High efficiency liquid oxygen system

Information

  • Patent Grant
  • 6742517
  • Patent Number
    6,742,517
  • Date Filed
    Thursday, October 26, 2000
    23 years ago
  • Date Issued
    Tuesday, June 1, 2004
    20 years ago
Abstract
A high-efficiency liquid oxygen, (LOX) storage/delivery system utilizes a portable LOX/delivery apparatus with a portable LOX container. A portable-unit LOX transfer connector is connected to the portable LOX container and is connectable to a main source of LOX in a primary reservoir LOX container. A portable-unit oxygen gas transfer connector is provided for transferring oxygen gas from the portable LOX container to an oxygen gas delivery device for delivering oxygen gas to a patient. An inter-unit oxygen gas transfer connector also is provided for connecting the portable apparatus to a stationary source of oxygen gas in the primary reservoir container, for transferring oxygen gas to the portable apparatus. A portable-unit primary relief valve is connected to the portable LOX container for venting oxygen gas out of the portable LOX container when pressure in the portable LOX container reaches a predetermined level. When the inter-unit oxygen gas transfer connector of the portable container is connected to the stationary source of oxygen in the primary reservoir container, oxygen gas can be transferred to the oxygen gas delivery device for delivery to the patient from the portable LOX container while oxygen gas is transferred to the portable container from the stationary source of gas in the primary reservoir LOX container.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to a liquid oxygen storage and delivery system.




2. Description of the Background Art




Therapeutic oxygen is the delivery of relatively pure oxygen to a patient in order to ease pulmonary/respiratory problems. When a patient suffers from breathing problems, inhalation of oxygen may ensure that the patient is getting an adequate level of oxygen into his or her bloodstream.




Therapeutic oxygen may be warranted in cases where a patient suffers from a loss of lung capacity for some reason. Some medical conditions that may make oxygen necessary are chronic obstructive pulmonary disease (COPD) including asthma, emphysema, etc., as well as cystic fibrosis, lung cancer, lung injuries, and cardiovascular diseases, for example.




Related art practice has been to provide portable oxygen in two ways. In a first approach, compressed oxygen gas is provided in a pressure bottle, and the gas is output through a pressure regulator through a hose to the nostrils of the patient. The bottle is often wheeled so that the patient may be mobile. This is a fairly simple and portable arrangement.




The drawback of compressed, gaseous oxygen is that a full charge of a bottle that is portable does not last a desirable amount of time.




In order to get around this limitation, in a second approach a related art liquid oxygen (LOX) apparatus has been used wherein LOX is stored in a container and the gaseous oxygen formed from the LOX is inhaled by the patient.




The related art LOX apparatus enjoys a longer usable charge than the compressed gas apparatus for any given size and weight, but has its own drawbacks.




Related art LOX systems typically include a stationary storage container located in a patient's home and a portable unit that the patient uses outside the home. The stationary storage container must be periodically refilled with LOX by a distributor.




A significant percentage of the cost of having a LOX system is in the cost of frequent recharging trips by the LOX distributor. A distributor may have to make weekly recharge trips to a patient's home, or even more frequently, to recharge the patient's LOX system. There thus is a need in the art to cut deliveries or cut costs in other ways.




The main drawback of the related art is that considerable waste occurs. One source of waste is that prior art devices provide continuous flow. Also, in the related art, the portable unit may be filled with LOX and used for normal activities and movement. When the patient is done using the related art portable unit, remaining LOX left within the related art portable unit is vented, wasting any remaining oxygen. Because the LOX continues to convert to gaseous oxygen when not being withdrawn, venting is provided for in both the stationary and portable related art units. When the pressure in the related art stationary unit increases beyond a certain point (such as when the related art portable unit is being used), the related art stationary unit must be vented.




There remains a need in the art, therefore, for an improved LOX storage and delivery system, with less gas consumption and requiring fewer deliveries of LOX to the patients home.




