmalek Jul 1992 A
5138838 Crosser Aug 1992 A
5140170 Henderson Aug 1992 A
5152260 Erickson et al. Oct 1992 A
5161449 Everett, Jr. Nov 1992 A
5169295 Stoqner et al. Dec 1992 A
5182086 Henderson et al. Jan 1993 A
5203168 Oshina Apr 1993 A
5209063 Shirai et al. May 1993 A
5213470 Lundquist May 1993 A
5239833 Fineblum Aug 1993 A
5259345 Richeson Nov 1993 A
5271225 Adamides Dec 1993 A
5279206 Krantz Jan 1994 A
5296799 Davis Mar 1994 A
5309713 Vassallo May 1994 A
5321946 Abdelmalek Jun 1994 A
5327987 Abdelmalek Jul 1994 A
5339633 Fujii et al. Aug 1994 A
5341644 Nelson Aug 1994 A
5344627 Fujii et al. Sep 1994 A
5364611 Iijima et al. Nov 1994 A
5365980 Deberardinis Nov 1994 A
5375417 Barth Dec 1994 A
5379589 Cohn et al. Jan 1995 A
5384489 Bellac Jan 1995 A
5387089 Stogner et al. Feb 1995 A
5394693 Plyter Mar 1995 A
5427194 Miller Jun 1995 A
5436508 Sorensen Jul 1995 A
5448889 Bronicki Sep 1995 A
5454408 Dibella et al. Oct 1995 A
5454426 Moseley Oct 1995 A
5467722 Meratla Nov 1995 A
5473899 Viteri et al. Dec 1995 A
5477677 Krnavek Dec 1995 A
5491969 Cohn et al. Feb 1996 A
5491977 Cho et al. Feb 1996 A
5522212 Kubik Jun 1996 A
5524821 Vie et al. Jun 1996 A
5537822 Shnaid et al. Jul 1996 A
5544698 Paulman Aug 1996 A
5557934 Beach Sep 1996 A
5561978 Buschur Oct 1996 A
5562010 McGuire Oct 1996 A
5579640 Gray, Jr. et al. Dec 1996 A
5584664 Elliott et al. Dec 1996 A
5592028 Pritchard Jan 1997 A
5595587 Steed Jan 1997 A
5598736 Erskine Feb 1997 A
5599172 Mccabe Feb 1997 A
5600953 Oshita et al. Feb 1997 A
5616007 Cohen Apr 1997 A
5634340 Grennan Jun 1997 A
5641273 Moseley Jun 1997 A
5674053 Paul et al. Oct 1997 A
5685154 Bronicki et al. Nov 1997 A
5685155 Brown Nov 1997 A
5768893 Hoshino et al. Jun 1998 A
5769610 Paul et al. Jun 1998 A
5771693 Coney Jun 1998 A
5775107 Sparkman Jul 1998 A
5778669 Kubik Jul 1998 A
5778675 Nakhamkin Jul 1998 A
5794442 Lisniansky Aug 1998 A
5797980 Fillet Aug 1998 A
5819533 Moonen Oct 1998 A
5819635 Moonen Oct 1998 A
5831757 DiFrancesco Nov 1998 A
5832728 Buck Nov 1998 A
5832906 Douville et al. Nov 1998 A
5839270 Jirnov et al. Nov 1998 A
5845479 Nakhamkin Dec 1998 A
5863186 Green et al. Jan 1999 A
5873250 Lewis Feb 1999 A
5901809 Berkun May 1999 A
5924283 Burke, Jr. Jul 1999 A
5934063 Nakhamkin Aug 1999 A
5934076 Coney Aug 1999 A
5937652 Abdelmalek Aug 1999 A
5971027 Beachley et al. Oct 1999 A
6012279 Hines Jan 2000 A
6023105 Youssef Feb 2000 A
6026349 Heneman Feb 2000 A
6029445 Lech Feb 2000 A
6073445 Johnson Jun 2000 A
6073448 Lozada Jun 2000 A
6085520 Kohno Jul 2000 A
6090186 Spencer Jul 2000 A
6119802 Puett, Jr. Sep 2000 A
6132181 Mccabe Oct 2000 A
6145311 Cyphelly Nov 2000 A
6148602 Demetri Nov 2000 A
6153943 Mistr, Jr. Nov 2000 A
6158499 Rhodes Dec 2000 A
6170443 Hofbauer Jan 2001 B1
6178735 Frutschi Jan 2001 B1
6179446 Sarmadi Jan 2001 B1
6188182 Nickols et al. Feb 2001 B1
6202707 Woodall et al. Mar 2001 B1
6206660 Coney et al. Mar 2001 B1
6210131 Whitehead Apr 2001 B1
6216462 Gray, Jr. Apr 2001 B1
6225706 Keller May 2001 B1
6276123 Chen et al. Aug 2001 B1
6327858 Negre et al. Dec 2001 B1
6327994 Labrador Dec 2001 B1
6349543 Lisniansky Feb 2002 B1
RE37603 Coney Mar 2002 E
6352576 Spencer et al. Mar 2002 B1
6360535 Fisher Mar 2002 B1
