A primary intended application of the present invention is aerial wild fire-fighting. The set mission for the disclosed method and the related unmanned aerial vehicles (UAVs) described herein covers a large area of wild fire response, including putting out high-intensity forest fires occurring in hard to access areas to conventional water bombing of brush fires. While the current invention is described in connection with aerial firefighting, military applications of the disclosed method and the related UAVs are specifically contemplated.
As global temperatures continue to rise, it is not only predicted, but already demonstrated, that wild fires will become more frequent due to extreme weather fluctuations in between severe droughts to high-energy thunderstorms. Wild fires are an accelerator of global warming; indeed, the amount of CO2 released in the world represents a relevant percentage of the total CO2 emission from using fossil fuels.
Wild fires are part of the nature cycle, but the current increase of global temperatures appears to be an alteration of the cycle and, irrespective of what is causing it, humans need to do whatever they can to delay a process that could lead to an Earth different from what we know today.
The current means of fighting wild fires are not up to the task as demonstrated by the results. Even in countries rated as the best prepared for wild fire fighting, there are repeated occurrences of fires that cannot be extinguished for weeks, months and even for more than one year.
Forest fires are among the most difficult to fight because of their high energy and because they generally occur in hard to access areas. Using aircraft for wild fire fighting comes as an obvious choice, not only because of the accessibility issue, but because a quick first response is needed as well.
A large variety of aircraft is used in wild fire firefighting for carrying/dropping water or retardant agents. Examples include:
The large variety of aircraft used for firefighting is an indication that:
As straightforward as it may look, the process of water bombing, especially in the case of forest fires, involves high risks and technical limitations, such that the current general opinion of firefighters is that aviation is a great help, but it cannot put out forest fires.
The technical limitations of using aircrafts to discharge water, retardant or any fire-fighting materials (collectively, “material(s)”) stem from the required low flying speed at low altitude, in many cases encountering high turbulence, low visibility and need to fly over mountainous terrain. It is considered that being a forest firefighting pilot is riskier than being a fighter jet pilot and in fact, worldwide, there are only a few hundred pilots that are really up to the firefighting task.
Hence, the use of other means of delivering materials to inaccessible areas would be advantageous. Among potential alternatives are: artillery-fired containers filled with retardant, containers filled with fire-fighting agents dropped from aircraft flying at safer altitude, wherein the containers are adapted to release the agents at lower altitude so as to reduce the loss of agent due to pulverization at high altitudes, and containers provided with parachute, thereby providing reduced speed that minimizes the loss by pulverization, etc.
The use of unmanned aerial vehicles (UAV) as a solution for reducing the risks is still on the wish list since there are not yet UAV-based methods and means that could accomplish the task and be cost effective and practical from an operational point of view. The unmanned Kaman K-MAX helicopter is may be the single successful case, but this is bound to the helicopter-related limitations: e.g., capital cost and operating cost, payload, speed and range.
While, during the last two decades there was a tremendous development of winged UAVs, none of the existing UAVs is adaptable to the specific requirements for water bombing.
Using UAVs for wild fire-fighting, especially high-intensity forest fires, and integrating them into a coherent operating system is a complex problem due to the multitude of parameters and constraints. This explains why, despite an urgent need for a solution, there is not yet one; attempted solutions focused on some requirements at the expense of others and failed to realize a workable, practical, compromise.
The methods and apparatus address the shortcomings noted herein and provide advantageous UAV-based firefighting methods/apparatus that provide beneficial firefighting capabilities. Additional applications of the UAV-based methods/systems are also contemplated and available, as will be apparent to persons skilled in the art based on the description which follows.
The present invention provides a method and means to use UAVs in aerial firefighting. The disclosed method and means is advantageously adapted to deliver firefighting materials on target(s), even in the most challenging conditions, such as high-intensity forest fires occurring in mountainous terrain under low or no visibility.
The disclosed method and associated means allow putting-out high-intensity forest fires, not only delay of such forest fires.
The present invention also discloses features that allow UAVs to transport heavy loads of fire-fighting material, even heavier than UAV's cruise weight, while maintaining the needed maneuverability for guidance to the target and for high-G recovery.