SUMMARY OF THE INVENTION




A high-efficiency liquid oxygen (LOX) storage/delivery system is provided according to a first aspect of the invention. The high-efficiency liquid oxygen (LOX) storage/delivery system may include a primary reservoir LOX storage/delivery apparatus comprising a primary reservoir LOX container and a portable LOX/delivery apparatus including a portable LOX container. The primary reservoir LOX apparatus includes a main LOX transfer connector connected to the primary reservoir LOX container for inputting LOX into the primary reservoir LOX container and for outputting LOX from the primary reservoir LOX container to the portable LOX container, and a main-unit oxygen gas transfer connector for transferring oxygen gas from the primary reservoir LOX container. A primary reservoir indicator device may be connected to the primary reservoir LOX container for indicating the LOX contents of the primary reservoir LOX container. A main-unit primary relief valve is connected to the primary reservoir LOX container for venting oxygen gas out of the primary reservoir LOX container when pressure of oxygen gas in the primary reservoir LOX container reaches a predetermined level for the primary reservoir container. The portable LOX apparatus includes a portable-unit LOX transfer connector connected to the portable LOX container and connectable to the main LOX transfer connector for transferring LOX to the portable container from the primary reservoir container, a portable-unit oxygen gas transfer connector for transferring oxygen gas from the portable LOX container to an oxygen gas delivery device for delivering oxygen gas to a patient, an inter-unit oxygen gas transfer connector for connecting the portable apparatus to the main-unit oxygen gas transfer connector for transferring oxygen gas from the primary reservoir container to the portable apparatus, and a portable-unit primary relief valve connected to the portable LOX container for venting oxygen gas out of the portable LOX container when pressure in the portable LOX container reaches a predetermined level for the portable container. When the inter-unit oxygen gas transfer connector of the portable container is connected to the main-unit oxygen transfer connector of the primary reservoir container, oxygen gas can be transferred from the portable container to the oxygen gas delivery device while oxygen gas is transferred to the portable container from the primary reservoir LOX container.




A method for utilizing a high-efficiency liquid oxygen (LOX) storage/delivery system is provided according to a second aspect of the invention. One method comprises connecting the inter-unit oxygen gas transfer connector of a portable container to the main-unit oxygen transfer connector of a primary reservoir container, and withdrawing oxygen gas from the portable container through the portable-unit oxygen gas transfer connector while oxygen gas is transferred to the portable apparatus and to the patient from the primary reservoir container through the main-unit oxygen transfer connector.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

schematically shows one embodiment of a high efficiency LOX system of the present invention, and illustrates how the primary reservoir and portable LOX storage/deliver apparatus may be interconnected;





FIG. 2

schematically shows detail of one embodiment of the primary reservoir LOX storage/delivery apparatus;





FIG. 3

schematically shows detail of one embodiment of the portable LOX storage/delivery apparatus;











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows one embodiment of a high efficiency LOX system


100


of the present invention. The LOX system


100


includes a primary reservoir LOX storage/delivery apparatus (primary reservoir apparatus)


120


and a portable LOX storage/delivery apparatus (portable apparatus)


160


. An umbilical conduit


110


may extend between an inter-unit oxygen gas transfer connector


190


of the portable apparatus


160


and a main-unit oxygen gas transfer connector


213


of the primary reservoir apparatus


120


, and may be used to transfer gaseous oxygen therebetween. An oxygen delivery device


90


, such as a mask or nasal tubes or cannulas may be attached to either apparatus in order to deliver gaseous oxygen to a patient. Alternatively, the inter-unit oxygen gas transfer connector


190


may be directly connected to the main-unit oxygen gas transfer connector


213


.




Because LOX transforms from a liquid to a gas as heat is added, related art LOX systems have typically relied on venting of excess gaseous pressure to maintain acceptable internal pressure levels. The result is a higher cost for the health care provider. Pressure control of the portable apparatus


160


and the primary reservoir apparatus


120


is of great importance, as keeping pressures down yields a safe, light weight, economical system through the reduction or elimination of venting. The present invention achieves such economy by balancing use of the primary reservoir apparatus


120


and portable apparatus


160


so that internal pressures do not build up to a point where either apparatus must be excessively vented. The LOX system


100


therefore allows usage cycles that make possible efficient LOX use without excessive venting.




The primary reservoir apparatus


120


can be of any usable size for storage and delivery of LOX over a desired time period. Suitable units in accordance with the present invention can hold from 20-60 or more liters of LOX. In accordance with one embodiment, a primary reservoir container holding about 36 liters (about 85 pounds) of LOX is provided. In a second embodiment, a primary reservoir container holding about 43 liters (about 110 pounds) of LOX is provided.




The primary reservoir apparatus


120


includes the main LOX storage and container. The LOX may be transferred from the primary reservoir apparatus


120


to the portable apparatus


160


as needed to charge the portable apparatus


160


for mobile use. The primary reservoir apparatus


120


is intended to hold a sufficiently large charge so that the primary reservoir apparatus


120


can recharge the portable apparatus


160


on a substantially daily basis for a substantially long period of time, e.g., up to about one month or more. This can reduce recharge costs by up to seventy-five percent or more over the related art.




The portable apparatus


160


preferably is about 3.5 pounds fully charged with LOX and about 2.5 pounds empty, is much smaller and lighter than the primary reservoir apparatus


120


, and may provide gaseous oxygen to the patient while being carried by the patient.