6367570 Long, III Apr 2002 B1
6372023 Kiyono et al. Apr 2002 B1
6389814 Viteri et al. May 2002 B2
6397578 Tsukamoto Jun 2002 B2
6401458 Jacobson Jun 2002 B2
6407465 Peltz et al. Jun 2002 B1
6419462 Horie et al. Jul 2002 B1
6422016 Alkhamis Jul 2002 B2
6453659 Van Liere et al. Sep 2002 B1
6478289 Trewin Nov 2002 B1
6484498 Bonar, II Nov 2002 B1
6512966 Lof Jan 2003 B2
6513326 Maceda et al. Feb 2003 B1
6516615 Stockhausen et al. Feb 2003 B1
6516616 Carver Feb 2003 B2
6554088 Severinsky et al. Apr 2003 B2
6598392 Majeres Jul 2003 B2
6598402 Kataoka et al. Jul 2003 B2
6606860 McFarland Aug 2003 B2
6612348 Wiley Sep 2003 B1
6619930 Jansen et al. Sep 2003 B2
6626212 Morioka et al. Sep 2003 B2
6629413 Wendt et al. Oct 2003 B1
6637185 Hatamiva et al. Oct 2003 B2
6652241 Alder Nov 2003 B1
6652243 Krasnov Nov 2003 B2
6666024 Moskal Dec 2003 B1
6670402 Lee et al. Dec 2003 B1
6672056 Roth et al. Jan 2004 B2
6675765 Endoh Jan 2004 B2
6688108 Van Liere Feb 2004 B1
6698472 Camacho et al. Mar 2004 B2
6711984 Tagge et al. Mar 2004 B2
6712166 Rush et al. Mar 2004 B2
6715514 Parker, III Apr 2004 B2
6718761 Merswolke et al. Apr 2004 B2
6739131 Kershaw May 2004 B1
6739419 Jain et al. May 2004 B2
6745569 Gerdes Jun 2004 B2
6745801 Cohen et al. Jun 2004 B1
6748737 Lafferty Jun 2004 B2
6762926 Shiue et al. Jul 2004 B1
6786245 Eichelberger Sep 2004 B1
6789387 Brinkman Sep 2004 B2
6789576 Umetsu et al. Sep 2004 B2
6797039 Spencer Sep 2004 B2
6815840 Aldendeshe Nov 2004 B1
6817185 Coney et al. Nov 2004 B2
6834737 Bloxham Dec 2004 B2
6840309 Wilson et al. Jan 2005 B2
6848259 Keller-sornig Feb 2005 B2
6857450 Rupp Feb 2005 B2
6874453 Coney et al. Apr 2005 B2
6883775 Coney et al. Apr 2005 B2
6886326 Holtzapple et al. May 2005 B2
6892802 Kelly et al. May 2005 B2
6900556 Provanzana May 2005 B2
6922991 Polcuch Aug 2005 B2
6925821 Sienel Aug 2005 B2
6927503 Enish et al. Aug 2005 B2
6931848 Maceda et al. Aug 2005 B2
6935096 Haiun Aug 2005 B2
6938415 Last Sep 2005 B2
6938654 Gershtein et al. Sep 2005 B2
6946017 Leppin et al. Sep 2005 B2
6948328 Kidwell Sep 2005 B2
6952058 Mccoin Oct 2005 B2
6959546 Corcoran Nov 2005 B2
6963802 Enis Nov 2005 B2
6964165 Uhl et al. Nov 2005 B2
6964176 Kidwell Nov 2005 B2
6974307 Antoune et al. Dec 2005 B2
7000389 Lewellin Feb 2006 B2
7007474 Ochs et al. Mar 2006 B1
7017690 Burke Mar 2006 B2
7028934 Burynski, Jr. Apr 2006 B2
7040083 Horii et al. May 2006 B2
7040108 Flammang May 2006 B1
7040859 Kane May 2006 B2
7043920 Viteri et al. May 2006 B2
7047744 Robertson et al. May 2006 B1
7055325 Wolken Jun 2006 B2
7067937 Enish et al. Jun 2006 B2
7075189 Heronemus et al. Jul 2006 B2
RE39249 Link, Jr. Aug 2006 E
7084520 Zambrano Aug 2006 B2
7086231 Pinkerton Aug 2006 B2
7093450 Jimenez Haertel et al. Aug 2006 B2
7093626 Li et al. Aug 2006 B2
7098552 Mccoin Aug 2006 B2
7107766 Zacche′ et al. Sep 2006 B2
7107767 Frazer et al. Sep 2006 B2
7116006 Mccoin Oct 2006 B2
7124576 Cherney et al. Oct 2006 B2
7124586 Neqre et al. Oct 2006 B2
7127887 Nakamura et al. Oct 2006 B2
7127895 Pinkerton et al. Oct 2006 B2
7128777 Spencer Oct 2006 B2
7134279 White Nov 2006 B2
7155912 Enis et al. Jan 2007 B2
7168928 West Jan 2007 B1
7168929 Sieqel et al. Jan 2007 B2
7169489 Redmond Jan 2007 B2