The present invention also discloses features that allow the materials to be released at low height/elevation over the target and at angles that allow achieving a high delivery efficiency and reduction in dispersion losses.
The present invention also discloses method and means that allow minimizing the amount of time the UAVs are piloted by a remote pilot.
Still further, the present invention also discloses method and means to recover the UAVs for quick return to a continuous operation.
Additional features, functions and benefits of the disclosed UAV-based method and means will be apparent from the description which follows, particularly when read in conjunction with the appended figures.
To assist those of skill in the art in making and using the disclosed method(s) and means, reference is made to the accompanying figures, wherein:
As noted above, the present invention provides a method and means to use UAVs in aerial firefighting. The disclosed method and means is advantageously adapted to deliver firefighting materials on target(s), even in the most challenging conditions, such as high-intensity forest fires occurring in mountainous terrain under low or no visibility.
Mission's main goals and constraints that lead to the disclosed method and the UAV-related features disclosed by the present invention include:
The method and the related UAVs presented in this invention work even if launched from altitudes below 6,000 ft above ground level. However, it is assumed that the regional air traffic control centers will agree to close the operation theatre to all other traffic at least below a certain flight level.
UAVs' navigation equipment allows low altitude above ground return routes, not used by commercial aviation and selected such that they are not frequented by general aviation or private planes either. Said routes would minimize passing over populated areas, conditions normally agreeable to the air traffic control authorities.
The regional air traffic control centers in the fire-prone areas should have in place a procedure for an expedited analysis, correction and approval of the proposed UAVs' routes from the operation theatre to their designated airfields.
The UAVs related to the disclosed method have a performant navigation system as required by the mission and it offers the platform for any additional equipment, e.g. transponders as required by the regulatory agencies.
The route of the transporter aircrafts towards and from the operation theatre is subject to the normal air traffic regulations.
Propulsion System
The preferred embodiment is a motorized UAV. The preferred embodiment shown in
Propulsion is a key feature of the UAVs associated with the disclosed method; it allows the recovery of the UAVs even from remote and inaccessible operation theaters and have the returned UAVs quickly available for continuous operation.
A glider-type UAV relies on speed to reach a safe altitude to fly towards a location from where it could be recovered. However, its operation is conditioned by the existence of a landing field within reach from the operation theatre. A condition of efficiency is that the recovered UAVs cold be returned quickly back to service which implies that the landing field should serve as a base for the transporter aircrafts as well.
A propulsion system adds to UAV's cost, but it enables a quick turnaround that, in the end, results in a low operating cost. Investment is also reduced since, fewer motorized UAVs will be needed for the same job.
Referring to
The other propulsion related systems are shown in
The compartment 204, beneath the engine, houses the engine oil tank and oil cooling system. 205 designates the buffer fuel tank and the area 206 in the wing box houses the main fuel tanks.
The air inlets are visible 207 in
Reference 707 (
The battery 209 is located close to the G winch 351, its frequency inverter 359 and the electronics compartment 700 (engine is started during a dive flight and hence it is helped by the air speed).
External Flexible Container Attached by a Rope to the UAV.
Referring to
Using an external container facilitates a foldable construction of the UAV (see
Note: While current technology of water bombing doesn't involve transporting UAVs, the transport efficiency is still limited. The water tanks and the rapid water release systems are relatively heavy. For instance, one water bombing system based on a very popular transport airplane that has a payload of 20 tons can carry only 12 tons of water because of the weight of the water tanks.
The external container attached by a rope, is also the basis for two systems disclosed by this invention, systems that are key to meeting mission's objectives efficiently and within set constraints.
One first system allows the UAV to carry heavy loads in flights ranging from horizontal to steep diving while the second system reduces the G-loads on the UAV. Reduced G-loads on the UAV translate into lower UAV weight and hence, higher transport efficiency and maneuverability.