In use, the primary reservoir apparatus


120


is charged with LOX. The patient may use gaseous oxygen from the primary reservoir apparatus


120


directly via the main-unit oxygen gas transfer connector


213


, or may transfer LOX to the portable apparatus


160


wherein the patient may withdraw gaseous oxygen from the portable apparatus


160


. The portable apparatus


160


allows the patient mobility outside the home, while the umbilical conduit


110


, which may be up to 50-100 feet in length or longer, allows the patient to connect the portable apparatus to the main reservoir container to conserve LOX.




The inter-unit oxygen gas transfer connector


190


may be connected to the main-unit oxygen gas transfer connector


213


of the primary reservoir apparatus


120


to allow oxygen gas withdrawal alternatively from either the portable apparatus


160


or the primary reservoir apparatus


120


, or simultaneously from both.





FIG. 2

shows detail of one embodiment of the primary reservoir apparatus


120


. The primary reservoir apparatus


120


includes a primary reservoir container assembly


205


, a main LOX transfer connector


209


, a main-unit oxygen gas transfer connector


213


, and a main-unit primary relief valve


257


. In the embodiment shown, a primary indicator device


274


also is included.




The primary reservoir container assembly


205


includes an outer container


223


, an inner primary reservoir LOX container


226


spaced apart from the outer container


223


, insulation


229


located between the outer container


223


and the inner container


226


, a molecular sieve


231


, and a vacuum plug


235


. The space between the outer container


223


and the inner container


226


is preferably evacuated to at least a partial vacuum in order to minimize heat transfer to the LOX inside the inner container


226


.




The primary reservoir LOX container assembly


205


also includes an outlet port


238


, through which passes a neck conduit


242


. The neck conduit


242


extends a short distance into the inner container


226


, and is employed for gaseous oxygen withdrawal from the primary reservoir LOX container


226


. Inside the neck conduit


242


is a fill conduit


244


, preferably concentric with the neck conduit


242


. The fill conduit


244


may be used to fill the primary reservoir LOX container


226


with LOX. Inside the fill conduit


244


is a liquid withdrawal conduit


247


, preferably concentric with the fill conduit


244


. The liquid withdrawal conduit


247


may be used to withdraw LOX from the primary reservoir LOX container


226


.




Above the outlet port


238


of the primary reservoir LOX container


205


the neck conduit


242


splits into two independent conduits. A main-unit vent valve conduit


250


leads to a main-unit vent valve


251


which is openable for filling inner container


226


with LOX through the main LOX transfer connector


209


. When filling inner container


226


with LOX, main unit vent valve


251


is opened until liquid exits valve


251


, indicating that container


226


is filled with LOX.




Relief/economizer conduit


255


leads to a main-unit primary relief valve


257


and an economizer valve


261


. The main-unit primary relief valve


257


is provided for relieving excess internal gas pressure from the primary reservoir LOX container


226


if the internal gas pressure exceeds a predetermined limit, e.g., 55 psi. Conduit


255


also leads to a main-unit secondary relief valve


258


, which can be set at the same or a higher level (e.g., 10-20% higher) than the main-unit primary relief valve, and is a back-up thereto in case of failure thereof.




Conduit


255


further leads to an economizer valve


261


, the purpose of which will be explained below.




Above the neck conduit


242


extends the fill conduit


244


, which extends upward to the main-unit LOX transfer connector


209


. Between the top of the neck conduit


242


and the main-unit LOX transfer connector


209


is a tee


263


, where the liquid withdrawal conduit


247


exits the fill conduit


244


. After exiting the fill conduit


244


, the liquid withdrawal conduit


247


encounters a second tee


264


that joins the liquid withdrawal conduit


247


with an economizer conduit


266


in advance of a warming coil


269


. The economizer conduit


266


connects the economizer valve


261


with warming coil


269


. Gaseous oxygen passes through economizer valve


261


when the economizer valve is open. In order to conserve LOX, the economizer valve


261


can be set at any suitable level below the primary and secondary relief valve settings, so that gaseous oxygen will pass through the economizer valve


261


into the warming coil


269


before such gaseous oxygen is vented through the main-unit primary relief valve


257


or the main-unit secondary relief valve


258


. One suitable setting for the economizer valve


261


is 22 psi. The liquid withdrawal conduit


247


supplies LOX to the warming coil


269


, while the economizer conduit


266


supplies gaseous oxygen withdrawn by way of the relief/economizer conduit


255


. In the warming coil


269


the withdrawn LOX and gaseous oxygen is warmed by exposure to room temperature, speeding the liquid-to-gas transformation. It should be noted that the inside diameter of the warming coil


269


may be greater than the inside diameter of the liquid withdrawal conduit


247


, allowing the LOX to expand as it warms up and transforms from a liquid phase to a gaseous phase. However, the inside diameter of the liquid withdrawal conduit


247


preferably is sized so that when the economizer valve


261


is open, gas flow through line


266


is favored to warming coil


269


over liquid withdrawal through conduit


247


. In the embodiment shown, the warming coil


269


is connected to a pressure regulator


271


which can maintain a desired operating pressure at a main-unit oxygen gas transfer connector


213


.




