The present disclosure generally relates to a burner for a gas-powered cooking appliance. In one aspect, the disclosure relates to an inner-flame burner.
Various solutions have been developed to provide improved heat distribution in gas burner arrangements. In one example, burners have been developed with two or three concentric burner rings to distribute heat outwardly in various levels. Further, so-called inner flame burners have been developed to direct heat inward relative to the burner and toward the center of a corresponding cooking implement. However, such burners may include complex components and may lack power due to limitations of the fuel-air mix, both primary and secondary, that they employ. Further, such burners have provided uneven flames.
In at least one aspect of the present disclosure, a gas burner for a cooking appliance includes a body defining perimeter and having a plurality of first groups of respective pluralities of first outlets a plurality of second groups of respective pluralities of second outlets. Each of the first outlets respectively defines a first outlet area, and each of the second outlets defines respective reduced outlet areas that are less than the first outlet area. Further, the first groups and second groups are alternately arranged around the perimeter, and a total number of first outlets are greater than a total number of second outlets.
In at least another aspect, a gas burner assembly for a cooking appliance includes a body defining a plurality of outlets around a perimeter thereof, an air-fuel mix inlet, a distribution chamber in fluid communication between the air-fuel mix inlet and the plurality of outlets, and a venturi in communication with the air-fuel mix inlet at a first end thereof. The first end of the venturi has a first diameter, and the venturi extends to a second end opposite the first end and having a second diameter greater than the first diameter. The assembly further includes a holder unit defining an air inlet and a fuel inlet. Both the air inlet and the fuel inlet are in fluid communication with the venturi at the second end thereof.
In at least another aspect, a cooking hob includes a cooktop body having an upper surface and a lower surface and defining a first burner area along the upper surface and a burner having a body positioned within the first burner area and defining a lower surface, an upper surface, and a plurality of ports extending between the upper and lower surfaces. The lower surface of the burner is spaced above the upper surface of the cooktop body to define an air flow path from an outer periphery of the burner, along the lower surface thereof, and through the plurality of ports.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
Referring to the embodiment illustrated in
As further shown in