An external container also allows a small cross section fuselage. Instead of having a bulky internal, leak-proof tank, the preferred embodiment UAV has a cargo bay 120 in
Referring to
The preferred embodiment for the UAV associated with the disclosed method, is a high wing design. As it is apparent from
Flight Controls
300 The flight controls of the preferred embodiment of the UAV are shown in
On the wings 101, the ailerons 301 are independently actuated (wings 101 are foldable) and they could be used as flaps (flaperons) as well.
Two sets of brakes on the upper and on the lower side, respectively 302 (
Stabilator 312 (instead of a stabilizer+elevator) is provided on the preferred embodiment of the UAV 100 to meet the compact design combined with high maneuverability mission requirements. The 312-L and 312-R sides of the stabilator 312 are installed on the same shaft.
Dual rudders 313-L and 313-R are used on the preferred embodiment of the UAV due to compactness requirement. The preferred embodiment of the UAV 100 uses independent actuation for each rudder to use those as brakes as well; rudders 313-L and 313-R are shown in a convergent position in
The rudder actuators not shown are installed on the shaft (not shown) connecting the two sides of the stabilator 312. The stabilator and the rudder actuators are installed in the compartment 320,
Two additional systems disclosed by the current invention are integrated into UAV's flight controls and are key to meeting the operational and the efficiency goals of the disclosed method. Both systems were made possible by attaching the container 500 to the UAV 100 the rope 600 (
One, first, additional flight control system, referred hereinafter as “the dive stability system” 330 (
Note. In order to keep the UAV 100 out of the wake of the container 500, the length of the rope 600 is longer in the steep dive (
The dive stability system allows carrying a heavy container 500 in stabilized flight from horizontal to steep angles even for a high wing design with relatively small stabilizers or stabilators.
Operation from horizontal to high dive angle is a key requirement of the mission of the disclosed method. Besides the precision associated with the dive bombing, the high dive angles reduce the dispersion and, hence, it translates into a high delivery efficiency and delivery density.
Referring to
Referring to the 3D looking forward, detail view,
The force on the stability pulley 331 is always rearwards and the position of the pulley carrier 333 is adjusted by the actuator 337 (
The stability pulley is formed by two left-right parts 331-L and 331-R installed on radial bearings (not shown) that allow axial movement. The two halves of the pulley 331 are kept pressed together by the rollers 339 confined by the side walls 336 of the guide 335. The rollers 339 are left-right slidable installed on anti-rotation guides (not shown) and they press on the pully through axial bearings (not shown). After the release of the material 501 from the container 500 (
The second, additional flight control system, referred hereinafter as “the Smooth G system” 350 (
One first function of the Smooth G system is to limit the G loads that would be normally transmitted by the container 500 to UAV 100 during high G loads maneuvers.
The G-winch 351 (
One example of a high G maneuver is UAV's ejection from the transporter 800 (
The Smooth G system 350 is key for other maneuvers as well as explained in the following.
A second function of the Smooth G system 350 gives the UAVs associated with the disclosed method the flexibility needed to control the Delivery Density—see the c) and d-i) and d-ii) requirements.
Low DD entails a higher dispersion, and hence a lower delivery efficiency, but it is still the best method to put off the low energy grass fires. The low DD is achieved by releasing the material flying horizontally or at moderate angles and from a relatively higher altitude.
A medium DD is obtainable by extending the rope 600 such that the UAV 100 could fly safer, higher above target, while the material 501 (
The maximum DD is obtainable in a dive and, in this case, extending the rope 600, not only releases the load 501 at lower height over target, but it also reduces the G-loads on the UAV. The UAV is already in recovery mode when the material is being released as shown in
A third function of the Smooth-G/Container recovery The G-winch 351 (
To note that some currently used water bombing systems, in order to increase the delivery efficiency, use disposable containers, some being equipped with parachutes. Some other systems use projectiles loaded with fire-retardant.
The container recovery function is not integrated into the flight controls—it is just triggered by the release of the material 501 from the container 500. This starts winding of the rope 600 and pulls the emptied container 500-e (
When the container hanger 505 (
The lower spool 553 is formed of two sections, left and right of the fixed spool (
The upper spool 552 is installed in between left and right arms 554 (
Referring to
The Container 500
The container 500 for carrying the material 501 is shown in
Referring to
Referring to
The design of the zipper seam 521 is such that if one end of the thread 524 is pulled out of the seam, the flexible hook 523, under the pressure of the material 501 bents and opens the seam, opening that subsequently propagates along the entire seam 521.