In the embodiment shown, the primary reservoir LOX container


205


includes a primary indicator device


274


that indicates a LOX level in the primary reservoir LOX container


226


. The primary indicator device


274


is connected to a bottom portion of the primary reservoir LOX container


226


via a high pressure sensing conduit


279


. The primary indicator device


274


may be interconnected to a pressure gauge


217


. The pressure gauge


217


gives a visual readout of an internal gas pressure for the primary reservoir LOX container


226


, and may be, for example, a mechanical pressure gauge. The pressure gauge


217


is connected to conduit


255


via a low pressure sensing conduit


277


.




In use, LOX may be added to or withdrawn from the primary reservoir LOX container


226


through the main-unit LOX transfer connector


209


and the fill conduit


244


. The main-unit oxygen gas transfer connector


213


may be used to withdraw gaseous oxygen for use. The gaseous oxygen is provided to the main-unit oxygen gas transfer connector


213


from the economizer valve


261


and/or by conversion of LOX to gas through the liquid withdrawal conduit


247


, both through the warming coil


269


.





FIG. 3

shows detail of one embodiment of the portable apparatus


160


. The portable apparatus


160


includes a portable LOX container


302


, a portable-unit LOX transfer connector


304


, a portable-unit oxygen gas transfer connector


384


, an inter-unit oxygen gas transfer connector


190


, and a portable-unit primary relief valve


315


.




The portable container assembly


302


includes an outer container


318


, an inner portable LOX container


319


spaced apart from the outer container


318


, a fill conduit


322


, a liquid withdrawal conduit


326


, a vacuum plug


328


, and a multi-lumen annular conduit


331


. The space between the outer container


318


and the inner container


319


is preferably evacuated to at least a partial vacuum in order to minimize heat transfer to the LOX inside the inner container


319


.




LOX may be introduced into the portable LOX container


319


through the portable-unit LOX transfer connector


304


and the fill conduit


322


. The portable-unit LOX transfer connector


304


may be connected to the main-unit LOX transfer connector


209


of the primary reservoir apparatus


120


, whereby the portable apparatus


160


may be filled with LOX from the primary reservoir apparatus


120


.




LOX may be withdrawn via the liquid withdrawal conduit


326


, and gaseous oxygen may be withdrawn via the neck conduit


331


.




A manifold


336


is connected to the neck conduit


331


, and splits the neck conduit


331


into a gaseous oxygen withdrawal conduit


339


and a vent conduit


341


. The vent conduit


341


may include a vent valve


344


. The vent valve


344


may be opened during filling of the portable LOX container


302


. When LOX emerges from the vent conduit


341


, it is a visual indication that the portable LOX container


319


is full.




In the embodiment shown, the liquid withdrawal conduit


326


passes through the manifold


336


and is connected to a liquid withdrawal warming coil


349


in which the LOX can transform to the gaseous phase. The liquid withdrawal warming coil


349


warms the LOX by exposure to room temperature, speeding the liquid-to-gas transformation. It should be noted that the inside diameter of the liquid withdrawal warming coil


349


may be greater than the inside diameter of the liquid withdrawal conduit


326


, allowing the LOX to expand as it warms up and transforms from a liquid phase to a gaseous phase.




The gaseous oxygen withdrawal conduit


339


connects with a gas withdrawal warming coil


352


. The gas withdrawal warming coil


352


warms the gaseous oxygen before delivery to an oxygen user.




Connected to the gas withdrawal warming coil


352


is a portable-unit primary relief valve


315


. The portable-unit primary relief valve


315


is capable of opening and relieving a gaseous oxygen pressure in the portable LOX container


319


if the internal gas pressure exceeds a predetermined level, e.g., 27 psi.




An economizer valve


356


connects the gas withdrawal warming coil


352


with conduit


380


containing gaseous oxygen from liquid withdrawal warming coil


349


. The portable-unit economizer valve


356


can be set at any suitable level below the portable-unit primary relief valve


315


, such as 22 psi, and allows gaseous oxygen from coil


352


to pass into line


380


when the pressure of the gaseous oxygen in the portable LOX container


319


exceeds the predetermined threshold level, e.g., 22 psi. In preferred embodiments, the inside diameter of the liquid withdrawal conduit


326


is sized so that when the portable-unit economizer valve


356


is open, gas flow through line


339


is favored over liquid flow through conduit


326


. This permits gaseous oxygen from the gaseous head-space in portable container


319


to pass to the patient without the need to waste through the portable-unit primary relief valve


315


. The portable-unit economizer valve


356


thus balances gaseous and liquid oxygen withdrawal from the portable LOX container


319


, and outputs a resulting gaseous oxygen to a conduit


309


. A portable-unit secondary relief valve


382


is provided as a back-up unit to the portable-unit primary relief valve


315


, and can be set at the same or a higher level than the portable-unit primary relief valve, and is a back-up thereto in case of failure thereof.