7177751 Froloff Feb 2007 B2
7178337 Pflanz Feb 2007 B2
7191603 Taube Mar 2007 B2
7197871 Yoshino Apr 2007 B2
7201095 Hughey Apr 2007 B2
7218009 Hendrickson et al. May 2007 B2
7219779 Bauer et al. May 2007 B2
7225762 Mahlanen Jun 2007 B2
7228690 Barker Jun 2007 B2
7230348 Poole Jun 2007 B2
7231998 Schechter Jun 2007 B1
7240812 Kamikozuru Jul 2007 B2
7249617 Musselman et al. Jul 2007 B2
7254944 Goetzinger et al. Aug 2007 B1
7273122 Rose Sep 2007 B2
7281371 Heidenreich Oct 2007 B1
7308361 Enis et al. Dec 2007 B2
7317261 Rolt Jan 2008 B2
7322377 Baltes Jan 2008 B2
7325401 Kesseli et al. Feb 2008 B1
7328575 Hedman Feb 2008 B2
7329099 Hartman Feb 2008 B2
7347049 Rajendran et al. Mar 2008 B2
7353786 Scuderi et al. Apr 2008 B2
7353845 Underwood et al. Apr 2008 B2
7354252 Baatrup et al. Apr 2008 B2
7364410 Link, Jr. Apr 2008 B2
7392871 Severinsky et al. Jul 2008 B2
7406828 Nakhamkin Aug 2008 B1
7407501 Zvuloni Aug 2008 B2
7415835 Cowans et al. Aug 2008 B2
7415995 Plummer et al. Aug 2008 B2
7417331 De La Torre et al. Aug 2008 B2
7418820 Harvey et al. Sep 2008 B2
7436086 Mcclintic Oct 2008 B2
7441399 Utamura Oct 2008 B2
7448213 Mitani Nov 2008 B2
7453164 Borden et al. Nov 2008 B2
7469527 Neqre et al. Dec 2008 B2
7471010 Fingersh Dec 2008 B1
7481337 Luharuka et al. Jan 2009 B2
7488159 Bhatt et al. Feb 2009 B2
7527482 Ursan et al. May 2009 B2
7527483 Glauber May 2009 B1
7579700 Meller Aug 2009 B1
7603970 Scuderi et al. Oct 2009 B2
7607503 Schechter Oct 2009 B1
7693402 Hudson et al. Apr 2010 B2
7694514 Smith et al. Apr 2010 B2
7802426 Bollinger Sep 2010 B2
7827787 Cherney et al. Nov 2010 B2
7832207 McBride et al. Nov 2010 B2
7843076 Gogoana et al. Nov 2010 B2
7874155 McBride et al. Jan 2011 B2
7900444 McBride et al. Mar 2011 B1
7958731 McBride et al. Jun 2011 B2
7963110 Bollinger et al. Jun 2011 B2
8037678 McBride et al. Oct 2011 B2
8046990 Bollinger et al. Nov 2011 B2
8096117 Ingersoll et al. Jan 2012 B2
8104274 McBride et al. Jan 2012 B2
8109085 McBride et al. Feb 2012 B2
8117842 McBride et al. Feb 2012 B2
8122718 McBride et al. Feb 2012 B2
8171728 Bollinger et al. May 2012 B2
8191362 McBride et al. Jun 2012 B2
8225606 McBride et al. Jul 2012 B2
8234862 McBride et al. Aug 2012 B2
8234863 McBride et al. Aug 2012 B2
8234868 Bollinger et al. Aug 2012 B2
8240140 McBride et al. Aug 2012 B2
8240146 Bollinger Aug 2012 B1
8245508 Bollinger et al. Aug 2012 B2
8250863 Bollinger et al. Aug 2012 B2
8272212 Blieske Sep 2012 B2
8359856 McBride et al. Jan 2013 B2
8448433 McBride et al. May 2013 B2
8468815 McBride et al. Jun 2013 B2
8474255 McBride et al. Jul 2013 B2
8479502 McBride et al. Jul 2013 B2
8479505 McBride et al. Jul 2013 B2
8495872 McBride et al. Jul 2013 B2
8539763 McBride et al. Sep 2013 B2
20010045093 Jacobson Nov 2001 A1
20030131599 Gerdes Jul 2003 A1
20030145589 Tillyer Aug 2003 A1
20030177767 Keller-sornig et al. Sep 2003 A1
20030180155 Coney et al. Sep 2003 A1
20040050042 Frazer Mar 2004 A1
20040050049 Wendt et al. Mar 2004 A1
20040146406 Last Jul 2004 A1
20040146408 Anderson Jul 2004 A1
20040148934 Pinkerton et al. Aug 2004 A1
20040211182 Gould Oct 2004 A1
20040244580 Coney et al. Dec 2004 A1
20040261415 Negre et al. Dec 2004 A1
20050016165 Enis et al. Jan 2005 A1
