High efficiency reactor and process

Abstract
The invention includes an apparatus and process for the catalytic production of HCN from a feed gas of ammonia and a hydrocarbon gas by means of heat tubes supplying heat to the feed gas stream and heat tubes for removal of heat from the products. The invention further includes a process for N2O abatement comprising transferring heat from an exothermic N2O degradation reaction through a heat pipe.
Description
FIELD OF THE INVENTION

The invention relates to process improvements to gas phase reactions conducted at elevated temperatures. More particularly the invention relates to processes in which a heat pipe is in thermal communication with a reactor. These process improvements are more particularly illustrated by reference to the endothermic catalytic synthesis of hydrogen cyanide and the exothermic decomposition of nitrous oxide.


BACKGROUND OF THE INVENTION

Hydrogen cyanide (HCN), also known as hydrocyanic acid, is an industrial chemical with many uses in the chemical, mining, and pharmaceutical industries. For example, HCN is a raw material for the manufacture of adiponitrile for use in producing polyamides such as nylon 66 and nylon 6. Other uses include manufacture of acrylic plastics; sodium cyanide for use in gold recovery; and intermediates in the manufacture of pesticides, agricultural products, chelating agents, and animal feed.


It is known to make HCN from compounds containing hydrogen, nitrogen, and carbon at high temperatures, with or without a catalyst. Known HCN processes include the Andrussow process, the BMA process or, to a lesser extent, the Shawinigan process. A description is provided, for example, in the Encyclopedia of Chemical Technology (Fourth Edition, Volume 7, pages 753 to 782) edited by Kirk-Othmer. Other processes for making HCN, not significantly exploited commercially due to unsatisfactory economics, include formamide decomposition, methanol ammonolysis, and reaction of acid with sodium cyanide. HCN is also a by-product of the Sohio process for the synthesis of acrylonitrile from propene and ammonia.


The Andrussow et al. endothermic HCN synthesis reaction is well-known. Thermal energy is supplied to the synthesis via exothermic co-combustion of excess methane with oxygen. U.S. Pat. No. 1,957,749 discloses the catalytic production of hydrocyanic acid (IG FARBENINDUSTRIE AG) by interaction of ammonia, a vaporizable hydrocarbon and a gas comprising free oxygen, at a temperature between 750° C. and 1250° C. and in the presence of a metallic catalyst described generally by Equation 1.

CH4+NH3+1.502→HCN+3H2O  (1)

The reaction proceeds at temperatures of about 1,100° C. over precious metal catalysts, typically platinum (Pt), platinum-rhodium (Pt/Rh) or platinum-iridium alloy, in gauze form at about atmospheric pressure. Other process schemes include purification of the feed streams, preheating of the feed mixtures, and use of O2 enriched air as well as 100% O2 as the oxygen source.


The BMA process for HCN synthesis is also known. U.S. Pat. No. 2,768,876 discloses the catalytic process for the production of HCN from volatile hydrocarbons and where mixtures of volatile hydrocarbons and ammonia are in the gaseous phase in the presence of a platinum metal catalyst at atmospheric pressure. The step of reacting this gas mixture is in the presence of a platinum metal catalyst in a heated reaction chamber with walls of a ceramic material composed of 0.7 to 8% of SiO2 and the remainder alumina.


The BMA process involves the endothermic reaction of methane and ammonia according to Equation 2.

CH4+NH3→HCN+3H2  (2)

The BMA process limits undesirable side reactions associated with other processes for making HCN by the elimination of O2 in the feed gases. In this process, methane and ammonia are reacted in the absence of oxygen at temperatures above about 1200° C. The reaction is performed in externally heated sintered alumina (ceramic) tubes within a furnace, the tubes being coated with platinum.


Koch et al., in U.S. Pat. Nos. 5,470,541 and 5,529,669, disclose a process and apparatus for making HCN, including the preparation of HCN from the reaction of ammonia vapor and a hydrocarbon gas over a platinum group metal catalyst while providing heat using single mode microwave irradiation. Substantial heat energy input is required to provide the high process temperature due to the endothermic character of the process. These disclosures are incorporated by reference herein.


U.S. Pat. Nos. 5,958,273; 6,287,531; 6,315,972; and 7,070,743 disclose, collectively, a process and apparatus for making HCN, including the preparation of HCN from the reaction of ammonia vapor and a hydrocarbon gas over a platinum group metal catalyst while using induction heating as a source of energy. These disclosures are incorporated by reference herein.


The elevated temperatures employed for these gas-phase reactions (when catalyzed using one or more platinum group metals suffer from shortened catalyst life. This observation in the Andrussow process may be associated with rapid restructuring of the catalyst structure and a higher pressure drop.


In the foregoing processes, the emerging product stream must be promptly cooled below about 300° C. to prevent thermal degradation of the HCN. Additionally, unreacted ammonia, “ammonia breakthrough,” must be removed. Ammonia may catalyze the polymerization of HCN, a process hazard. Typically, the ammonia is recovered and recycled; in smaller units it may be flared or removed as ammonium sulfate.


Heat pipes, also known as heat tubes, are sealed hollow tubes of a thermoconductive metal, containing a small quantity of a working fluid to transport thermal energy primarily through vaporization and condensation. The hollow tube that contains the working fluid is also known as the heat tube envelope.


The principle of a heat pipe employing the benefits of capillary action were noted by George Grover et al. at Los Alamos National Laboratory and subsequently published by Grover, G. M., T. P. Cotter, and G. F. Erickson in the Journal of Applied Physics 35 (6) 1964; “Structures of Very High Thermal Conductance.”


Internally, the heat pipe's tubing may have wick structure on the side-walls exerting a capillary force on the liquid phase of the working fluid. This wick structure is typically a sintered metal powder or a series of grooves parallel to the tube axis, but it may in principle be any material capable of soaking up the working fluid. If the heat pipe has a continual slope with the heated end down, a wick structure is optional. Heat pipes have no moving parts.


The heat pipe mechanism relies on a vapor pressure over the hot liquid working fluid at the hot end of the pipe to be higher than the equilibrium vapor pressure over condensing working fluid at the cooler end of the pipe. It is this pressure difference that drives a rapid mass transfer to the condensing end where the excess vapor condenses and releases its latent heat. The condensed working fluid then flows back to the hot end of the pipe. In the case of vertically-oriented heat pipes the fluid may be moved by the force of gravity. In the case of heat pipes containing wicks, the fluid is returned by capillary action. Because the heat pipe is evacuated and then charged with the working fluid prior to being sealed, the internal pressure is set by the vapor pressure of the working fluid. Applications of heat pipes well-known in the art include: cooling systems, in space craft as a means for thermal management of internal temperature and in computer systems to remove heat from high speed central processor units.


A heat pipe can be used for conveying thermal energy to or away from a chemical reactor. Examples of such heat pipe applications are disclosed in at least U.S. Pat. No. 4,351,806 and U.S. Pat. No. 4,315,893.


U.S. Pat. No. 7,069,978 to Rosenfeld, et al. discloses problems with efforts to use aluminum envelope material and water as the preferred working fluid because aluminum oxide is compatible with water, even though aluminum metal is not compatible. The large difference in thermal expansion between aluminum and its oxide and resulting stresses cause the oxide layer to crack, often on the first thermal cycle, resulting in heat pipe failure. The '978 patent proposes a magnesium alloy envelope with a protective layer formed on the inside wall of the envelope to be compatible with the working fluid.


While HCN can be produced by the reaction of methane and ammonia in the presence of a platinum group metal catalyst, there remains a need to improve the thermal efficiency of the basic reaction and thus the economics of HCN production. Particularly important is the minimization of thermal energy use and ammonia breakthrough in maximizing the HCN production rate. Additional considerations include the preservation of the catalyst integrity and amount of precious metal catalyst in the reaction zone.


However, as discussed above, the commercial production of HCN occurs at elevated temperatures of about 1,100° C. over precious metal catalysts.


Heat pipe metallurgy and working fluids, axial heat flux and surface heat flux, are disclosed in “How to Select a Heat Pipe”, Enertron, Inc. (available from http://www.enertron-inc.com/enertron-resources/library.php). In particular, sodium working fluid and nickel, stainless steel vessel or envelope material are disclosed as suitable for temperature ranges of 500° C. to 900° C. Lithium working fluid and niobium+1% zirconium vessel or envelope material are disclosed as suitable for temperature ranges of 900° C. to 1500° C.