Although the function of the economizer valves of the present invention has been described above with reference to preferred embodiments, other configurations, utilizing operating systems of any suitable pressure, will fall within the scope of the present invention. For example, with systems operating at 20 psig, an economizer valve may be set at any suitable setting such as between 19.5 psig and 22 psig. Alternatively, for systems having operating pressures at about 50 psig, economizer valves having settings, for example, between 48 psig and 55 psig can be utilized. Corresponding primary relief setting for a 20 psig system can, for example, be between 21 psig and 24 psig. Corresponding primary relief settings for a 50 psig system can, for example, be between about 50 psig and 58 psig. However, these configurations are merely exemplary, and other configurations can be utilized in accordance with the present invention.




The gaseous oxygen from the conduit


309


may be delivered to a demand flow control device


360


, which also may receive gaseous oxygen from the primary reservoir apparatus


120


via the inter-unit oxygen gas transfer connector


190


. A check valve


363


may be included between the conduit


309


and the inter-unit oxygen gas transfer connector


190


to prevent backflow of gaseous oxygen from the portable apparatus


160


to the primary reservoir apparatus


120


.




The demand flow control device


360


is for adjustment of gas flow through a portable-unit oxygen gas transfer connector


384




a


to an oxygen delivery device


90


for delivery of gaseous oxygen to a patient.




Gaseous oxygen is provided to the patient through the portable-unit oxygen gas transfer connector


384




a


, either from the portable unit, or from the main reservoir unit through connector


190


.




In preferred embodiments, the demand flow control device


360


can be connected to a gas conserving device


390


. A known conserving device is disclosed in U.S. Pat. No. 5,360,000.




In the embodiment shown, a gas transfer connector system


384




a


and


384




b


is utilized, so that when the patient exhales, flow to the oxygen delivery device


90


is stopped, and gas accumulates in the conserving device


390


. When the patient inhales, a puff (bolus) of oxygen gas is delivered to the patient from conserving device


390


, thereby further preventing waste of gaseous oxygen, followed by an even flow of gaseous oxygen, which then is stopped again when the patient exhales.




Use of a conserving device


390


with the portable apparatus of the present invention connected to the primary reservoir apparatus


120


through connector


190


results in tremendous savings and LOX conservation.




A method of utilizing the high-efficiency LOX storage/delivery system


100


of the present invention is disclosed. The method uses an umbilical conduit


110


to economize oxygen use by a patient and balance use of the primary reservoir apparatus


120


and portable apparatus


160


so that excess oxygen venting is avoided.




The main-unit oxygen gas transfer connector


213


is connected to the inter-unit oxygen gas transfer connector


190


, e.g., by umbilical conduit


110


. The connection allows gaseous oxygen to flow from the primary reservoir apparatus


120


to the portable apparatus


160


. The gaseous oxygen from either the primary reservoir LOX storage delivery apparatus


120


or the portable apparatus


160


may be provided to the patient, depending on which has the higher gas pressure.




The umbilical conduit


110


may be a flexible conduit (such as a hose, for example) to give the portable apparatus


160


mobility while yet being connected to the primary reservoir apparatus


120


. In this hookup, the oxygen deliver device


90


is connected to the demand flow control device


360


in order to provide gaseous oxygen to the patient.




The method may utilize a filling/using cycle of the portable apparatus


160


. The method of filling/using of the present invention avoids or reduces unnecessary venting of either the portable apparatus


160


or the primary reservoir apparatus


120


.




Gaseous oxygen is withdrawn from the primary reservoir


120


for a withdrawal time period, which preferably is at least 5 hours per day, more preferably about 10 hours per day or more. The withdrawal of gaseous oxygen from the primary reservoir apparatus


120


may be through oxygen delivery device


90


either connected directly to-connector


213


, or connected to connector


384


of the portable apparatus with connector


190


of the portable apparatus connected to the main reservoir apparatus. This gaseous withdrawal time period hook-up to the primary reservoir apparatus


120


permits withdrawal of gaseous oxygen from the primary reservoir LOX container without internal pressure in the primary reservoir LOX container reaching excess levels requiring venting. This conserving measure, in conjunction with economizer valve


261


(and economizer valve


356


if the portable unit is hooked-up), enables oxygen withdrawal without wasteful venting.