The inner-flame burner assembly 10, as described herein, can provide increased thermal efficiency and, potentially, improved heat distribution from a center to corresponding edges of a pot, pan, or other cooking implement position above burner 10 during use thereof by directing the thermal energy provided by flames associated with ports 16 toward the center of burner 10 (i.e. internally within cavity 40). Further, by providing flames within cavity 40, such flames are generally laterally contained, which may prevent such flames from extending outwardly with respect to burner 10 and interfering with secondary air usage of adjacent ones of burner 10 (as shown in
As shown in
As further shown in
As further shown in
With continued reference to
In a particular embodiment, second diameter 32 of venturi 24 can be greater than first diameter 28 by at least 50%. In a further aspect, venturi 24 can taper along the conical section 75 defined between first end 26 and second end 30 thereof, as depicted in
As further illustrated in
In connection with the above-described geometry of venturi 24, distribution chamber 22 may be configured as shown in
Turning now to
In general the second ports 16b can be defined as having an area that is reduced compared to the areas of the first ports 16a in the first groups 94. As illustrated, the first groups 94 and second groups 96 can be arranged in alternating fashion around perimeter 18 with second groups 96 positioned between and separating corresponding first groups 94. In such an arrangement, the second groups 96 can be positioned, as illustrated in
As illustrated, the variations in area between first ports 16a and second ports 16b can be achieved by adjusting the overall heights of such ports 16a and 16b with ports 16a defining a greater height 98 than the respective heights 98b of the second ports 16b. In one example, the heights 98a of first ports 16a can be about 5 mm, while the heights 98 of second ports 16b can be about 3.5 mm or less. Further, as depicted in the example illustrated in
As shown in
As shown in
As shown in
Turning now to
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1141176 | Copeman | Jun 1915 | A |
1380656 | Lauth | Jun 1921 | A |
1405624 | Patterson | Feb 1922 | A |
1598996 | Wheelock | Sep 1926 | A |
1808550 | Harpman | Jun 1931 | A |
2024510 | Crisenberry | Dec 1935 | A |
2530991 | Reeves | Nov 1950 | A |
2536613 | Schulze et al. | Jan 1951 | A |
2699912 | Cushman | Jan 1955 | A |
2777407 | Schindler | Jan 1957 | A |
2781038 | Sherman | Feb 1957 | A |
2791366 | Geisler | May 1957 | A |
2815018 | Collins | Dec 1957 | A |
2828608 | Cowlin et al. | Apr 1958 | A |
2847932 | More | Aug 1958 | A |
2930194 | Perkins | May 1960 | A |
2934957 | Reinhart et al. | May 1960 | A |
D191085 | Kindl et al. | Aug 1961 | S |
3017924 | Jenson | Jan 1962 | A |
3051813 | Busch et al. | Aug 1962 | A |
3065342 | Worden | Nov 1962 | A |
3089407 | Kinkle | May 1963 | A |
3259120 | Keating | Jul 1966 | A |
3386431 | Branson | Jun 1968 | A |
3463138 | Lotter et al. | Aug 1969 | A |
3548154 | Christiansson | Dec 1970 | A |
3602131 | Dadson | Aug 1971 | A |
3645249 | Henderson et al. | Feb 1972 | A |
3691937 | Meek et al. | Sep 1972 | A |
3777985 | Hughes et al. | Dec 1973 | A |
3780954 | Genbauffs | Dec 1973 | A |
3857254 | Lobel | Dec 1974 | A |
3877865 | Duperow | Apr 1975 | A |
3899655 | Skinner | Aug 1975 | A |