20050028529 Bartlett et al. Feb 2005 A1
20050047930 Schmid Mar 2005 A1
20050066655 Aarestad et al. Mar 2005 A1
20050072154 Frutschi Apr 2005 A1
20050115234 Asano et al. Jun 2005 A1
20050155347 Lewellin Jul 2005 A1
20050166592 Larson et al. Aug 2005 A1
20050274334 Warren Dec 2005 A1
20050275225 Bertolotti Dec 2005 A1
20050279086 Hoos Dec 2005 A1
20050279292 Hudson et al. Dec 2005 A1
20050279296 Coney et al. Dec 2005 A1
20060055175 Grinblat Mar 2006 A1
20060059912 Romanelli et al. Mar 2006 A1
20060059936 Radke et al. Mar 2006 A1
20060059937 Perkins et al. Mar 2006 A1
20060075749 Cherney et al. Apr 2006 A1
20060090467 Crow May 2006 A1
20060090477 Rolff May 2006 A1
20060107664 Hudson et al. May 2006 A1
20060162543 Abe et al. Jul 2006 A1
20060162910 Kelly et al. Jul 2006 A1
20060175337 Defosset Aug 2006 A1
20060201148 Zabtcioqlu Sep 2006 A1
20060218924 Mitani Oct 2006 A1
20060242954 Welch Nov 2006 A1
20060248886 Ma Nov 2006 A1
20060248892 Ingersoll Nov 2006 A1
20060254281 Badeer et al. Nov 2006 A1
20060260311 Ingersoll Nov 2006 A1
20060260312 Ingersoll Nov 2006 A1
20060262465 Wiederhold Nov 2006 A1
20060266034 Ingersoll Nov 2006 A1
20060266035 Ingersoll et al. Nov 2006 A1
20060266036 Ingersoll Nov 2006 A1
20060266037 Ingersoll Nov 2006 A1
20060280993 Keefer et al. Dec 2006 A1
20060283967 Cho et al. Dec 2006 A1
20070006586 Hoffman et al. Jan 2007 A1
20070022754 Perkins et al. Feb 2007 A1
20070022755 Pinkerton et al. Feb 2007 A1
20070062194 Ingersoll Mar 2007 A1
20070074533 Hugenroth et al. Apr 2007 A1
20070095069 Joshi et al. May 2007 A1
20070113803 Froloff et al. May 2007 A1
20070116572 Barbu et al. May 2007 A1
20070137595 Greenwell Jun 2007 A1
20070151528 Hedman Jul 2007 A1
20070158946 Annen et al. Jul 2007 A1
20070181199 Weber Aug 2007 A1
20070182160 Enis et al. Aug 2007 A1
20070205298 Harrison et al. Sep 2007 A1
20070234749 Enis et al. Oct 2007 A1
20070243066 Baron Oct 2007 A1
20070245735 Ashikian Oct 2007 A1
20070258834 Froloff et al. Nov 2007 A1
20080000436 Goldman Jan 2008 A1
20080016868 Ochs et al. Jan 2008 A1
20080047272 Schoell Feb 2008 A1
20080050234 Ingersoll et al. Feb 2008 A1
20080072870 Chomyszak et al. Mar 2008 A1
20080087165 Wright et al. Apr 2008 A1
20080104939 Hoffmann et al. May 2008 A1
20080112807 Uphues et al. May 2008 A1
20080127632 Finkenrath et al. Jun 2008 A1
20080138265 Lackner et al. Jun 2008 A1
20080155975 Brinkman Jul 2008 A1
20080155976 Smith et al. Jul 2008 A1
20080157528 Wang et al. Jul 2008 A1
20080157537 Richard Jul 2008 A1
20080164449 Gray et al. Jul 2008 A1
20080185194 Leone Aug 2008 A1
20080202120 Karyambas Aug 2008 A1
20080211230 Gurin Sep 2008 A1
20080228323 Laumer et al. Sep 2008 A1
20080233029 Fan et al. Sep 2008 A1
20080238105 Ortiz et al. Oct 2008 A1
20080238187 Garnett et al. Oct 2008 A1
20080250788 Nuel et al. Oct 2008 A1
20080251302 Lynn et al. Oct 2008 A1
20080265581 Welch et al. Oct 2008 A1
20080272597 Althaus Nov 2008 A1
20080272598 Nakhamkin Nov 2008 A1
20080272605 Borden et al. Nov 2008 A1
20080308168 O'Brien, II et al. Dec 2008 A1
20080308270 Wilson Dec 2008 A1
20080315589 Malmrup Dec 2008 A1
20090000290 Brinkman Jan 2009 A1
20090007558 Hall Jan 2009 A1
20090010772 Siemroth Jan 2009 A1
20090021012 Stull et al. Jan 2009 A1