After the above-discussed withdrawal time period, the portable apparatus


160


may be filled with LOX from the primary reservoir apparatus


120


and disconnected, for example, if the patient wishes to go outside the home.




In preferred embodiments, the portable LOX container holds about 1 pound of LOX, which, when utilized with the portable LOX/delivery apparatus of the present invention, can last approximately 10 hours at a typical patient use/withdrawal rate of about 2 liters per minute.




During withdrawal of gaseous oxygen from the primary reservoir LOX apparatus, oxygen gas pressure in the primary reservoir LOX apparatus is reduced to a level at which the economizer valve is set (e.g., 22 psi) such that after the portable container is filled with LOX and disconnected from the primary reservoir LOX apparatus, pressure may increase within the primary reservoir container for a gas pressurizing period within a range of 5-15 hours per day, e.g., about 10 hours per day, to a pressure of, for example, about 50 psi without LOX or oxygen gas being withdrawn from the primary reservoir container and without oxygen gas being vented from the primary reservoir container during the gas pressurizing period.




When the patient returns home prior to complete withdrawal of oxygen gas from the portable LOX container, the inter-unit oxygen gas transfer connector of the portable LOX container is connected to the main-unit oxygen transfer connector of the primary reservoir LOX container, and oxygen gas, may be withdrawn from the portable LOX container or the primary reservoir LOX container while oxygen gas may be transferred to the portable LOX apparatus from the primary reservoir LOX container through the main-unit oxygen transfer connector, depending on the pressure differential between the containers.




In accordance with one embodiment, during the withdrawal period, the inter-unit oxygen gas transfer connector of the portable LOX container is connected to the main-unit oxygen transfer connector of the primary reservoir LOX container, and oxygen gas is transferred from the portable container to the oxygen gas delivery device alternately or concurrently with oxygen gas being transferred to the oxygen gas delivery device through, the portable LOX apparatus from the primary reservoir LOX container, thereby lowering gas pressure in the primary reservoir LOX container.




The present invention can provide significant savings as compared to. related art systems. For example, at a patient use rate of 2 liters per minute, related art systems utilize about 10 pounds LOX per day. The present invention can provide the same 2 liters per minute utilizing about 2 pounds LOX per day, a savings of up to about 8 pounds LOX per day.




While the invention has been described in detail above, and shown in the drawings, the invention is not intended to be limited to the specific embodiments as described and shown.