It would be uneconomical to design a commercial reaction vessel of exotic and expensive materials, despite other possible benefits flowing from the use of a heat pipe in a high temperature process.


An economically feasible, commercial reaction vessel, using affordable materials of construction to make a heat pipe device suitable for use at high temperatures, would be highly desirable. Methods of conducting various chemical reaction processes employing such a heat pipe device and reaction vessel for high temperature chemical reactions would also be highly desirable.


SUMMARY OF THE INVENTION

The present invention provides an economically feasible, commercial reaction vessel, using affordable materials of construction to make a heat pipe device suitable for use at high temperatures.


The present invention also provides methods of conducting various chemical reaction processes employing such a heat pipe device and reaction vessel for high temperature chemical reactions.


An aspect of the invention provides a process for synthesizing HCN in a sustained continuous endothermic reaction. The process steps comprise: reacting, using a catalyst, a portion of methane-containing hydrocarbon gas and a portion of ammonia gas at a reaction temperature above about 1000° C. in a reaction zone to form products and conveying thermal energy to the reaction zone using means for thermal energy conveyance including at least a heat pipe apparatus and quenching the products in a quench zone and conveying thermal energy from the quench zone using means for thermal energy transfer which may include at least a heat pipe. The reaction of ammonia and methane is typically carried out in the absence of added oxygen, and more typically in the absence of readily measurable amounts of oxygen. In another embodiment of the invention, the reaction temperature may be above 1100° C.


Another aspect of the invention provides a continuous catalytic process for synthesizing HCN comprising:

    • (a) charging methane and ammonia reactants to a reaction zone;
    • (b) providing a heat tube in said reaction zone; and
    • (c) controlling the rate of heat transfer from the heat tube to the reactants at a rate greater than 5 watts/cm2 and at a temperature greater than 1000° C. to improve HCN selectivity and/or yield.


Another aspect of the invention provides a continuous catalytic process for synthesizing HCN comprising:

    • (a) charging methane and ammonia reactants to a reaction zone having an outer wall; and
    • (b) providing a heat transfer tube for transferring heat to the reactants at a rate greater than 5 watts/cm2 at a temperature greater than 1000° C. wherein the inner surface temperature of the portion of the heat transfer tube in contact with the reactants varies less than 10° C., for example, less than 10° C.


An embodiment of the invention may optionally include recovering thermal energy from reaction products at a heat transfer rate greater than 10 watts/cm2 at a temperature less than 1200° C., for example less than 1100° C. or 1000° C.


One suitable reactor of the invention may use 1 inch (2.54 cm) O.D. heat tubes with a 56.5 inch (1.44 m) long condensing (reaction) section. The power output per tube can be 24.2 kW with an axial heat transfer rate of 4.8 kW/cm2 (based on OD). The transfer of energy to the reactants at the surface of the tube was estimated at 21 watts per cm2.


Another reactor of the invention may produce a nominal 100 kt per year of HCN using approximately 933 tubes on 1.5-inch (3.81 cm) centers arranged in 25 planes with a nominal 37 tubes per plane, using a nominal 5 foot×5 foot (1.5 m×1.5 m) reactor cross section. The reactor can be larger if needed based upon an assumption of lower heat transfer rates. For example, if the assumed heat transfer rate (per square area) is reduced by a factor of 4, then the total heat transfer area would need to be increased by a factor of 4 for the same production capacity).


Another aspect of the invention provides an apparatus for synthesizing HCN in a continuous endothermic reaction, for example, a sustained continuous endothermic reaction. Provided is a reactor for synthesizing HCN from a feed gas, substantially comprising gas phase ammonia and gas phase methane, in a sustained continuous endothermic reaction. The reactor comprises: a preheat zone, a first stage reaction zone, a second stage reaction zone, and quench zone.


In the preheat zone for elevating the temperature of the feed gas to a first temperature (between 800° C. and 1000° C.) a first heat pipe means can be provided with a coating, or layer, disposed on the outer surface of the first heat pipe means effective to inhibit the decomposition of the feed gases (methane and ammonia). For example, the coating can be a nonreactive coating. When the first heat pipe means is coated, the coating can be directly applied to the surface by methods known in the art including, but not limited to, applied by spray, plasma applied, applied by electroplating, and applied by wash coating. Alternatively, the second heat pipe means may be inserted into a coated ceramic (e.g., alumina-containing ceramic) sheath.


The reactor's first stage reaction zone may comprise heat pipe means with a first catalyst disposed on at least a portion of the surface of the heat pipe means and is effective to elevate the feed gas to a second temperature (between 1000° C. and 1300° C.) above said first temperature; and to convert reactants to products, for example, to complete more than 40 percent of the single pass conversion of feed gases to reaction products.


The first catalyst may have any known form, such as, but not limited to wire gauze, foil, foam, supported catalyst sheath, impregnated coatings, and wash coatings. The amount of catalyst is any amount that is effective to convert one or more reactants to one or more products. When the first catalyst is a coating, the coating can be directly applied to the surface by methods known in the art including, but not limited to, applied by spray, plasma applied, applied by electroplating, and applied by wash coating. Alternatively, the heat pipe may be inserted into a coated ceramic (e.g., alumina-containing ceramic) sheath.


The reactor's second stage reaction zone may comprise a second catalyst in the form of a wire gauze, comprising 90% by weight platinum and 10% by weight rhodium, for providing further conversion of the feed gas to reaction products. In the second stage reaction zone, the total conversion may approach 50% or greater based upon raw feed to the first reaction zone. Alternatively, the second catalyst may have any known form such as, but not limited to wire gauze, tablets, pellets, and monoliths (e.g., foam).


The reactor's quench zone may comprise a second heat pipe means effective for rapid cooling of the reaction products to a temperature of less than 500° C. The second heat pipe means may optionally be coated, or have a layer, disposed on the outer surface of the first heat pipe means with an inhibitor to effectively to decrease the decomposition of a portion of the reaction products (HCN). When the second heat pipe means is coated, the coating can be directly applied to the surface by methods known in the art including, but not limited to, applied by spray, plasma applied, applied by electroplating, and applied by wash coating. Alternatively, the second heat pipe means may be inserted into a coated ceramic (e.g., alumina-containing ceramic) sheath.


The reactor's quench zone optionally comprises a second coated heat pipe means effective for rapid cooling of the reaction products to a temperature of less than 500° C.; and wherein, the second coated heat pipe means is selectively effective to decompose at least a portion of any unreacted ammonia.





BRIEF DESCRIPTIONS OF THE DRAWINGS


FIG. 1 is a representation of an apparatus provided with heat tubes and adapted for use in the processes disclosed herein.



FIG. 2 is a second representation of an apparatus provided with a heat tube and adapted for use in the processes disclosed herein.



FIG. 3 is a third representation of an apparatus provided with heat tubes and adapted for use in the processes disclosed herein.



FIG. 4 is a representation of an apparatus provided with heat tubes, comprising repeating instances of a first stage reaction zone and a second stage reaction zone, and adapted for use in the processes disclosed herein.



FIG. 5 is a representation of an apparatus provided with heat tubes and adapted for use in the processes disclosed herein, wherein heat tubes are used to convey thermal energy from a quench zone to a preheat zone.



FIG. 6 is a representation of an apparatus provided with heat tubes and adapted for use in the processes disclosed herein, wherein heat tubes are oriented to provide both cross-flow and axial-flow.



FIG. 7 is a representation of an apparatus provided with heat tubes and adapted for use in the processes disclosed herein, wherein heat tubes are oriented to provide substantially axial-flow.



FIG. 8 is a representation of a sheathed heat tube for use in an apparatus adapted for use in the processes disclosed herein.



FIG. 9 is a representation of a heat tube for use in an apparatus adapted for use in the processes disclosed herein.



FIG. 10 is a representation of an apparatus in accordance with the present invention.



FIG. 11 is a plot illustrating the relationship between operating pressure and working fluid pressure for an embodiment of the invention.