D245663 | Gordon | Sep 1977 | S |
4104952 | Brass | Aug 1978 | A |
4149518 | Schmidt et al. | Apr 1979 | A |
4363956 | Scheidler et al. | Dec 1982 | A |
4413610 | Berlik | Nov 1983 | A |
4418456 | Riehl | Dec 1983 | A |
4447711 | Fischer | May 1984 | A |
4466789 | Riehl | Aug 1984 | A |
4518346 | Pistien | May 1985 | A |
4587946 | Doyon et al. | May 1986 | A |
4646963 | Delotto et al. | Mar 1987 | A |
4654508 | Logel et al. | Mar 1987 | A |
4689961 | Stratton | Sep 1987 | A |
4812624 | Kern | Mar 1989 | A |
4818824 | Dixit et al. | Apr 1989 | A |
4846671 | Kwiatek | Jul 1989 | A |
4886043 | Homer | Dec 1989 | A |
4891936 | Shekleton et al. | Jan 1990 | A |
D309398 | Lund | Jul 1990 | S |
4981416 | Nevin et al. | Jan 1991 | A |
4989404 | Shekleton | Feb 1991 | A |
5021762 | Hetrick | Jun 1991 | A |
5136277 | Civanelli et al. | Aug 1992 | A |
5171951 | Chartrain et al. | Dec 1992 | A |
D332385 | Adams | Jan 1993 | S |
5215074 | Wilson et al. | Jun 1993 | A |
5243172 | Hazan et al. | Sep 1993 | A |
D340383 | Addison et al. | Oct 1993 | S |
5272317 | Ryu | Dec 1993 | A |
D342865 | Addison et al. | Jan 1994 | S |
5316423 | Kin | May 1994 | A |
5397234 | Kwiatek | Mar 1995 | A |
5448036 | Husslein et al. | Sep 1995 | A |
D364993 | Andrea | Dec 1995 | S |
5491423 | Turetta | Feb 1996 | A |
D369517 | Ferlin | May 1996 | S |
5571434 | Cavener et al. | Nov 1996 | A |
D378578 | Eberhardt | Mar 1997 | S |
5618458 | Thomas | Apr 1997 | A |
5649822 | Gertler et al. | Jul 1997 | A |
5785047 | Bird et al. | Jul 1998 | A |
5842849 | Huang | Dec 1998 | A |
5913675 | Vago et al. | Jun 1999 | A |
D414377 | Huang | Sep 1999 | S |
5967021 | Yung | Oct 1999 | A |
6016096 | Barnes et al. | Jan 2000 | A |
6030207 | Saleri | Feb 2000 | A |
6049267 | Barnes et al. | Apr 2000 | A |
6050176 | Schultheis et al. | Apr 2000 | A |
6078243 | Barnes et al. | Jun 2000 | A |
6089219 | Kodera et al. | Jul 2000 | A |
6092518 | Dane | Jul 2000 | A |
6111229 | Schultheis | Aug 2000 | A |
6114665 | Garcia et al. | Sep 2000 | A |
6133816 | Barnes et al. | Oct 2000 | A |
6155820 | Döbbeling | Dec 2000 | A |
6188045 | Hansen et al. | Feb 2001 | B1 |
6192669 | Keller et al. | Feb 2001 | B1 |
6196113 | Yung | Mar 2001 | B1 |
6253759 | Giebel et al. | Jul 2001 | B1 |
6253761 | Shuler et al. | Jul 2001 | B1 |
6320169 | Clothier | Nov 2001 | B1 |
6322354 | Carbone et al. | Nov 2001 | B1 |
66362458 | Sargunam et al. | Mar 2002 | |
6452136 | Berkcan et al. | Sep 2002 | B1 |
6452141 | Shon | Sep 2002 | B1 |
6589046 | Harneit | Jul 2003 | B2 |
6614006 | Pastore et al. | Sep 2003 | B2 |
6619280 | Zhou et al. | Sep 2003 | B1 |
6655954 | Dane | Dec 2003 | B2 |
6663009 | Bedetti et al. | Dec 2003 | B1 |
6718965 | Rummel et al. | Apr 2004 | B2 |
6733146 | Vastano | May 2004 | B1 |
6806444 | Lerner | Oct 2004 | B2 |
6837151 | Chen | Jan 2005 | B2 |
6891133 | Shozo et al. | May 2005 | B2 |
6910342 | Berns et al. | Jun 2005 | B2 |
6930287 | Gerola et al. | Aug 2005 | B2 |
6953915 | Garris, III | Oct 2005 | B2 |
7017572 | Cadima | Mar 2006 | B2 |
D524105 | Poltronieri | Jul 2006 | S |
7083123 | Molla | Aug 2006 | B2 |
7220945 | Wang | May 2007 | B1 |