The seams 521 meet at the lower end of the container and they are sealed and squeezed in between two plates of the mechanism 525, one plate inside the container 526 and the other plate 527 outside the container. The mechanism 525, is battery operated and wireless triggered to release the squeezing force in between the plates 526 and 527 causing the seams 521 to open. Once opened at the lower end, the opening propagates all along the seam to the equatorial area of the container, causing a sudden release of the material 501.
Parachute
The preferred embodiment of the container 500 is provided with a parachute 530 system mainly to act as a brake during steep dives, but it is designed such that at shallow angles it contributes with some lift too as it could be seen from the intuitive views in
Piloting and Navigation Equipment 700
It is understood that the UAV related to the method disclosed herein, could be built using different types of equipment to meet same mission's requirements depending on technology's advances and on constructor's capabilities and preference.
Related to equipment, the main objective for preferred embodiment of the UAV 100 is to offer the right platform for different alternatives of equipment, meaning:
Based on the momentum of the digital technology, a fully autonomous UAV is conceivable. Considering the development time and cost, the preferred method is to remotely fly the UAV towards the target. Remote pilot decides the way to approach the allocated target and makes split adjustments or even change target for the best use of material. An efficient full autonomation could be implemented when the level of Artificial Intelligence “trained” in the complex firefighting matters would become available.
Related to the flight of the preferred embodiment of the UAV:
Note that the remote piloted phase represents a small percentage of the total UAV's flight time which is consistent with mission's requirement h). The piloted time is of the order of 1-5 minutes, while the return to base could mean 100 miles or so flight.
The remote pilots are located at a regional command center or, if the low orbit communications are not satisfactory, they will be located in the transporter airplane, or in a dedicated aircraft allocated to the operations. Of note, for the case several transporters operate over a theatre, the method implies the operations are led by an Operation Field Coordinator provided with all the means to get a full situational awareness and means to communicate with all the ground and airborne crews in the area.
The flight, targeting, navigating and piloting electronics are generically indicated in area 700,
The antenna for communication with the remote pilot is generically indicated 711,
Note: the remote pilot can switch in between or overlap the information on his screen or on Wearable Head-Mounted Display.
Additionally, the UAV is equipped with:
The time to first response is of outmost importance in fighting forest fires; the airborne incandescent materials are not stopped by firebreaks and they generate secondary ignitions resulting in multiple fire fronts. Even under light wind the forest fires expand exponentially with time due to the secondary ignitions.
The method and the related UAVs disclosed herein are capable to putt off fires. And it is understood that there is a window of opportunity, beyond which the resources will become insufficient.
The infrastructure required to minimize the time to first response and to ensure efficient continuous operations, include:
The example presented in the following assumes an on-going operation.
Preparation
Referring to
Once secured on the platform 820, the UAV is checked if in dispatchable condition and it is serviced for the next mission.
Actions specific to the UAVs associated with the disclosed method include:
Referring to
Referring to
Before filling (filler caps not shown) the firefighting material 501, the container 500 is resealed. The seams 521 (
The fuselage 110 (
Referring to
An alternate way of loading the UAVs 100 into the transporter 900 is to pre-load them on a rack 840 as shown in
A rack expedites the loading of the transporter. It also reduces the number of adaptations on the transporter 900 since there are already in use racks for carrying firefighting containers, as the Modular Airborne FireFighting System (MAFFS) system, used on the C130. Positioning, loading and securing the rack 840 into the transporter 900 should be common with the MAFFS-type racks in use.
As an option, before the takeoff, the wings 101 of the UAV are pushed in “anti-balance position”. The actuators 104 (
Protection plates 849 are provided on the racks 840.
In a continuous operation the UAVs are loaded into the transporter 900 during transporter's preparations for the next flight.
Departure for a fire theatre is done per order of the regional center and per the flight plan issued by the center.