20090056331 Zhao et al. Mar 2009 A1
20090071153 Boyapati et al. Mar 2009 A1
20090107784 Gabriel et al. Apr 2009 A1
20090145130 Kaufman Jun 2009 A1
20090158740 Littau et al. Jun 2009 A1
20090178409 Shinnar Jul 2009 A1
20090200805 Kim et al. Aug 2009 A1
20090220364 Rigal et al. Sep 2009 A1
20090229902 Stansbury, III Sep 2009 A1
20090249826 Hugelman Oct 2009 A1
20090282822 McBride et al. Nov 2009 A1
20090282840 Chen et al. Nov 2009 A1
20090294096 Mills et al. Dec 2009 A1
20090301089 Bollinger Dec 2009 A1
20090317267 Gill et al. Dec 2009 A1
20090322090 Wolf Dec 2009 A1
20100018196 Li et al. Jan 2010 A1
20100077765 Japikse Apr 2010 A1
20100089063 McBride et al. Apr 2010 A1
20100133903 Rufer Jun 2010 A1
20100139277 McBride et al. Jun 2010 A1
20100193270 Deshaies et al. Aug 2010 A1
20100199652 Lemofouet et al. Aug 2010 A1
20100205960 McBride et al. Aug 2010 A1
20100229544 Bollinger et al. Sep 2010 A1
20100257862 Howes et al. Oct 2010 A1
20100270801 Liu Oct 2010 A1
20100307156 Bollinger Dec 2010 A1
20100326062 Fong et al. Dec 2010 A1
20100326064 Fong et al. Dec 2010 A1
20100326066 Fong et al. Dec 2010 A1
20100326068 Fong et al. Dec 2010 A1
20100326069 Fong et al. Dec 2010 A1
20100326075 Fong et al. Dec 2010 A1
20100329891 Fong et al. Dec 2010 A1
20100329903 Fong et al. Dec 2010 A1
20100329909 Fong et al. Dec 2010 A1
20110023488 Fong et al. Feb 2011 A1
20110023977 Fong et al. Feb 2011 A1
20110030359 Fong et al. Feb 2011 A1
20110030552 Fong et al. Feb 2011 A1
20110056193 McBride et al. Mar 2011 A1
20110056368 McBride et al. Mar 2011 A1
20110061741 Ingersoll et al. Mar 2011 A1
20110061836 Ingersoll et al. Mar 2011 A1
20110062166 Ingersoll et al. Mar 2011 A1
20110106321 Cherian et al. May 2011 A1
20110107755 McBride et al. May 2011 A1
20110115223 Stahlkopf et al. May 2011 A1
20110131966 McBride et al. Jun 2011 A1
20110138797 Bollinger et al. Jun 2011 A1
20110167813 McBride et al. Jul 2011 A1
20110204064 Crane et al. Aug 2011 A1
20110219760 McBride et al. Sep 2011 A1
20110219763 McBride et al. Sep 2011 A1
20110232281 McBride et al. Sep 2011 A1
20110233934 Crane et al. Sep 2011 A1
20110252777 Bollinger et al. Oct 2011 A1
20110258996 Ingersoll et al. Oct 2011 A1
20110258999 Ingersoll et al. Oct 2011 A1
20110259001 McBride et al. Oct 2011 A1
20110259442 McBride et al. Oct 2011 A1
20110266810 McBride et al. Nov 2011 A1
20110283690 McBride et al. Nov 2011 A1
20110296822 Bollinger et al. Dec 2011 A1
20110296823 McBride et al. Dec 2011 A1
20110314800 Fong et al. Dec 2011 A1
20110314804 Fong et al. Dec 2011 A1
20110314810 McBride et al. Dec 2011 A1
20120000557 McBride et al. Jan 2012 A1
20120006013 McBride et al. Jan 2012 A1
20120017580 Fong et al. Jan 2012 A1
20120019009 Fong et al. Jan 2012 A1
20120023919 Fong et al. Feb 2012 A1
20120036851 McBride et al. Feb 2012 A1
20120042772 Fong et al. Feb 2012 A1
20120047884 McBride et al. Mar 2012 A1
20120055147 Fong et al. Mar 2012 A1
20120057996 Fong et al. Mar 2012 A1
20120057998 Ingersoll et al. Mar 2012 A1
20120067036 Fong et al. Mar 2012 A1
20120073432 Ingersoll et al. Mar 2012 A1
20120085086 Bollinger et al. Apr 2012 A1
20120090314 Fong et al. Apr 2012 A1
20120096845 Ingersoll et al. Apr 2012 A1