D544753 | Tseng | Jun 2007 | S |
7274008 | Arnal Valero et al. | Sep 2007 | B2 |
7281715 | Boswell | Oct 2007 | B2 |
7291009 | Kamal et al. | Nov 2007 | B2 |
7315247 | Jung et al. | Jan 2008 | B2 |
7325480 | Grühbaum et al. | Feb 2008 | B2 |
D564296 | Koch et al. | Mar 2008 | S |
7348520 | Wang | Mar 2008 | B2 |
7368685 | Nam et al. | May 2008 | B2 |
7411160 | Duncan et al. | Aug 2008 | B2 |
7414203 | Winkler | Aug 2008 | B2 |
7417204 | Nam et al. | Aug 2008 | B2 |
D581736 | Besseas | Dec 2008 | S |
7468496 | Marchand | Dec 2008 | B2 |
D592445 | Sorenson et al. | May 2009 | S |
7527495 | Yam et al. | May 2009 | B2 |
D598959 | Kiddoo | Aug 2009 | S |
7589299 | Fisher et al. | Sep 2009 | B2 |
D604098 | Hamlin | Nov 2009 | S |
7614877 | McCrorey et al. | Nov 2009 | B2 |
7628609 | Pryor et al. | Dec 2009 | B2 |
7640930 | Little et al. | Jan 2010 | B2 |
7696454 | Nam et al. | Apr 2010 | B2 |
7708008 | Elkasevic et al. | May 2010 | B2 |
7721727 | Kobayashi | May 2010 | B2 |
7731493 | Starnini et al. | Jun 2010 | B2 |
7762250 | Elkasevic et al. | Jul 2010 | B2 |
7781702 | Nam et al. | Aug 2010 | B2 |
7823502 | Hecker et al. | Nov 2010 | B2 |
7829825 | Kühne | Nov 2010 | B2 |
7841333 | Kobayashi | Nov 2010 | B2 |
7964823 | Armstrong et al. | Jun 2011 | B2 |
D642675 | Scribano et al. | Aug 2011 | S |
8006687 | Watkins et al. | Aug 2011 | B2 |
8015821 | Spytek | Sep 2011 | B2 |
8037689 | Oskin et al. | Oct 2011 | B2 |
8057223 | Pryor et al. | Nov 2011 | B2 |
8141549 | Armstrong et al. | Mar 2012 | B2 |
8217314 | Kim et al. | Jul 2012 | B2 |
8220450 | Luo et al. | Jul 2012 | B2 |
8222578 | Beier | Jul 2012 | B2 |
D665491 | Goel et al. | Aug 2012 | S |
8272321 | Kalsi et al. | Sep 2012 | B1 |
8288690 | Boubeddi et al. | Oct 2012 | B2 |
8302593 | Cadima | Nov 2012 | B2 |
8304695 | Bonuso et al. | Nov 2012 | B2 |
8342165 | Watkins | Jan 2013 | B2 |
8344292 | Franca et al. | Jan 2013 | B2 |
8393317 | Sorenson et al. | Mar 2013 | B2 |
8398303 | Kuhn | Mar 2013 | B2 |
8430310 | Ho et al. | Apr 2013 | B1 |
8464703 | Ryu et al. | Jun 2013 | B2 |
D685225 | Santoyo et al. | Jul 2013 | S |
D687675 | Filho et al. | Aug 2013 | S |
8526935 | Besore et al. | Sep 2013 | B2 |
8535052 | Cadima | Sep 2013 | B2 |
D693175 | Saubert | Nov 2013 | S |
8584663 | Kim et al. | Nov 2013 | B2 |
8596259 | Padgett et al. | Dec 2013 | B2 |
8616193 | Padgett | Dec 2013 | B2 |
8660297 | Yoon et al. | Feb 2014 | B2 |
8687842 | Yoon et al. | Apr 2014 | B2 |
8689782 | Padgett | Apr 2014 | B2 |
8707945 | Hasslberger et al. | Apr 2014 | B2 |
8747108 | Lona Santoyo et al. | Jun 2014 | B2 |
8800543 | Simms et al. | Aug 2014 | B2 |
D718061 | Wu | Nov 2014 | S |
8887710 | Rossi et al. | Nov 2014 | B2 |
8930160 | Wall et al. | Jan 2015 | B2 |
8932049 | Ryu et al. | Jan 2015 | B2 |
8950389 | Horstkoetter et al. | Feb 2015 | B2 |
8978637 | Ryu et al. | Mar 2015 | B2 |
D727489 | Rohskopf et al. | Apr 2015 | S |
9021942 | Lee et al. | May 2015 | B2 |
9074765 | Armanni | Jul 2015 | B2 |
D735525 | Nguyen | Aug 2015 | S |
9113503 | Arnal Valero et al. | Aug 2015 | B2 |
9132302 | Luongo et al. | Sep 2015 | B2 |