DETAILED DESCRIPTION

The invention includes a process and an apparatus for conducting elevated temperature gas phase reactions. For example, the invention includes those gas phase reactions in which the energy associated with preheating the reactants, sustaining the reaction, and quenching effluent is conveyed by means of at least a heat pipe. The heat pipe of the invention provides beneficial improvements in temperature uniformity of the catalyst and a high heat transfer rate. The heat recovery from high temperature sources used may improve process yield and lower energy consumption.


The invention includes a process for reacting at least a reactant in at least a reaction zone at a temperature wherein the temperature is sufficient to promote the reaction of the at least one reactant, optionally in the presence of a catalyst, and wherein the temperature in the at least one reaction zone is provided by means for conveying thermal energy to or from the at least one reaction zone and forming at least one product.


At least a reaction zone means one or more volume elements into which a reactant or reactants are introduced and one or more products are withdrawn.


Within the scope of the definition of reactant or product it is further contemplated to also mean thermal energy.


Embodiments of the invention include the use of heat pipe means in processes for the synthesis of HCN and for the auto-thermal decomposition of nitrous oxide (N2O).


The HCN process of the invention includes reacting a process feed gas comprising a portion of methane gas and a portion of ammonia gas at a temperature above about 1000° C. in a reaction zone, for example in a reaction zone substantially free of added oxygen or substantially free of a commercially measurable amount of oxygen. The reaction zone for the HCN process of the invention can include means for conveying thermal energy including at least one heat pipe.


Another aspect of the invention relating to the synthesis of HCN provides for a sustained continuous endothermic reaction comprising transferring thermal energy to the reactants at a rate greater than 5 watts/cm2 at a temperature greater than 1000° C.


Provided in another aspect of the invention is an apparatus, for example, a reactor, for the synthesis of HCN in a sustained continuous endothermic reaction. The reactor input is a feed gas, substantially comprising gas phase ammonia and gas phase methane. The reactor comprises four zones: a preheat zone, a first stage reaction zone, a second stage reaction zone, and quench zone.


In the preheat zone, the temperature of the feed gas is elevated to a first temperature, between 800° C. and 1000° C. In this preheat zone a first heat pipe means is provided with a nonreactive coating. This nonreactive coating is effective to inhibit the decomposition of the input feed gases, methane and ammonia.


The reactor's first stage reaction zone may comprise heat pipe means coated with a first platinum group metal catalyst. The first stage of the reaction zone with catalyst can elevate the feed gases to a second temperature, above said first temperature and between 1000° C. and 1300° C., to complete more than 10 percent of the single pass conversion of feed gases to reaction products.


The reactor's second stage reaction zone may comprise a second catalyst in the form of a wire gauze, comprising 90% by weight platinum and 10% by weight rhodium, for providing conversion of the feed gas to reaction products and enhancing the single pass conversion to more than 50 percent. Alternatively, the second catalyst may have other known forms such as, but not limited to, wire gauze, tablets, pellets, and monoliths (e.g., foam).


The reactor optionally comprises repeating instances of a first stage reaction zone and a second stage reaction zone.


The reactor's quench zone may comprise a second coated heat pipe means effective for rapidly cooling of the reaction products to a temperature of less than 500° C. The second coated heat pipe means, located in the quench zone, can be selectively effective to inhibit the decomposition of a portion of the reaction products (HCN). The coating to the heat pipe prevents loss of HCN yield.


The reactor's quench zone optionally comprises a second coated heat pipe means effective for rapid cooling of the reaction products to a temperature of less than 500° C.; and wherein, an additional coated heat pipe means has a coating selectively effective to promote the decomposition of “break through” ammonia.


The invention contemplates the use of heat pipe means with a catalytic chemical reactor where the heat pipe means is partially or fully in contact with the catalyst.


The Applicant's invention contemplates the use of heat pipe means with a chemical reactor where the energy is recovered from the reaction products using heat pipes.


The Applicant's invention contemplates the use of heat pipe means with a catalytic chemical reactor for the thermal abatement of N2O, which is a byproduct of nitric acid oxidation of alcohols and ketones. In the oxidation of cyclohexanone and cyclohexanol to adipic acid, N2O was identified as a “green house” gas. Efforts are underway globally to diminish the amount of N2O released to the atmosphere from these processes.


The processes for abatement of N2O emission to the environment include: (1) combustion, (2) auto thermal decomposition, and (3) catalytic decomposition.


Combustion based processes, known for more than 50 years, utilize N2O as a source of oxygen to react with a fuel to generate heat while destroying the N2O molecule. This process consumes a substantial quantity of fuel but can offer advantages at locations where it is desirable to produce and export steam from the process. High fuel consumption, high investment, generation of NOx, and high maintenance costs are associated with the combustion based process.


It is known that the N2O molecule will thermally decompose into nitrogen and oxygen at temperatures exceeding approximately 800° C., forming quantities of economically recoverable NOx. The thermal processes employ a combination of heat exchangers, pilot burners, staged combustion, and heat storage to initiate and stabilize a continuous thermal decomposition reaction regime. A thermal decomposition process is disclosed by U.S. Pat. No. 6,328,941 (to BASF). High levels of NOx formation, high maintenance costs, and high investment are characteristics of auto-thermal N2O abatement practices.


A catalytic process for N2O decomposition is known. This process is effectively carried out at lower temperatures. Examples of catalysts and processes are disclosed by at least U.S. Pat. No. 5,314,673; U.S. Pat. No. 4,259,303; U.S. Pat. No. 4,793,980; and U.S. Pat. No. 6,723,295. These catalysts typically have a relatively narrow operating temperature window below which no reaction takes place and above which the catalyst deactivates. Due to the highly exothermic nature of the decomposition, a dilute N2O feed stream of ca. 10% by volume concentration with a preheat is used. The dilution requirement imposes the need for a diluent of about 2-3× the volume of the original N2O containing process gas stream. As a result, process equipment must be sized accordingly. High initial investment and routine catalyst replacement characterize such processes.


The invention includes a process for N2O abatement that includes transferring heat from the exothermic N2O degradation reaction using heat pipes. The heat pipe means can be employed to support an auto-thermal N2O abatement process sustaining a continuous decomposition reaction, and achieving near complete destruction of N2O, without the addition of fuels, reducing agents, or external energy. In such a process the heat pipe would provide a means for transporting the heat released during N2O decomposition to inlet of the reactor to provide the preheating necessary to initiate the decomposition reaction. Such a process would require an external energy source only during start up, or operation with low N2O concentration.


In yet another concept a heat pipe means is applied to a catalytic N2O process to provide a highly uniform temperature catalyst bed and a high thermal transfer rate for bringing heat to the reaction feeds and taking heat away from the products.


The heat pipe materials of construction and working fluid chosen depend upon the temperature conditions in which the heat pipe must operate. Working fluids range from liquid helium or nitrogen for extremely low temperature applications to silver, lithium, sodium or potassium for high temperature conditions. The internal pressure developed within the heat pipe is the vapor pressure of the working fluid, which varies with heat pipe temperature. A known advantage of the heat pipe is the great efficiency in transferring heat. Heat pipes are substantially superior to thermal conductors of an equivalent cross-section of solid copper. It is known that heat pipe fluxes of more than 200 megawatts per square meter are possible.


At elevated temperature and constant stress or load many materials deform at a slow continuous rate, a behavior known as creep. Creep is the term used to describe the tendency of a solid material to slowly move or deform permanently under the influence of stresses. It occurs as a result of long term exposure to levels of stress that are below the yield strength or ultimate strength of the material. Creep is more severe in materials that are subjected to heat for long periods, and at elevated temperature. Creep always increases with temperature. The rate of this deformation is a function of the material properties, exposure time, exposure temperature and the applied load (stress). Depending on the magnitude of the applied stress and its duration, the deformation may become so large that a component can no longer perform its function. In the case of a heat pipe envelope material, creep may ultimately result in failure of the envelope.


The processes of the invention for synthesing HCN and for the autothermal destruction of N2O both operate at elevated temperatures. The pressure of the working fluid acting on the heat pipe shell (also known as the envelope) can provide stress sufficient to induce creep with many otherwise desirable low cost materials for envelope construction. In one embodiment of the invention the stress normally associated with the working fluid pressure is substantially reduced by balancing the process pressure and the working fluid pressure, greatly reducing stress on the envelope and related creep deformation, and thereby extending the operating temperature range for the heat pipe and enabling the use of relatively low cost materials of construction.