20120102935 Ingersoll et al. May 2012 A1
20120102954 Ingersoll et al. May 2012 A1
20120118137 Fong et al. May 2012 A1
20120119513 McBride et al. May 2012 A1
20120119514 Crane et al. May 2012 A1
20120137668 McBride et al. Jun 2012 A1
20120174569 Ingersoll et al. Jul 2012 A1
20120197683 Marcus Aug 2012 A1
20120210705 McBride et al. Aug 2012 A1
20120222424 Ingersoll et al. Sep 2012 A1
20120255292 Fong et al. Oct 2012 A1
20120260645 Fong et al. Oct 2012 A1
20120269651 Fong et al. Oct 2012 A1
20120279209 McBride et al. Nov 2012 A1
20120285154 Bollinger et al. Nov 2012 A1
20120286522 Stahlkopf et al. Nov 2012 A1
20120291989 Fong et al. Nov 2012 A1
20120297772 McBride et al. Nov 2012 A1
20120297776 Bollinger et al. Nov 2012 A1
20120299310 McBride et al. Nov 2012 A1
20130001958 Crane et al. Jan 2013 A1
20130009408 Crane et al. Jan 2013 A1
20130032743 Fong et al. Feb 2013 A1
20130047597 Fong et al. Feb 2013 A1
20130074485 McBride et al. Mar 2013 A1
20130074488 McBride et al. Mar 2013 A1
20130074940 McBride et al. Mar 2013 A1
20130074941 McBride et al. Mar 2013 A1
20130074949 McBride et al. Mar 2013 A1
20130091834 McBride et al. Apr 2013 A1
20130091835 McBride et al. Apr 2013 A1
20130091836 McBride et al. Apr 2013 A1
20130098027 Le Roux et al. Apr 2013 A1
20130104533 Fong et al. May 2013 A1
20130108480 Fong et al. May 2013 A1
20130111895 Fong et al. May 2013 A1
20130126014 Fong et al. May 2013 A1
20130139500 McBride et al. Jun 2013 A1
20130145764 McBride et al. Jun 2013 A1
20130152568 Modderno et al. Jun 2013 A1
20130152571 Modderno et al. Jun 2013 A1
20130152572 Madderno et al. Jun 2013 A1
20130160437 McBride et al. Jun 2013 A1
20130168961 Stahlkopf et al. Jul 2013 A1
20130186597 Clark et al. Jul 2013 A1
20130192216 Berlin, Jr. et al. Aug 2013 A1
Foreign Referenced Citations (206)
Number Date Country
898225 Mar 1984 BE
1008885 Aug 1996 BE
1061262 May 1992 CN
1171490 Jan 1998 CN
1276308 Dec 2000 CN
1277323 Dec 2000 CN
1412443 Apr 2003 CN
1743665 Mar 2006 CN
2821162 Sep 2006 CN
2828319 Oct 2006 CN
2828368 Oct 2006 CN
1884822 Dec 2006 CN
1888328 Jan 2007 CN
1967091 May 2007 CN
101033731 Sep 2007 CN
101042115 Sep 2007 CN
101070822 Nov 2007 CN
101149002 Mar 2008 CN
101162073 Apr 2008 CN
201103518 Aug 2008 CN
201106527 Aug 2008 CN
101289963 Oct 2008 CN
201125855 Oct 2008 CN
101377190 Apr 2009 CN
101408213 Apr 2009 CN
101435451 May 2009 CN
25 38 870 Jun 1977 DE
19530253 Nov 1996 DE
19903907 Aug 2000 DE
19911534 Sep 2000 DE
10042020 May 2001 DE
20118183 Mar 2003 DE
20120330 Apr 2003 DE
10147940 May 2003 DE
10205733 Aug 2003 DE
10212480 Oct 2003 DE
20312293 Dec 2003 DE
10220499 Apr 2004 DE
10334637 Feb 2005 DE
10 2005 0476 Apr 2007 DE
0204748 Mar 1981 EP
0091801 Oct 1983 EP
0097002 Dec 1983 EP
0196690 Oct 1986 EP
0212692 Mar 1987 EP
0364106 Apr 1990 EP
0507395 Oct 1992 EP
0821162 Jan 1998 EP
0 857 877 Aug 1998 EP
1 388 442 Feb 2004 EP
1405662 Apr 2004 EP
1657452 Nov 2004 EP
1726350 Nov 2006 EP
1741899 Jan 2007 EP
1 780 058 May 2007 EP
1988294 Nov 2008 EP
2014896 Jan 2009 EP
2078857 Jul 2009 EP
2449805 Sep 1980 FR
2816993 May 2002 FR
2829805 Mar 2003 FR
722524 Nov 1951 GB
772703 Apr 1957 GB
1449076 Sep 1976 GB
1479940 Jul 1977 GB
1 589 364 May 1981 GB
2106992 Apr 1983 GB
2223810 Apr 1990 GB