D743203 | Filho et al. | Nov 2015 | S |
9175858 | Tisselli et al. | Nov 2015 | B2 |
D750314 | Hobson et al. | Feb 2016 | S |
9307888 | Baldwin et al. | Apr 2016 | B2 |
D758107 | Hamilton | Jun 2016 | S |
D766036 | Koch et al. | Sep 2016 | S |
D766696 | Kemker | Sep 2016 | S |
9513015 | Estrella et al. | Dec 2016 | B2 |
9521708 | Adelmann et al. | Dec 2016 | B2 |
9557063 | Cadima | Jan 2017 | B2 |
9572475 | Gephart et al. | Feb 2017 | B2 |
9644847 | Bhogal et al. | May 2017 | B2 |
9696042 | Hasslberger et al. | Jul 2017 | B2 |
9927129 | Bhogal et al. | Mar 2018 | B2 |
20020065039 | Benezech et al. | May 2002 | A1 |
20040007566 | Staebler et al. | Jan 2004 | A1 |
20040031782 | Westfield | Feb 2004 | A1 |
20040195399 | Molla | Oct 2004 | A1 |
20040224273 | Inomata | Nov 2004 | A1 |
20040224274 | Tomiura | Nov 2004 | A1 |
20050029245 | Gerola et al. | Feb 2005 | A1 |
20050112520 | Todoli et al. | May 2005 | A1 |
20050194001 | Armanni | Sep 2005 | A1 |
20050199232 | Gama et al. | Sep 2005 | A1 |
20050268794 | Nesterov | Dec 2005 | A1 |
20070124972 | Ratcliffe | Jun 2007 | A1 |
20070181410 | Baier | Aug 2007 | A1 |
20070281267 | Li | Dec 2007 | A1 |
20080029081 | Gagas | Feb 2008 | A1 |
20080050687 | Wu | Feb 2008 | A1 |
20080173632 | Jang et al. | Jul 2008 | A1 |
20080210685 | Beier | Sep 2008 | A1 |
20090173730 | Baier et al. | Jul 2009 | A1 |
20090320823 | Padgett | Dec 2009 | A1 |
20100035197 | Cadima | Feb 2010 | A1 |
20100114339 | Kaiser et al. | May 2010 | A1 |
20100126496 | Luo et al. | May 2010 | A1 |
20100192939 | Parks | Aug 2010 | A1 |
20110142998 | Johncock et al. | Jun 2011 | A1 |
20110163086 | Aldana Arjol et al. | Jul 2011 | A1 |
20110248021 | Gutierrez et al. | Oct 2011 | A1 |
20120017595 | Liu | Jan 2012 | A1 |
20120024835 | Artal Lahoz et al. | Feb 2012 | A1 |
20120036855 | Hull | Feb 2012 | A1 |
20120067334 | Kim et al. | Mar 2012 | A1 |
20120076351 | Yoon et al. | Mar 2012 | A1 |
20120099761 | Yoon et al. | Apr 2012 | A1 |
20120160228 | Kim et al. | Jun 2012 | A1 |
20120171343 | Cadima et al. | Jul 2012 | A1 |
20120261405 | Kurose et al. | Oct 2012 | A1 |
20130043239 | Anton Falcon et al. | Feb 2013 | A1 |
20130252188 | Chen | Sep 2013 | A1 |
20130255663 | Cadima et al. | Oct 2013 | A1 |
20130260618 | Bally et al. | Oct 2013 | A1 |
20140048055 | Ruther | Feb 2014 | A1 |
20140071019 | Lim | Mar 2014 | A1 |
20140090636 | Bettinzoli | Apr 2014 | A1 |
20140097172 | Kang et al. | Apr 2014 | A1 |
20140116416 | Saubert | May 2014 | A1 |
20140137751 | Bellm | May 2014 | A1 |
20140139381 | Sippel | May 2014 | A1 |
20140318527 | Silva et al. | Oct 2014 | A1 |
20140352549 | Upston et al. | Dec 2014 | A1 |
20150040887 | Angulo | Feb 2015 | A1 |
20150136760 | Lima et al. | May 2015 | A1 |
20150153041 | Neumeier | Jun 2015 | A1 |
20150241069 | Brant et al. | Aug 2015 | A1 |
20150330640 | Wersborg | Nov 2015 | A1 |
20150345800 | Cabrera Botello | Dec 2015 | A1 |
20150359045 | Neukamm et al. | Dec 2015 | A1 |
20160029439 | Kurose et al. | Jan 2016 | A1 |
20160061490 | Cho et al. | Mar 2016 | A1 |
20160091210 | Ceccoli | Mar 2016 | A1 |
20160116160 | Takeuchi | Apr 2016 | A1 |