The pressure within the reactor may be controlled such that the absolute difference between reaction zone pressure and the pressure of the working fluid within the heat pipe envelope is minimized, thus greatly reducing the stress on the envelope. The reduction in stress thereby enables the use of lower cost envelope materials and working fluids at higher temperatures and with longer life expectancy. In one embodiment, the pressure within the reactor is controlled such that the absolute difference between reaction zone pressure and the pressure of the working fluid within the heat pipe envelope is less than about 14.7 psi (101 kPa).


In other embodiments, the pressure within the reactor is controlled such that the reaction zone pressure is approximately equal to the pressure of the working fluid within the heat pipe envelope, i.e. the absolute difference between reaction zone pressure and the pressure of the working fluid within the heat pipe envelope is less than about 5 psi (34 kPa) or less than about 1 psi (7 kPa).


In embodiments of the invention, the pressure of the working fluid may be measured by known means or may be estimated for any given working fluid from a measured temperature, such as reactor temperature, heat pipe envelope temperature, or working fluid temperature. For example, as illustrated in FIG. 11, when sodium is used as the heat pipe working fluid and the process operating pressure on the exterior of the heat pipe (Po, measured in psia) when calculated as a function of the heat pipe working fluid temperature (T, measured in ° C.) satisfies the following equation:

Po=aNaT3−bNaT2+cNaT−dNa

where:


Po is in psia,


T is in the range of 900 to 1300° C.,


aNa is equal to 1.2×10−6,


bNa is equal to 2.7405×10−3,


cNa is equal to 2.1643, and


dNa is in the range of 570 to 600.


Varying the value of dNa as indicated above (e.g., from 570 to 600) defines an operating pressure band between the upper and lower limits of Po.


While the embodiment described by the equation and chart indicate a specific methodology for reducing creep when sodium is the working fluid, it should be noted that the general methodology applies to all working fluids operating at a temperature where creep is a significant factor in the selection of the envelope material. Such working fluids include at the least cesium, potassium, lithium, and silver.


It is to be understood that in any instance where a heat tube is mentioned herein (e.g., 20, 20A, 20B, 21, 22), it is to be understood that either a single heat tube or a plurality of heat tubes may be utilized to perform the function of the indicated heat tube.


Referring now to FIG. 1, a reactor 10 is provided with heat tubes (20, 22) adapted for use in a process of contacting, at atmospheric pressure or greater, a reactant stream 150 comprising ammonia and methane with a catalyst 180 to form a product stream 250 comprising HCN. As an option in place of methane, any hydrocarbon gas of 2 to 6 carbon atom may be used. Heat tube 20 is located in a first reaction zone 160 of reactor 10 where reactant stream 150, previously heated to a temperature between 800 and 1000° C., is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). In every instance of a first reaction zone catalyst described herein, various catalyst compositions and forms are contemplated and described and may be used interchangeably. Optionally as a means for preheating, a heat tube provided with a ceramic coating which substantially eliminates decomposition of ammonia and methane at the preheat temperature is provided. Most generally, the heat tube 20 has a catalyst disposed on at least a portion of the outer surface. The end 20′ of heat tube 20 is hotter than end 20″ and is heated by means of a heat source (not shown). Sufficient heat is transferred from the heat source through the heat tube 20 to elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The reactant stream is further directed to contact catalyst 180 of Pt/Rh (90% by weight Pt/10% by weight Rh) wire gauze through which greater than about 90 percent conversion to products takes place. Alternatively, the catalyst 180 may be one or more other known forms, such as foam, and may have other compositions known to effectively promote the formation of HCN, such as 85% by weight Pt/15% by weight Rh. The product stream is quenched in temperature in reactor zone 200 by means of heat tube 22 where heat tube end 22′ is cooler than tube end 22″. Heat tube end 22′ is in thermal contact with known cooling means which transfers heat from tube end 22″ and the reaction products to bring their temperature to less than 500° C. A known ceramic coating, such as alumina, on heat tube 22 is provided which effectively suppresses decomposition of HCN in the product stream. The HCN is recovered from the product stream in the known manner.


Referring now to FIG. 2, the reactor 10 is provided with heat tubes (20) adapted for use in a process of contacting, at atmospheric pressure or greater, the reactant stream 150 with a catalyst to form the product stream 250. Heat tube 20 is located in the first reaction zone 160 of reactor 10 where reactant stream 150, previously heated to a temperature between 800 and 1000° C., is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). Optionally as a means for preheating, a heat tube provided with a ceramic coating which substantially eliminates decomposition of ammonia and methane at the preheat temperature is provided. Most generally, the heat tube 20 has a catalyst 23 disposed on at least a portion of the outer surface. The end 20′ of heat tube 20 is hotter than end 20″ and is heated by means of a heat source (not shown). Sufficient heat is transferred from the heat source through the heat tube 20 to elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The reactant stream is further directed to a second reaction zone 190, optionally containing a contact catalyst of Pt/Rh (90% by weight Pt/10% by weight Rh) wire gauze through which further conversion to products may take place. The product stream is quenched in temperature in a quench zone 210 by a rapid cooling means 15 to bring the temperature to less than 500° C. Optionally, as a rapid cooling means, a heat tube, with a known ceramic coating that effectively suppresses decomposition of HCN in the product stream, and in thermal contact with known cooling means, transfers heat from the reaction products to bring their temperature to less than 500° C. The HCN is recovered from the product stream in the known manner.


Referring now to FIG. 3, the reactor 10 is provided with heat tubes (20, 22) adapted for use in a process of contacting, at atmospheric pressure or greater, the reactant stream 150 with a catalyst to form the product stream 250. The heat tube 20 is located in the first reaction zone 160 of the reactor 10 where the reactant stream 150, previously heated to a temperature between 800 and 1000° C., is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). Optionally as a means for preheating, a heat tube provided with a ceramic coating which substantially eliminates decomposition of ammonia and methane at the preheat temperature is provided. Most generally, the heat tube 20 has a catalyst disposed on at least a portion of the outer surface. The end 20′ of heat tube 20 is hotter than end 20″ and is heated by means of a heat source (not shown). Sufficient heat is transferred from the heat source through the heat tube 20 to elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The product stream is quenched in temperature in reactor zone 200 by means of the heat tube 22 where heat tube end 22′ is cooler than tube end 22″. Heat tube end 22′ is in thermal contact with known cooling means which transfers heat from tube end 22″ and the reaction products to bring their temperature to less than 500° C. A known ceramic coating on the heat tube 22 is provided which effectively suppresses decomposition of HCN in the product stream. The HCN is recovered from the product stream in the known manner.


Referring now to FIG. 4, the reactor 10 is provided with heat tubes (20, 22) adapted for use in a process of contacting, at atmospheric pressure or greater, the reactant stream 150 with a catalyst 180 to form a product stream 250 of HCN. Heat tube 20 is located in a first reaction zone 160 of reactor 10 where reactant stream 150, previously heated to a temperature between 800 and 1000° C., is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). Optionally as a means for preheating, a heat tube provided with a ceramic coating which substantially eliminates decomposition of ammonia and methane at the preheat temperature is provided. Most generally, the heat tube 20 has a catalyst disposed on at least a portion of the outer surface. The end 20′ of heat tube 20 is hotter than end 20″ and is heated by means of a heat source (not shown). Sufficient heat is transferred from the heat source through the heat tube 20 to elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The reactant stream is further directed to contact catalyst 180 of Pt/Rh (90% by weight Pt/10% by weight Rh) wire gauze through which greater than about 50 percent conversion to products takes place. Alternatively, the catalyst 180 may have other known forms, such as a foam, and may have other compositions known to effectively promote the formation of HCN, such as 85% by weight Pt/15% by weight Rh. The reactant stream is further directed to a second instance of the first reaction zone 160, depicted as reaction zone 161, provided with a second instance of the heat pipe 20, depicted as heat pipe 21, to further convert reactants to products, for example 80 percent conversion or greater. The reactant stream is then further directed to contact a second instance of catalyst 180, depicted as catalyst 181, through which greater than about 90 percent conversion to products takes place. The product stream is quenched in temperature in reactor zone 200 by means of the heat tube 22 where heat tube end 22′ is cooler than tube end 22″. Heat tube end 22′ is in thermal contact with known cooling means which transfers heat from tube end 22″ and the reaction products to bring their temperature to less than 500° C. A known ceramic coating on the heat tube 22 is provided which effectively suppresses decomposition of HCN in the product stream. The HCN is recovered from the product stream in the known manner.