Claims
  • 1. A high-efficiency liquid oxygen (LOX) storage/delivery system, comprising:a portable LOX/delivery apparatus comprising a portable LOX container, and including a portable-unit LOX transfer connector connected to the portable LOX container and connectable to a main source of LOX in a primary reservoir LOX container for transferring LOX to said portable container; a portable-unit oxygen gas transfer connector for transferring oxygen gas from said portable LOX container to an oxygen gas delivery device for delivering oxygen gas to a patient; an inter-unit oxygen gas transfer connector for connecting the portable apparatus to a stationary source of oxygen gas in said primary reservoir container for transferring oxygen gas to said portable container; wherein, when the inter-unit oxygen gas transfer connector of the portable container is connected to said stationary source of oxygen in said primary reservoir container, oxygen gas can be transferred to the oxygen gas delivery device for delivery to the patient from the stationary source of gas in the primary reservoir LOX container through the inter-unit oxygen gas transfer connector.
  • 2. The system of claim 1, wherein the inter-unit oxygen gas transfer connector is configured such that, when the inter-unit oxygen gas transfer connector of the portable container is connected to said stationary source of oxygen in said primary reservoir container, oxygen gas can be transferred to the oxygen gas delivery device for delivery to the patient from the portable LOX container and gaseous oxygen is permitted to be transferred-to the oxygen gas delivery device from the stationary source of gas in the primary reservoir LOX container.
  • 3. The system of claim 2, further comprising:a primary reservoir LOX storage/delivery apparatus comprising said primary reservoir LOX container; the primary reservoir LOX apparatus including a main LOX transfer connector connected to the primary reservoir LOX container for inputting LOX into said primary reservoir LOX container and connectable to the portable-unit LOX transfer connector for outputting LOX from said primary reservoir LOX container to said portable LOX container; a main-unit oxygen gas transfer connector for transferring oxygen gas from said primary reservoir LOX container, the main-unit oxygen gas transfer connector being connectable to said inter-unit oxygen gas transfer connector, for said transfer of said oxygen gas from said stationary source of oxygen to said portable apparatus wherein said gaseous oxygen is permitted to be transferred to the oxygen gas delivery device from said stationary source of oxygen.
  • 4. The system of claim 3, further comprising:a portable-unit primary relief valve connected to the portable LOX container for venting oxygen gas out of said portable LOX container when pressure in said portable LOX container reaches a predetermined level for said portable LOX container; and a main-unit primary relief valve connected to the primary reservoir LOX container for venting oxygen gas out of said primary reservoir LOX container when pressure of oxygen gas in said primary reservoir LOX container reaches a predetermined level.
  • 5. The system of claim 3, further comprising a primary indicator device connected to the primary reservoir LOX container for indicating the LOX contents of the primary reservoir LOX container.
  • 6. The system of claim 5, wherein said system is adapted for functioning within an operating cycle in which said withdrawal period is at least about 10 hours per day.
  • 7. The system of claim 3, wherein said oxygen gas is withdrawn from the primary reservoir container for a withdrawal period of at least about 5 hours per day, then said portable LOX apparatus is filled with LOX from said primary reservoir LOX apparatus, whereby oxygen gas pressure in said primary reservoir LOX apparatus is reduced to a level such that pressure may increase within said primary reservoir container for a gas pressurizing period of about 5-15 hours per day without LOX or oxygen gas being withdrawn from said primary reservoir container and without oxygen gas being vented from said primary reservoir container during said gas pressurizing period.
  • 8. The system of claim 7, wherein said inter-unit oxygen gas transfer connector of said portable LOX apparatus is connected to said main-unit oxygen transfer connector of said primary reservoir container so that oxygen gas can be transferred from the portable container to the oxygen gas delivery device while oxygen gas is transferred to the portable apparatus from the primary reservoir container through the first oxygen transfer connector during said withdrawal period.
  • 9. The system of claim 3, wherein said oxygen gas delivery device is connectable to said main-unit oxygen gas transfer connector for transferring oxygen gas from said primary reservoir LOX container for delivery to said patient.
  • 10. The system of claim 9, wherein a flexible gas conduit is connectable between the main-unit oxygen gas transfer connector to said oxygen gas delivery device.
  • 11. The system of claim 3, wherein a flexible gas conduit is capable of connecting the main-unit oxygen gas transfer connector to the inter-unit oxygen gas transfer connector for transferring oxygen gas from said primary reservoir container to said portable apparatus.
  • 12. The system of claim 3, further including a gas conserving device, so that when said patient exhales, oxygen gas accumulates in said conserving device, and when said patient inhales, oxygen gas is delivered to said patient from said conserving device.
  • 13. The system of claim 3, wherein said primary reservoir LOX apparatus further includes a pressure indicator device for indicating an internal gaseous oxygen pressure within said primary reservoir LOX container.
  • 14. A method for utilizing a high-efficiency liquid oxygen (LOX) storage/delivery system as in claim 3, said method comprising connecting said inter-unit oxygen gas transfer connector of said portable container to said main-unit oxygen transfer connector of said primary reservoir container, and withdrawing oxygen gas from said portable container through said portable-unit oxygen gas transfer connector while oxygen gas is transferred to the portable container from the primary reservoir container through the main-unit oxygen transfer connector.