20160153666 | Tcaciuc | Jun 2016 | A1 |
20160174768 | Deverse | Jun 2016 | A1 |
20160178209 | Park et al. | Jun 2016 | A1 |
20160178212 | Park et al. | Jun 2016 | A1 |
20160187002 | Ryu et al. | Jun 2016 | A1 |
20160201902 | Cadima | Jul 2016 | A1 |
20160209044 | Cadima | Jul 2016 | A1 |
20160209045 | Millius | Jul 2016 | A1 |
20160295644 | Khokle et al. | Oct 2016 | A1 |
20160296067 | Laws | Oct 2016 | A1 |
20170003033 | Lona Santoyo et al. | Jan 2017 | A1 |
20170067651 | Khokle et al. | Mar 2017 | A1 |
20170074522 | Cheng | Mar 2017 | A1 |
20170082296 | Jeong et al. | Mar 2017 | A1 |
20170082299 | Rowley et al. | Mar 2017 | A1 |
20170108228 | Park et al. | Apr 2017 | A1 |
20170115008 | Erbe et al. | Apr 2017 | A1 |
20170261213 | Park et al. | Apr 2017 | A1 |
20170223774 | Cheng | Aug 2017 | A1 |
20180058702 | Jang et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2365023 | Jul 2002 | CA |
2734926 | Oct 2011 | CA |
201680430 | Dec 2010 | CN |
2845869 | Apr 1980 | DE |
3014908 | Oct 1981 | DE |
3446621 | Jun 1986 | DE |
3717728 | Dec 1988 | DE |
3150450 | Aug 1989 | DE |
3839657 | May 1990 | DE |
4103664 | Jan 1992 | DE |
4445594 | Jun 1996 | DE |
10218294 | Nov 2003 | DE |
30004581 | Jun 2004 | DE |
19912452 | Oct 2007 | DE |
102006034391 | Jan 2008 | DE |
102007021297 | Nov 2008 | DE |
102008027220 | Dec 2009 | DE |
102009002276 | Oct 2010 | DE |
102013218714 | Apr 2014 | DE |
0122966 | Oct 1984 | EP |
0429120 | May 1991 | EP |
0620698 | Oct 1994 | EP |
0690659 | Jan 1996 | EP |
1030114 | Aug 2000 | EP |
1217306 | Jun 2002 | EP |
1344986 | Sep 2003 | EP |
1586822 | Oct 2005 | EP |
1099905 | Feb 2006 | EP |
2063181 | May 2009 | EP |
2063444 | May 2009 | EP |
2116775 | Nov 2009 | EP |
2116829 | Nov 2009 | EP |
2278227 | Jan 2011 | EP |
2299181 | Mar 2011 | EP |
2375170 | Oct 2011 | EP |
2144012 | Sep 2012 | EP |
2657615 | Oct 2013 | EP |
2816291 | Dec 2014 | EP |
2835580 | Feb 2015 | EP |
3006832 | Apr 2016 | EP |
2848867 | Sep 2017 | EP |
2787556 | Jun 2000 | FR |
2789753 | Aug 2000 | FR |
3003338 | Sep 2014 | FR |
2001141244 | May 2001 | JP |
2005009693 | Jan 2005 | JP |
2007147131 | Jun 2007 | JP |
2010038475 | Feb 2010 | JP |
2011257021 | Dec 2011 | JP |
1991013526 | Sep 1991 | WO |
9850736 | Nov 1998 | WO |
2006072388 | Jul 2006 | WO |
2006136363 | Dec 2006 | WO |
2012077050 | Jun 2012 | WO |
2013098330 | Jul 2013 | WO |
2013182410 | Dec 2013 | WO |
2014194176 | Dec 2014 | WO |
2015086420 | Jun 2015 | WO |
Entry |
---|
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-stee1/8636634.p?skuld=8636634>. |
True-Heat burner, image post date Jan. 30, 2015, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 2 pages, <http://ovens.reviewed.com/news/kitchenaid-has-a-new-flame>. |
Metal Cover Gas Hob, image post date 2012, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>. |
Penny Stove, image post date 2004, originally in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>. |
European Patent Office, European Search Report for EP Application No. 17177980.4, dated Nov. 7, 2017, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20170370594 A1 | Dec 2017 | US |