Referring now to FIG. 5, the reactor 10 is provided with heat tubes (20, 22) adapted for use in a process of contacting, at atmospheric pressure or greater, the reactant stream 150 with a catalyst to form the product stream 250. The reactor 10 comprises four zones: a preheat zone 155, first reaction zone 160, second reaction zone 190, and quench zone 210. The preheat zone 155 and the first reaction zone 160, may be in direct contact or may be connected by a conduit such as a pipe or duct. The first reaction zone 160 and the second reaction zone 190 may be in direct contact or may be connected by a conduit such as a pipe or duct. The second reaction zone 190 and the quench zone 210 may be in direct contact or may be connected by a conduit such as a pipe or duct. Heat tube end 22′ of the heat tube 22 is in thermal contact with the reaction stream 150 in the preheat zone 155 and provides a preheat temperature (800° C. to 1000° C.) to the reactant stream. The heat tube end 22′ and the portion of the heat tube 22 that is within the preheat zone 155 is provided with a layer or ceramic coating which substantially eliminates decomposition of ammonia and methane at the preheat temperature is provided. The heat tube 20 is located in the first reaction zone 160 of the reactor 10 where the reactant stream 150, at the preheat temperature, is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). Most generally, the heat tube 20 has a catalyst disposed on at least a portion of the outer surface. The end 20′ of heat tube 20 is hotter than end 20″ and is heated by means of a heat source (not shown). Sufficient heat is transferred from the heat source through the heat tube 20 to elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The product stream is quenched in temperature in quench zone 210 by means of the heat tube 22 where heat tube end 22′ is cooler than tube end 22″. Heat tube end 22′ is in thermal contact with the reaction stream 150 in the preheat zone 155 and heat tube end 22″ is in thermal contact with product stream 250 in the quench zone 210 such that at the least one heat tube 22 transfers heat from the product stream 250 to the reactant stream 150, to bring the reaction products to a temperature to less than 500° C. A known ceramic coating is provided on the heat tube end 22″ and the portion of the heat tube 22 that is within the quench zone 210, and effectively suppresses decomposition of HCN in the product stream. The HCN is recovered from the product stream in the known manner.


Heat tubes located in a reactor zone may be oriented in various ways in relation to the direction of flow of the reactants and products in that zone. Reactor zones may be provided with baffles to direct the flow of reactants and products within the zone. Referring now to FIG. 6, the reactor 10 is provided with heat tubes (20A, 20B) adapted for use in a process of contacting, at atmospheric pressure or greater, the reactant stream 150 with a catalyst to form the product stream 250. The reactor 10 comprises a reaction zone 165 containing a baffle 30. The reactant stream enters the reaction zone 165 on one side of the baffle 30 and the product stream leaves the reaction zone 165 on the other side of the baffle 30. Heat tube 20A is in thermal contact with the reaction zone 165 of the reactor 10 where the reactant stream 150, at the preheat temperature, is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). The heat tube 20A is positioned in a direction normal to the baffle 30 and extends through the baffle 30 such that end 20A″ is in thermal contact with the reactant stream 150, a middle portion 20A′″ is in thermal contact with the product stream 250 and end 20A′ is in thermal contact with a known heat source 300. The end 20A′ of the heat pipe 20A is hotter than end 20A″ and is effective to transfer heat to the reactant stream in the reaction zone 165. The orientation of the heat tube 20A further provides for a substantially cross-flow (in relation to the heat tube 20A) of reactants and products in thermal contact with the heat tube 20A in the reaction zone 165. Heat tube 20B is positioned in a direction normal to the baffle 30 in a region of reaction zone 165 not divided by the baffle 30 such that end 20B″ of the heat pipe 20B is in thermal contact with the reaction zone 165 and end 20B′ is in thermal contact with the known heat source 300. The end 20B′ of the heat tube 20B is hotter than end 20B″ and is effective to transfer heat to the reaction zone 165. The orientation of the heat tube 20B further provides for a substantially axial-flow (in relation to the heat tube 20B) of reactants and products in thermal contact with the heat tube 20B in the reaction zone 165. Additionally, the heat tube 20A and the heat tube 20B may be oriented vertically such that the end 20A′ is below the end 20A″ and the end 20B′ is below the end 20B″ so that the heat tube 20A and the heat tube 20B operate as gravity-assisted heat tubes. Most generally, the heat tube 20A and the heat tube 20B are coated with a catalyst disposed on at least a portion of the outer surface. Sufficient heat is transferred from the heat source through the heat tubes 20A and 20B to elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The product stream is quenched in temperature by means described previously. The HCN is recovered from the product stream in the known manner.


Referring now to FIG. 7, the reactor 10 is provided with a heat tubes (20) adapted for use in a process of contacting, at atmospheric pressure or greater, the reactant stream 150 with a catalyst to form the product stream 250. The reactor 10 comprises a reaction zone 165 containing a baffle 30. The reactant stream enters the reaction zone 165 on one side of the baffle 30 and the product stream leaves the reaction zone 165 on the other side of the baffle 30. Heat tube 20 is in thermal contact with the reaction zone 165 of the reactor 10 where the reactant stream 150, at the preheat temperature, is brought into contact with a catalyst (0.1 to 20% by weight Pt group metal). The heat tube 20 is positioned in a direction parallel to the baffle 30 such that end 20″ is in thermal contact with the reactant stream 150 and end 20′ is in thermal contact with a known heat source 300. The end 20′ of the heat pipe 20 is hotter than end 20″ and is effective to transfer heat to the reaction zone 165. The orientation of the heat tube 20A further provides for a substantially axial-flow (in relation to the heat tube 20) of reactants and products in thermal contact with the heat tube 20 in the reaction zone 165. Additionally, the heat tube 20 may be oriented vertically such that the end 20′ is below the end 20″ so that the heat tube 20A operates as a gravity-assisted heat tube. Most generally, the heat tube 20 has a catalyst disposed on at least a portion of the outer surface. Sufficient heat is transferred from the heat source through the heat tube 20 to which elevate and maintain the temperature of the reactant stream to between 1000° C. and 1300° C. and convert reactants to products, for example 40 percent conversion or greater based on raw feed. The heat tubes employed are selected to provide best performance in the working temperature range required. The product stream is quenched in temperature by means described previously. The HCN is recovered from the product stream in the known manner.


A ceramic sheath (e.g., sleeve) may be used to cover at least a portion of a heat tube in thermal contact with the reactants and products in a reactor zone, such as the preheat zone, reaction zone, or quench zone. Referring now to FIG. 8, a heat pipe assembly 40 is comprised of a heat tube 20, inserted into a ceramic sheath 50, having an exterior surface 52, and having an annular gap 60 between an inner surface 54 of the ceramic sheath 50 and an outer surface 25 of the heat tube 20. The annular gap 60 is of sufficient width to allow for relative difference in thermal expansion between the heat tube 20 and the ceramic sheath 50 at the contemplated operating temperature without being so large that it significantly reduces heat transfer efficiency. An external layer 70 of one or more known materials may surround the ceramic sheath 50, substantially adjacent to the exterior surface 52. The exterior surface 52 of ceramic sheath 50, and therefore of the external layer 70, may be rough, ridged, cog-toothed, etched, finned or have any known shape that enhances surface. The external layer 70 may be any known form, such as, but not limited to wire gauze, foil, foam, impregnated coatings, wash coatings, or any combination thereof. The one or more known materials in the external layer 70 may be chosen to provide one or more desired results. For example, in a preheat zone, the layer may be chosen to substantially eliminate decomposition of ammonia and methane at the preheat temperature of the reactant stream 150. In a reaction zone, the layer may be chosen to catalytically promote conversion of reactants to products. In a quench zone the layer may be chosen to effectively suppress decomposition of HCN in the product stream 250.


Referring now to FIG. 9, a heat pipe 80 is at least partially disposed in a reactor interior (not shown) and comprises an envelope 82 having an interior 84, said heat pipe interior 84 containing a working fluid (not shown). A layer 86 is disposed around at least a portion of the outer surface of the heat pipe envelope 82. The layer 86 may be chosen to substantially eliminate decomposition of ammonia and methane at the preheat temperature of the reactant stream 150, to catalytically promote conversion of reactants to products, to effectively suppress decomposition of HCN in the product stream 250, or to effectively decompose at least a portion of any unreacted ammonia in the product stream 250.