If arrived over the theatre, without receiving further instructions, loiter flight to gather and transmit information to improve Center's/Coordinator's situational awareness.
At any time, prior to takeoff, during the flight or during the loitering flight when the UAVs' return route core information is received from the center, it is automatically (wireless preferred) loaded into UAVs' navigation system 702. The core information includes:
Ejecting several UAVs in rapid sequence is key for achieving the high delivery density speed to put off a fire or for fighting secondary ignitions.
The brake and the motor 802 provided on the trolley 801 (
Per pre-eject command, the rear door 901 of the transporter 900 is opened if not already, the wings 101 of the rearmost UAV in the rearmost 100-R position (
A remote pilot is allocated to the UAV ready for ejection and he receives his target, and instructions from the coordinator. Pilot also automatically receives an ejection time slot issued in correlation with all the other transporters 900×n (not shown) and UAVs×n (not shown) operating in the theatre.
Just before the ejection, the navigation system 702 of the UAV 100-R is loaded with the remaining route information: the time of landing, cruising altitude(s), the current altitude and GPS coordinates and at least some approximate coordinates and altitude of a target selected by the coordinator. Time of landing and cruise altitude are set to provide separation from the previous UAV launched in the same theatre and using the same return route.
Upon the eject command, the motor 802 of the trolley 801,
Initially the Smooth-G system 350,
The UAV 100 climbs above transporter wake (
When the fall of the container 500 from the platform 902 is “felt” by the Smooth-G system 350 it sends a signal and the autopilot 701 that folds the brakes 302 and 303, and engages the UAV in a steep dive to follow the falling container,
The low initial torque/pull on the rope results in an unwinding of the rope 600 from the G-winch 351, and then, the torque is gradually increased until the direction changes into winding the rope 600, pulling the UAV towards the falling container 500,
Once the distance in between the UAV 100 and the container 500 reaches a prescribed value, the G-winch 351 stops rotating and the navigation unit 702 sets the autopilot 701 to turn the UAV to the heading and adjust the dive slope to reach the target and prompts the remote pilot with the “your controls” message,
Note that after the container 500 falls off the platform 902 the motors 802 of the trolley 801 of all UAVs remaining in the transporter 900 are activated to bring the remaining UAV in and optimum position per the weight and balance specifications of the transporter.
The Dive Phase
The remote pilot is able to change the target or to change the route to approach the target. During this phase, the dive stability system 330 (
Unless a slow descent or horizontal flight is desired, engine 201,
Reemphasizing, one main goal of the present invention is the capability to operate under no visibility conditions.
The 3D terrain maps of the possible operation theatres are pre-loaded into the navigation system 702 (
If low or no visibility, night for instance, the pilot brings on his displays the synthetic image of the terrain and if fire itself is obscured by the cumulus or the smoke he has the option to overlap the IR over the synthetic terrain.
On the flat ground the coordinates used to generate the synthetic view are provided by the GNSS. Altitude information is backed by a radio altimeter or by the phased array radar.
In the mountains, the precision of the synthetic image is of paramount importance for recovery and it is in the mountains where reflections may trick the GPS and where a radio altimeter is worthless.
The phased array radar 715 and its processor 716,
Reiterating, an INS is an alternative to the phased array radar, depending on the topography of the intended operating zone of the UAVs and on the advances in technology.
Material Release Phase
According to the objective of the present invention, the disclosed method and of the associated UAV covers the entire material release types, from high dispersion/low delivery density to high delivery density speeds including dropping multiple loads on the same target.
The efficient way to put off low energy grass fires is by releasing the material in a tangential flight, higher over the target. For higher energy fires, the delivery density is increased by lowering the height from which the material is released. The advantage of the disclosed method and UAV is that, after releasing the material, the UAV becomes very maneuverable which allows its recovery after reaching areas and low heights, not normally reachable by current aerial firefighting, e.g.,
However, it is the dive-bombing capability that can achieves the high delivery density speed required to put off the high intensity forest fires and this is presented in some detail:
Specific piloting aids are available to the pilot in real time.