2 300 673 Nov 1996 GB
2373546 Sep 2002 GB
2403356 Dec 2004 GB
57010778 Jan 1982 JP
57070970 May 1982 JP
57120058 Jul 1982 JP
58183880 Oct 1982 JP
58150079 Sep 1983 JP
58192976 Nov 1983 JP
60206985 Oct 1985 JP
62101900 May 1987 JP
63227973 Sep 1988 JP
2075674 Mar 1990 JP
2247469 Oct 1990 JP
3009090 Jan 1991 JP
3281984 Dec 1991 JP
4121424 Apr 1992 JP
6185450 Jul 1994 JP
8145488 Jun 1996 JP
9166079 Jun 1997 JP
10313547 Nov 1998 JP
2000-346093 Jun 1999 JP
11351125 Dec 1999 JP
2000166128 Jun 2000 JP
2000346093 Dec 2000 JP
2002127902 May 2002 JP
2003083230 Mar 2003 JP
2005023918 Jan 2005 JP
2005036769 Feb 2005 JP
2005068963 Mar 2005 JP
2006220252 Aug 2006 JP
2007001872 Jan 2007 JP
2007145251 Jun 2007 JP
2007211730 Aug 2007 JP
2008038658 Feb 2008 JP
840000180 Feb 1984 KR
2004004637 Jan 2004 KR
2101562 Jan 1998 RU
2169857 Jun 2001 RU
2213255 Sep 2003 RU
800438 Jan 1981 SU
69030 Aug 2004 UA
WO-8200319 Feb 1982 WO
WO-8802818 Apr 1988 WO
WO-99041498 Aug 1990 WO
WO-9222741 Dec 1992 WO
WO-9306367 Apr 1993 WO
WO-9311363 Jun 1993 WO
WO-9324754 Dec 1993 WO
WO 9412785 Jun 1994 WO
WO-9525381 Sep 1995 WO
WO-9601942 Jan 1996 WO
WO-9622456 Jul 1996 WO
WO-9634213 Oct 1996 WO
WO-9701029 Jan 1997 WO
WO-9717546 May 1997 WO
WO-9802818 Jan 1998 WO
WO-9817492 Apr 1998 WO
WO-00001945 Jan 2000 WO
WO-0037800 Jun 2000 WO
WO-00037800 Jun 2000 WO
WO-00065212 Nov 2000 WO
WO-0068578 Nov 2000 WO
WO-0175308 Oct 2001 WO
WO 0175290 Oct 2001 WO
WO-02025083 Mar 2002 WO
WO-0246621 Jun 2002 WO
WO-02103200 Dec 2002 WO
WO-03021107 Mar 2003 WO
WO-03021702 Mar 2003 WO
WO-03078812 Sep 2003 WO
WO-03081011 Oct 2003 WO
WO-2004037391 May 2004 WO
WO-2004059155 Jul 2004 WO
WO-2004072452 Aug 2004 WO
WO-2004074679 Sep 2004 WO
WO-2004109172 Dec 2004 WO
WO-2005044424 May 2005 WO
WO-2005062969 Jul 2005 WO
WO-2005067373 Jul 2005 WO
WO-2005079461 Sep 2005 WO
WO-2005088131 Sep 2005 WO
WO-2005095155 Oct 2005 WO
WO-2006029633 Mar 2006 WO
WO-2006058085 Jun 2006 WO
WO-2006124006 Nov 2006 WO
WO-2007002094 Jan 2007 WO
WO-2007003954 Jan 2007 WO
WO-2007012143 Feb 2007 WO
WO-2007035997 Apr 2007 WO
WO-2007051034 May 2007 WO
WO-2007066117 Jun 2007 WO
WO-2007086792 Aug 2007 WO
WO-2007089872 Aug 2007 WO
WO-2007096656 Aug 2007 WO
WO-2007111839 Oct 2007 WO
WO-2007136765 Nov 2007 WO
WO-2007140914 Dec 2007 WO
WO-2008003950 Jan 2008 WO
WO-2008014769 Feb 2008 WO
WO-2008023901 Feb 2008 WO
WO-2008027259 Mar 2008 WO
WO-2008028881 Mar 2008 WO
WO-2008039725 Apr 2008 WO
WO-2008045468 Apr 2008 WO
WO-2009045468 Apr 2008 WO
WO-2008051427 May 2008 WO
WO-2008074075 Jun 2008 WO
WO-2008084507 Jul 2008 WO
WO-2008091373 Jul 2008 WO
WO 2008102292 Aug 2008 WO
WO-2008106967 Sep 2008 WO
WO-2008108870 Sep 2008 WO
WO-2008109006 Sep 2008 WO
WO-2008110018 Sep 2008 WO
WO-2008115479 Sep 2008 WO
WO-2008121378 Oct 2008 WO
WO-2008139267 Nov 2008 WO
WO-2008152432 Dec 2008 WO
WO-2008153591 Dec 2008 WO
WO-2008157327 Dec 2008 WO
WO-2009034548 Mar 2009 WO
WO-2009038973 Mar 2009 WO
WO-2009034421 Mar 2009 WO
WO-2009045110 Apr 2009 WO
WO-2009044139 Apr 2009 WO
WO-2009114205 Sep 2009 WO
WO-2009126784 Oct 2009 WO
WO-2010006319 Jan 2010 WO
WO-2010009053 Jan 2010 WO
WO-2010040890 Apr 2010 WO
WO-2010105155 Sep 2010 WO
WO-2010135658 Nov 2010 WO
WO-2011008321 Jan 2011 WO