EXAMPLE

In a prophetic example, the process of the invention is demonstrated as follows. Referring now to FIG. 10, a high temperature heat pipe 401 comprised of an envelope formed from an appropriate high temperature metallurgy such as Inconel 600, with an internal vapor space containing a high temperature working fluid such as sodium is produced by methods known in the art (e.g., “Design and Technology of Heat Pipes for Cooling and Heat Exchange”, Calvin C. Silverstein, 1992, Taylor and Francis). The heat pipe 401 is coated with platinum using an electroplating technique. An energy source and reaction vessel is prepared by placing an induction coil 402 into an appropriately sized vessel 403 then forming a ceramic lining 404 using a castable ceramic material, Kao-Tab 95 high-alumina castable, available from Thermal Ceramics Incorporated of Augusta, Ga. The casting is formed such that the heat pipe 401, placed entirely within the reactor vessel, is supported by the castable ceramic lining and is axially aligned with reactor vessel and induction coil 402 such that the induction coil 402 surrounds a portion of one end of the heat pipe 401. An annular gap is provided between the castable ceramic lining 404 and the heat pipe 401 thus forming a reaction zone. A feed gas inlet 405 and a product gas outlet 406 are provided such that gas is fed to an inlet end of the reactor, passes through the annular gap, and is discharged from an exit end of the reactor. The reactor contains one or more thermocouples 407 to monitor the temperature of the heat pipe 401.


A feed pipe 408 is used to supply the feed gas to the reactor. Methane 409, ammonia 410, and nitrogen 411 are metered into the feed pipe using mass flow controllers 412, 413, and 414, respectively, in order to establish the desired flow and composition of the feed gas. The composition of the feed gas is confirmed using a fourier transform infrared (FTIR) feed analyzer 415 or feed gas chromatograph (GC) analyzer (not shown). A discharge pipe 416 is used to remove product gas from the reactor. The discharge pipe 416 contains a product cooler 417 to cool the product gas to a desired temperature. The discharge pipe 416 contains a back pressure control valve 418 to control the pressure within the reaction zone. The composition of the product gas is measured using product FTIR 419 or product GC analyzer 420. The discharge pipe 416 is connected to a flare 421 wherein the product gas is combusted.


The temperature of the heat pipe 401 is raised to a desired temperature from about 900 to about 1300 C, and controlled at that temperature by monitoring the one or more thermocouples 407 within the reaction zone while modulating the power input to the induction coil 402 from an induction power supply 423 (available from Ameritherm Incorporated of Scottsville, N.Y.) using known methods and equipment.


The pressure within the reaction zone is measured by pressure transmitter 422 and controlled by modulating the control valve 418 such that the reaction zone pressure is approximately equal to the pressure of the working fluid within the heat pipe envelope, thus greatly reducing the stress on the envelope. The reduction in stress thereby enables the use of lower cost envelope materials and working fluids at higher temperatures and with longer life expectancy.


It is anticipated that such a reactor system is capable of producing HCN from methane and ammonia.


While the foregoing example indicates sodium as a working fluid, it should be noted that similar results and performance could be obtained while utilizing cesium, potassium, or lithium as the working fluid so long as the process operating pressure and working fluid pressure are approximately equal, thus greatly reducing the stress on the envelope.


The foregoing disclosure constitutes a description of specific embodiments illustrating how the invention may be used and applied. Such embodiments are only exemplary. The invention in its broadest aspects is further defined in the claims which follow. These claims and terms used therein are to be taken as variants of the invention described. These claims are not restricted to such variants but are to be read as covering the full scope of the invention implicit within the disclosure herein.

Claims
  • 1. A process for endothermic chemical synthesis of HCN comprising: (a) providing a reactor having an interior and a preheat zone for elevating the temperature of a feed gas to a first temperature, wherein said feed gas comprises at least one reactant, and wherein said preheat zone comprises a first heat pipe coated to inhibit the decomposition of said feed gas;(b) providing a reaction zone containing a second heat pipe partially disposed in said reactor interior and coated with a first catalyst;(c) flowing the preheated feed gas of step (a) to said reaction zone of step (b) and heating said preheated feed gas by contacting said preheated feed gas with the second heat pipe coated with the first catalyst;(d) endothermically reacting the at least one reactant in said reaction zone to form at least one product at a temperature above about 1000° C.;(e) withdrawing the at least one product comprising HCN from said reaction zone; and(f) flowing said withdrawn product to a quench zone comprising a third heat pipe for cooling said at least one product, wherein said third heat pipe comprises a coating for inhibiting decomposition of said at least one product;wherein the reactor pressure is at least 80 psia.
  • 2. The process of claim 1 wherein one or more of the second and third coated heat pipes comprises an envelope having an interior, said heat pipe interior containing the working fluid, wherein said working fluid has a vapor pressure; and wherein the absolute pressure difference between a reactor pressure and said vapor pressure is sufficiently low to obtain stable heat pipe operating characteristics at said reactor temperature.
  • 3. The process of claim 1 wherein said at least one reactant comprises ammonia and methane.
  • 4. The process of claim 2 further comprising means to control said reactor pressure at a predetermined value.
  • 5. The process of claim 2 wherein said working fluid comprises sodium.
  • 6. The process of claim 2 wherein said pressure difference is less than about 1 atmosphere.
  • 7. The process of claim 2 wherein said pressure difference is less than about 5 psi.
  • 8. The process of claim 2 wherein said pressure difference is less than about 1 psi.
  • 9. The process of claim 2 wherein said envelope comprises stainless steel or a stainless steel alloy.
  • 10. The process of claim 1 wherein said reactor temperature is greater than about 1200° C.
  • 11. The process of claim 2 further comprising means to control pressure of that portion of the envelope of said second heat pipe which is not disposed within said reactor.
  • 12. The process of claim 1 wherein said first catalyst is disposed on at least a portion of an outer surface of said second heat pipe.
  • 13. The process of claim 1 further comprising a ceramic sheath disposed around said second heat pipe, wherein said first catalyst is disposed on at least a portion of an outer surface of said ceramic sheath.
  • 14. The process of claim 1 wherein said reactants flow substantially parallel to the longitudinal axis of said second heat pipe.
  • 15. The process of claim 1 wherein said first heat pipe is partially disposed in said reactor interior, and wherein said reactants flow substantially parallel to the longitudinal axis of said first heat pipe.
  • 16. The process of claim 1, further comprising reducing the stress on the at least one heat pipe by reducing the absolute value of the differential between the reactor pressure and the pressure of the at least one heat pipe internal pressure.
  • 17. A process for endothermic chemical synthesis of HCN comprising: (a) providing a reactor having an interior and a preheat zone for elevating the temperature of a feed gas to a first temperature, wherein said feed gas comprises at least one reactant, and wherein said preheat zone comprises a first heat pipe coated to inhibit the decomposition of said feed gas;(b) providing a reaction zone containing a second heat pipe partially disposed in said reactor interior and coated with a first catalyst;(c) flowing the preheated feed gas of step (a) to said reaction zone of step (b) and heating said preheated feed gas by contacting said preheated feed gas with the second heat pipe coated with the first catalyst;(d) endothermically reacting the at least one reactant in said reaction zone to form at least one product at a temperature above about 1000° C.;(e) withdrawing the at least one product comprising HCN from said reaction zone; and
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application No. 60/917,706, filed May 14, 2007, which is incorporated herein by reference in its entirety.