  • 15. The method of claim 14, further comprising the steps of withdrawing oxygen gas from the primary reservoir container for a withdrawal period of at least about 5 hours per day, then filling said portable LOX apparatus with LOX from said primary reservoir LOX apparatus through said portable-unit LOX transfer connector connected to said main-unit LOX transfer connector, disconnecting said portable LOX apparatus from said primary reservoir LOX apparatus, and withdrawing oxygen gas from said portable LOX apparatus, whereby during said withdrawal period, oxygen gas pressure in said primary reservoir LOX apparatus is reduced to a level such that thereafter, pressure may increase within said primary reservoir container for a gas pressurizing period of about 5-15 hours per day without LOX or oxygen gas being withdrawn from said primary reservoir container and without oxygen gas being vented from said primary reservoir container during said gas pressurizing period.
  • 16. The method of claim 15, wherein during said withdrawal period, said inter-unit oxygen gas transfer connector of said portable LOX container is connected to said main-unit oxygen transfer connector of said primary reservoir LOX container, and oxygen gas is transferred from the portable container to the oxygen gas delivery device while oxygen gas is transferred to the portable LOX apparatus from the primary reservoir LOX container through the main-unit oxygen transfer connector.
  • 17. The method of claim 16, wherein during said withdrawal period, the inter-unit oxygen gas transfer connector is connected to the main-unit oxygen gas transfer connector by a flexible gas conduit.
  • 18. The method of claim 14, wherein prior to complete withdrawal of oxygen gas from said portable LOX container while said portable LOX container is partially filled with LOX, the inter-unit oxygen gas transfer connector of said portable LOX container is connected to said main-unit oxygen transfer connector of said primary reservoir LOX container, and oxygen gas is withdrawn from the portable LOX container while oxygen gas is transferred to the portable LOX apparatus from the primary reservoir LOX container through the main-unit oxygen transfer connector.
  • 19. The method of claim 14, wherein during said withdrawal period, the main-unit oxygen gas transfer connector is connected to said oxygen gas delivery device by a flexible gas conduit.
  • 20. The method of claim 14, further including a gas conserving device, so that when said patient exhales, oxygen gas accumulates in said conserving device, and when said patient inhales, oxygen gas is delivered to said patient from said conserving device.
  • 21. A high-efficiency liquid oxygen (LOX) storage/delivery system, comprising:a portable LOX/delivery apparatus including a portable LOX container, a portable-unit LOX transfer connector connected to the portable LOX container and connectable to a main source of LOX in a primary reservoir LOX container for transferring LOX to said portable container, and a portable-unit oxygen gas transfer connector for transferring oxygen gas from said portable LOX container to an oxygen gas delivery device for delivering oxygen gas to a patient; and said portable LOX/delivery apparatus being configured to provide gas at a typical patient use rate with an LOX use rate of at most about {fraction (1/10)} pounds per hour.
  • 22. The system of claim 21, wherein said typical patient use rate is about 2 liters per minute.
  • 23. The system of claim 21, wherein said portable LOX/delivery apparatus is configured to provide gas at a typical patient use rate with an LOX ruse rate of at most about {fraction (1/12)} pounds per hour.
  • 24. The system of claim 21, wherein said portable LOX/delivery apparatus has weight that is at most about 3.5 pounds.
  • 25. The system of claim 24, wherein said weight includes LOX in said portable LOX container.
  • 26. The system of claim 21, wherein said portable LOX/delivery apparatus has a weight that is at most about 2.5 pounds.
  • 27. The system of claim 26, wherein said weight is without LOX in said portable LOX container.
  • 28. The system of claim 21, wherein said portable LOX/delivery apparatus is sized to be carried by a patient while lasting at least approximately 10 hours.
  • 29. The system of claim 21, wherein said portable LOX/delivery apparatus is sized to be carried by a patient while lasting at least approximately 10 hours at a gas withdrawal rate of about 2 liters per minute.
  • 30. The system of claim 21, further including an inter-unit oxygen gas transfer connector for connecting the portable apparatus to a stationary source of oxygen gas in said primary reservoir container for transferring oxygen gas to said portable container;wherein, when the inter-unit oxygen gas transfer connector of the portable container is connected to said stationary source of oxygen in said primary reservoir container, oxygen, gas can be transfer red to the oxygen gas delivery device for delivery to the patient from the stationary source of gas in the primary reservoir LOX container through the inter-unit oxygen gas transfer connector.
  • 31. The system of claim 21, wherein said portable LOX/delivery apparatus has a weight that is at most about 2.5 pounds.
  • 32. The system of claim 21, wherein said portable LOX/delivery apparatus is sized to be carried by a patient while lasting at least approximately 10 hours.
  • 33. A high-efficiency liquid oxygen (LOX) storage/delivery system, comprising:a portable LOX/delivery apparatus including a portable LOX container, a portable-unit LOX transfer connector connected to the portable LOX container and connectable to a main source of LOX in a primary reservoir LOX container for transferring LOX to said portable container, and a portable-unit oxygen gas transfer connector for transferring oxygen gas from said portable LOX container to an oxygen gas delivery device for delivering oxygen gas to a patient; and said portable LOX/delivery apparatus including means for delivering gas at a patient use rate of about 2 liters per minute with an LOX use rate of at most about {fraction (1/10)}pounds per hour.
  • 34. The system of claim 33, wherein said means delivers gas at a patient use rate of about 2 liters per minute with an LOX use rate of at most about {fraction (1/12)}pounds per hour.
  • 35. The system of claim 33, wherein said portable LOX/delivery apparatus has weight that is at most about 3.5 pounds.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority from U.S. provisional patent application Ser. No. 60/162,131, filed Oct. 29, 1999. The disclosure of the above-referenced provisional patent application is incorporated herein by reference in its entirety.

US Referenced Citations (6)
Number Name Date Kind
3864928 Eigenbrod Feb 1975 A
4211086 Leonard et al. Jul 1980 A
5357758 Andonian Oct 1994 A
5417073 James et al. May 1995 A
5906100 Caldwell et al. May 1999 A
D437056 Remes et al. Jan 2001 S
Foreign Referenced Citations (2)
Number Date Country
1185199 Mar 1970 GB
WO 9858219 Dec 1998 WO
Non-Patent Literature Citations (1)
Entry
PCT/US00/29374, International Search Report.
Provisional Applications (1)
Number Date Country
60/162131 Oct 1999 US