The recovery trajectory is calculated and updated in real time by the navigation system 702 taking into account UAV's speed and attitude in respect to the obstacles that are determined to represent a factor, obstacles that are represented by the curve 756. The curve 755 defines the possible separation from the obstacles for maximum G, maximum engine power.
The area between the curves 755 and 756 is referred herein the “recovery window of opportunity” 760. Diving lower, closer to the target, narrows the window of opportunity and the material is released before its closure, before a crash would be imminent. If the pilot is slow to react to window's closure the navigation system automatically triggers the release of material and engages into the recovery maneuver.
The UAV is engaged on trajectory A-B, a steep dive at angle α along the slope 860 of the mountain. All brakes 302,
At point B the release of the container 500 and the start of the engine 201 are triggered by the remote pilot.
After the release the remote pilot could switch at any time to autonomous mode.
Prompted by the release command, the G-winch 351,
As soon as material is released the G-Winch 351 starts to pull the emptied container 500-e to be stored in the cargo bay 120 of the UAV 100 as previously described.
Freeing the rope 600 at point B reduces the downhill force which results in the deceleration of the UAV 100 that, at point C, reaches a speed that allows a recovery radius R with the lowest point D of the trajectory at the selected safety height S over the terrain. At point C the brakes 302,
Of note, the UAV 100 enters the recovery without carrying the weight of the material 501 and of container 500 and this translate into a lighter structure capable of withstanding high-G maneuvers.
At point D the autopilot 701 sets the engine 201 at max power and the UAV engages on the angle β until the speed drops to Vx at point F after which the engine is set to max continuous and the climb is corrected to the max climb angle and continues until reaching the allocated return altitude.
The Return Flight
When the preprogrammed cruise return altitude is reached the autopilot turns the UAV to the pre-programmed heading for intersecting the return route and it sets the engine 201 at cruise power.
Upon intersection, the autopilot takes the return route and the navigation system adjusts cruising speed to reach the airfield at the preprogrammed time. If the speed would be too low for stable flight the autopilot would enter either the preprogrammed zig-zag pattern or the holding pattern, both the zig-zag and the holding in predetermined areas, depending on the necessary delay.
To note that arriving at the preprogrammed time ensures smooth operations and the target landing time includes a safety margin that ensures the on-time arrival even if this implies additional maneuvers like zig-zag or holding pattern.
Landing
The autopilot 701,
The landed UAVs are hoisted out of the field and serviced/prepared for the next mission as described above.
Although the present invention has been described with reference to exemplary embodiments and implementations, the present invention is not limited to or by such exemplary descriptions. For example, the method and the UAV's disclosed by the current invention are described in connection with firefighting, but obviously the same method could be used as a safe and cost-effective method to deliver military-use materials to a specified location on a military-operations theatre.
The present application claims priority benefit to a provisional patent application entitled “High-Efficiency Method Using Unmanned Aerial Vehicles for Firefighting,” which was filed on Oct. 29, 2018, and assigned Ser. No. 62/752,143. The entire content of the foregoing provisional application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3520502 | Smethers, Jr. | Jul 1970 | A |
7690438 | Álvarez | Apr 2010 | B2 |
8234068 | Young | Jul 2012 | B1 |
9305280 | Berg et al. | Apr 2016 | B1 |
10647402 | High | May 2020 | B2 |
20050006525 | Byers et al. | Jan 2005 | A1 |
20110084162 | Goossen et al. | Apr 2011 | A1 |
20120280054 | Gomez | Nov 2012 | A1 |
20140117147 | Hanna | May 2014 | A1 |
20170015405 | Chau et al. | Jan 2017 | A1 |
20180267562 | MacCready et al. | Sep 2018 | A1 |
20180356841 | Zilberstein | Dec 2018 | A1 |
20190009879 | Phan | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
102017100942 | Jul 2018 | DE |
Entry |
---|
PCT International Search Report and Written Opinion dated Jan. 10, 2020 for in PCT Application No. PCT/US2019/057883. |
Number | Date | Country | |
---|---|---|---|
20200130831 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62752143 | Oct 2018 | US |