US Referenced Citations (211)
Number Name Date Kind
1873873 Downs Aug 1932 A
1873876 Downs Aug 1932 A
1957949 Andrussow et al. May 1934 A
2768132 Halliwell Oct 1956 A
2768876 Wagner Oct 1956 A
3370082 Eisfeld et al. Feb 1968 A
3496215 Drinkard et al. Feb 1970 A
3496217 Drinkard, Jr. et al. Feb 1970 A
3496218 Drinkard, Jr. Feb 1970 A
3522288 Drinkard, Jr. et al. Jul 1970 A
3536748 Drinkard, Jr. et al. Oct 1970 A
3551474 Drinkard et al. Dec 1970 A
3564040 Downing et al. Feb 1971 A
3579560 Drinkard et al. May 1971 A
3607125 Kydd Sep 1971 A
3655723 Drinkard, Jr. et al. Apr 1972 A
3694485 Drinkard, Jr. et al. Sep 1972 A
3752839 Drinkard, Jr. et al. Aug 1973 A
3766231 Gosser et al. Oct 1973 A
3766241 Drinkard, Jr. et al. Oct 1973 A
3773809 Walter Nov 1973 A
3775461 Drinkard, Jr. et al. Nov 1973 A
3798256 King et al. Mar 1974 A
3818067 Downing et al. Jun 1974 A
3818068 Wells Jun 1974 A
3846474 Mok Nov 1974 A
3849472 Waddan Nov 1974 A
3850973 Seidel et al. Nov 1974 A
3853754 Gosser Dec 1974 A
3853948 Drinkard, Jr. et al. Dec 1974 A
3864380 King et al. Feb 1975 A
3869501 Waddan Mar 1975 A
3920721 Gosser Nov 1975 A
3927056 Gosser Dec 1975 A
3947487 Crooks Mar 1976 A
4045495 Nazarenko et al. Aug 1977 A
4046815 Nazarenko Sep 1977 A
4076756 Nazarenko et al. Feb 1978 A
4087452 Kuntz May 1978 A
4146555 Kershaw Mar 1979 A
4147717 Kershaw Apr 1979 A
4177215 Seidel Dec 1979 A
4210558 Crooks Jul 1980 A
4230634 Benzie et al. Oct 1980 A
4240976 Benzie et al. Dec 1980 A
4251468 Nazarenko Feb 1981 A
4259303 Nakaji et al. Mar 1981 A
4315893 McCallister Feb 1982 A
4315903 Fenton et al. Feb 1982 A
4328172 Rapoport May 1982 A
4330483 Rapoport May 1982 A
4331632 Galloway May 1982 A
4339395 Barnette et al. Jul 1982 A
4351806 Galloway Sep 1982 A
4371474 Rapoport Feb 1983 A
4382038 McGill May 1983 A
4385007 Shook, Jr. May 1983 A
4416824 Reimer et al. Nov 1983 A
4416825 Ostermaier Nov 1983 A
4434316 Barnette Feb 1984 A
4539302 Leyendecker et al. Sep 1985 A
4705881 Rapoport Nov 1987 A
4749801 Bealty et al. Jun 1988 A
4774353 Hall et al. Sep 1988 A
4793980 Torobin Dec 1988 A
4874884 McKinney et al. Oct 1989 A
4925456 Egglestone May 1990 A
4932981 Ohsaki et al. Jun 1990 A
4990645 Back et al. Feb 1991 A
5107012 Grunewald Apr 1992 A
5112686 Krupp et al. May 1992 A
5302756 McKinney Apr 1994 A
5312959 Sieja et al. May 1994 A
5314673 Anseth et al. May 1994 A
5362454 Cizmer et al. Nov 1994 A
5449807 Druliner Sep 1995 A
5470541 Koch et al. Nov 1995 A
5488129 Huser et al. Jan 1996 A
5512695 Kreutzer et al. Apr 1996 A
5512696 Kreutzer et al. Apr 1996 A
5523453 Breikss Jun 1996 A
5529669 Koch et al. Jun 1996 A
5543536 Tam Aug 1996 A
5663369 Kreutzer et al. Sep 1997 A
5688986 Tam et al. Nov 1997 A
5696280 Shapiro Dec 1997 A
5709841 Reimer Jan 1998 A
5723641 Tam et al. Mar 1998 A
5773637 Cicha et al. Jun 1998 A
5821378 Foo et al. Oct 1998 A
5847191 Bunel et al. Dec 1998 A
5856555 Huser et al. Jan 1999 A
5908805 Huser et al. Jun 1999 A
5936587 Gudilev et al. Aug 1999 A
5958273 Koch et al. Sep 1999 A
5959135 Garner et al. Sep 1999 A
6085891 Behle Jul 2000 A
6090987 Billig et al. Jul 2000 A
6121184 Druliner et al. Sep 2000 A
6127567 Garner et al. Oct 2000 A
6147247 Voit et al. Nov 2000 A
6167298 Levin Dec 2000 A
6169198 Fischer et al. Jan 2001 B1
6171996 Garner et al. Jan 2001 B1
6173459 Ball Jan 2001 B1
6197992 Fischer et al. Mar 2001 B1
6219105 Kashiro et al. Apr 2001 B1
6242633 Fischer et al. Jun 2001 B1
6284865 Tam et al. Sep 2001 B1
6287531 Riegert et al. Sep 2001 B1
6307109 Kanel et al. Oct 2001 B1
6315972 Mehdizadeh et al. Nov 2001 B1
6320582 Yamamoto et al. Nov 2001 B1
6328941 Watzenberger et al. Dec 2001 B1
6355833 Fischer et al. Mar 2002 B2
6372758 DeCrescenzo et al. Apr 2002 B1
6383445 Anderson et al. May 2002 B1
6461481 Barnette et al. Oct 2002 B1
6469194 Burattin et al. Oct 2002 B2
6521778 Fischer et al. Feb 2003 B1
6632561 Bauer et al. Oct 2003 B1
6646148 Kreutzer Nov 2003 B1
6660877 Lenges et al. Dec 2003 B2
6723295 Baier et al. Apr 2004 B1
6725083 Burbank et al. Apr 2004 B1
6737539 Lenges et al. May 2004 B2
6753440 Druliner et al. Jun 2004 B2
6770770 Baumann et al. Aug 2004 B1
6801526 Stahl et al. Oct 2004 B1
6846945 Lenges et al. Jan 2005 B2
6852199 Jungkamp et al. Feb 2005 B2
6855799 Tam et al. Feb 2005 B2
6897329 Jackson et al. May 2005 B2
6984604 Cobb et al. Jan 2006 B2
7022866 Bartsch et al. Apr 2006 B2
7067685 Bartsch et al. Jun 2006 B2
7069978 Rosenfeld et al. Jul 2006 B2
7070743 Blackwell et al. Jul 2006 B2
7084293 Rosier et al. Aug 2006 B2
7084294 Jungkamp et al. Aug 2006 B2
7098358 Burattin et al. Aug 2006 B2
7105696 Burattin et al. Sep 2006 B2
7127252 Aoki et al. Oct 2006 B1
7253298 Galland et al. Aug 2007 B2
7345006 Bartsch et al. Mar 2008 B2
7381845 Weiskopf et al. Jun 2008 B2
7439381 Jungkamp et al. Oct 2008 B2
7442825 Galland et al. Oct 2008 B2
7470805 Rosier et al. Dec 2008 B2
7521575 Bartsch et al. Apr 2009 B2
7528275 Bartsch et al. May 2009 B2
7531682 Galland et al. May 2009 B2
7538240 Jungkamp et al. May 2009 B2
7541486 Scheidel et al. Jun 2009 B2
7566800 Scheidel et al. Jul 2009 B2
7684348 Zhang et al. Mar 2010 B2
7700795 Haderlein et al. Apr 2010 B2
7753852 Maschke Jul 2010 B2
7781608 Scheidel et al. Aug 2010 B2
7973174 Amey Jul 2011 B2
8039660 Basset et al. Oct 2011 B2
8263804 Buisine et al. Sep 2012 B2
20010014647 Fischer et al. Aug 2001 A1
20010049431 Tam et al. Dec 2001 A1
20020186921 Schumacher et al. Dec 2002 A1
20030045740 Druliner et al. Mar 2003 A1
20030135014 Radu et al. Jul 2003 A1
20030212298 Brasse et al. Nov 2003 A1
20040063956 Burattin et al. Apr 2004 A1
20040063991 Burattin et al. Apr 2004 A1
20040176622 Bartsch et al. Sep 2004 A1
20040235648 Bartsch et al. Nov 2004 A1
20040260112 Basset et al. Dec 2004 A1