WO-2011008325 Jan 2011 WO
WO-2011008500 Jan 2011 WO
WO-2011079267 Jun 2011 WO
WO-2011079271 Jun 2011 WO
Non-Patent Literature Citations (18)
Entry
“Hydraulic Transformer Supplies Continuous High Pressure,” Machine Design, Penton Media, vol. 64, No. 17, (Aug. 1992), 1 page.
Lemofouet, “Investigation and Optimisation of Hybrid Electricity Storage Systems Based on Compressed Air and Supercapacitors,” (Oct. 20, 2006), 250 pages.
Cyphelly et al., “Usage of Compressed Air Storage Systems,” BFE-Program “Electricity,” Final Report, May 2004, 14 pages.
Lemofouet et al., “A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking (MEPT),” IEEE Transactions on Industrial Electron, vol. 53, No. 4, (Aug. 2006) pp. 1105-1115.
International Search Report and Written Opinion issued Sep. 15, 2009 for International Application No. PCT/US2009/040027, 8 pages.
International Search Report and Written Opinion issued Aug. 30, 2010 for International Application No. PCT/US2010/029795, 9 pages.
International Search Report and Written Opinion issued Dec. 3, 2009 for International Application No. PCT/US2009/046725, 9 pages.
International Search Report and Written Opinion issued Jan. 4, 2011 for International Application No. PCT/US2010/055279, 13 pages.
International Search Report and Written Opinion mailed May 25, 2011 for International Application No. PCT/US2010/027138, 12 pages.
Rufer et al., “Energetic Performance of a Hybrid Energy Storage System Based on Compressed Air and Super Capacitors,” Power Electronics, Electrical Drives, Automation and Motion, (May 1, 2006), pp. 469-474.
Lemofouet et al. “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking,” Industrial Electronics Laboratory (LEI), (2005), pp. 1-10.
Lemofouet et al. “Hybrid Energy Storage Systems based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking,” The International Power Electronics Conference, (2005), pp. 461-468.
International Preliminary Report on Patentability mailed Oct. 13, 2011 for International Application No. PCT/US2010/029795 (9 pages).
Stephenson et al., “Computer Modelling of Isothermal Compression in the Reciprocating Compressor of a Complete Isoengine,” 9th International Conference on Liquid Atomization and Spray Systems (Jul. 13-17, 2003).
Coney et al., “Development of a Reciprocating Compressor Using Water Injection to Achieve Quasi-Isothermal Compression,” Purdue University International Compressor Engineering Conference (2002).
Linnemann et al., “The Isoengine—A Novel High Efficiency Engine with Optional Compressed Air Energy Storage (CAES),” International Joint Power Generation Conference (Jun. 16-19, 2003).
Linnemann et al., “The Isoengine: Realisation of a High-Efficiency Power Cycle Based on Isothermal Compression,” Int. J. Energy Tech. and Policy, vol. 3, Nos. 1-2, pp. 66-84 (2005).
Winterburn et al., “Mechanisms of Ultrasound Foam Interactions,” Asia-Pac. J. Chem. Eng., vol. 4, pp. 184-190 (2009).
Related Publications (1)
Number Date Country
20120285154 A1 Nov 2012 US
Provisional Applications (2)
Number Date Country
61322033 Apr 2010 US
61361096 Jul 2010 US
Continuations (2)
Number Date Country
Parent 13087936 Apr 2011 US
Child 13556637 US
Parent 13082808 Apr 2011 US
Child 13087936 US