20050049228 Albrecht et al. Mar 2005 A1
20050090677 Bartsch et al. Apr 2005 A1
20050090678 Bartsch et al. Apr 2005 A1
20050247624 Jungkamp et al. Nov 2005 A1
20060142609 Bourgeois et al. Jun 2006 A1
20060175189 Gerber et al. Aug 2006 A1
20060252955 Rosier et al. Nov 2006 A1
20060258873 Rosier et al. Nov 2006 A1
20060258874 Bartsch et al. Nov 2006 A1
20060264651 Bartsch et al. Nov 2006 A1
20060277828 Licht Dec 2006 A1
20070060766 Bartsch et al. Mar 2007 A1
20070073071 Haderlein et al. Mar 2007 A1
20070083057 Haderlein et al. Apr 2007 A1
20070088173 Haderlein et al. Apr 2007 A1
20070112215 Jungkamp et al. May 2007 A1
20070155977 Jungkamp et al. Jul 2007 A1
20070155978 Jungkamp et al. Jul 2007 A1
20070218019 Andre et al. Sep 2007 A1
20080015378 Foo et al. Jan 2008 A1
20080015380 Foo et al. Jan 2008 A1
20080015381 Foo et al. Jan 2008 A1
20080015382 Foo et al. Jan 2008 A1
20080071105 Bartsch et al. Mar 2008 A1
20080076944 Bartsch et al. Mar 2008 A1
20080083607 Deckert et al. Apr 2008 A1
20080221351 Bartsch et al. Sep 2008 A1
20080227214 Jungkamp et al. Sep 2008 A1
20080227998 Scheidel et al. Sep 2008 A1
20080242883 Jungkamp et al. Oct 2008 A1
20080242885 Jungkamp et al. Oct 2008 A1
20080242886 Bartsch et al. Oct 2008 A1
20080275266 Bartsch et al. Nov 2008 A1
20080281119 Scheidel et al. Nov 2008 A1
20080281120 Jungkamp et al. Nov 2008 A1
20090048466 Lettmann et al. Feb 2009 A1
20090054671 Haderlein et al. Feb 2009 A1
20090270645 Haderlein et al. Oct 2009 A1
Foreign Referenced Citations (103)
Number Date Country
1113854 Dec 1995 CN
1145531 Mar 1997 CN
1159106 Sep 1997 CN
1670139 Sep 2005 CN
1857775 Nov 2006 CN
2 055 747 May 1971 DE
2343495 Mar 1975 DE
2343495 Mar 1975 DE
10136488 Feb 2003 DE
102004004671 Aug 2005 DE
2015115 Apr 1970 FR
2069411 Sep 1971 FR
2873696 Feb 2006 FR
219474 Jul 1924 GB
1429621 Mar 1976 GB
49043924 Dec 1974 JP
50059324 Jun 1975 JP
50059326 Jun 1975 JP
51007649 Mar 1976 JP
52012698 Apr 1977 JP
1013127 Sep 1980 JP
55047031 Nov 1980 JP
57156454 Oct 1982 JP
57156455 Oct 1982 JP
57179144 Nov 1982 JP
1136333 Feb 1983 JP
58067658 May 1983 JP
58126892 Aug 1983 JP
1170710 Oct 1983 JP
58159452 Oct 1983 JP
60044295 Mar 1985 JP
60044295 Oct 1985 JP
62294691 Dec 1987 JP
63135363 Sep 1988 JP
1013127 Apr 1989 JP
1209830 Aug 1989 JP
1136333 Sep 1989 JP
1050220 Oct 1989 JP
1173751 Dec 1989 JP
1565159 Jun 1990 JP
3001298 Jan 1991 JP
1615749 Aug 1991 JP
3205587 Sep 1991 JP
1627124 Nov 1991 JP
1627146 Nov 1991 JP
3069915 Nov 1991 JP
3285878 Dec 1991 JP
1642102 Feb 1992 JP
4012248 Mar 1992 JP
4057050 May 1992 JP
4166155 Jun 1992 JP
4230254 Aug 1992 JP
4057050 Sep 1992 JP
4060532 Sep 1992 JP
4118676 Oct 1992 JP
4128141 Nov 1992 JP
1729140 Jan 1993 JP
1811422 Dec 1993 JP
7025841 Jun 1995 JP
7188144 Jul 1995 JP
2037346 Mar 1996 JP
8504814 May 1996 JP
8157795 Jun 1996 JP
2098106 Oct 1996 JP
02521777 Jan 1997 JP
02623448 Jun 1997 JP
9505586 Jun 1997 JP
9512013 Dec 1997 JP
10505101 May 1998 JP
10506911 Jul 1998 JP
10509954 Sep 1998 JP
02818503 Oct 1998 JP
10512879 Dec 1998 JP
11501660 Feb 1999 JP
11504262 Apr 1999 JP
02911608 Jun 1999 JP
11507297 Jun 1999 JP
2006000451 Jan 2006 JP
2006512918 X Mar 2008 JP
4230254 Feb 2009 JP
198802621 Jul 1988 KR
198802296 Oct 1988 KR
199003458 May 1990 KR
199008166 Nov 1990 KR
199104132 Jun 1991 KR
199205087 Jul 1992 KR
197700262 Jul 1977 NL
188158 Apr 1992 NL
WO 7900193 Apr 1979 WO
WO 9528228 Oct 1995 WO
WO 9703040 Jan 1997 WO
WO 9736855 Oct 1997 WO
WO 0211108 Feb 2002 WO
WO 0213964 Feb 2002 WO
03015908 Feb 2003 WO
WO 03015908 Feb 2003 WO
WO 03018540 Mar 2003 WO
WO 03031392 Apr 2003 WO
WO 03068729 Aug 2003 WO
WO 2004007508 Jan 2004 WO
WO 2007115936 Oct 2007 WO
WO 2008028843 Mar 2008 WO
WO 2008052879 May 2008 WO
Non-Patent Literature Citations (22)
Entry
Endter; “Die technische Synthese von Cyanwasserstoff aus Methan and Ammoniakohne Zusatz von Sauerstoff”; Chemie Ingenieur Technik, Wiley Vch. Verlag, Weinheim, DE, vol. 30, No. 5, May 1, 1958; pp. 305-310; XP000562734 ISSN: 0009-285X.
Grover et al.; “Structures of Very High Thermal Conductance”; Journal of Applied Physics USA; vol. 35, No. 6, 1964, pp. 1990-1991, XP002521688.
Encyclopedia of Chemical Technology (Fourth Edition, vol. 7, pp. 753-782) edited by Kirk-Othmer.
“How to Select a Heat Pipe”, Enertron, Inc.
“Design and Technology of Heat Pipes for Cooling and Heat Exchange”, Calvin C. Silverstein, 1992, Taylor and Francis [ book furnished upon request ].
Hessel et al.; “Chemiluminescent Reactions in a Heat-Pipe Oven”; Journal of Applied Physics; vol. 46, No. 5; May 1975; pp. 2317-2318; XP002546569; DOI: 10.1063/1.321834.
Sakurai et al; “Chemically Reacting Bismuth and Nitrous Oxide in a Heat Pipe Oven”; Chemical Physics Letters Netherlands; vol. 38, No. 2, Mar. 1, 1976; pp. 234-236; XP002546279; ISSN: 0009-2614; DOI: 10.1016/0009-2614(76)85144-5.
Bett; “High Pressure Technology—4. Manufacture of Pressure Vessels”; Kirk-Othmer Encyclopedia of Chemical Technology; Dec. 4, 2000; pp. 37-42; XP002546843; DOI: 10.1002/0471238961.0809070802052020.a01.
Galle et al.; “Thermal N2O decomposition in regenerative heat exchanger reactors”; Chemical Engineering Science; Elsevier Ltd.; GB; vol. 56, No. 4; Mar. 19, 2001; pp. 1587-1595; XP002546570; DOI: 10.1016/S0009-2509(00)00386-9.
Enertron Inc.; “Heat Pipe Selection” [Online], Apr. 12, 2001; XP002521762; retrieved from the Internet: URL:http://www.enertron-inc.com/enertron-resources/library.php.
Kosoy; “Heat Pipes”; Kirk-Othmer Encyclopedia of Chemical Technology; [Online]; vol. 13; Nov. 19, 2004; pp. 225-241; XP002546842; DOI: 10.1002/0471238961.0805012002090514.a01.pub2.
Endter; “Die technische Synthese von Cyanwasserstoff aus Methan and AMmoniakohne Zusatz von Sauerstoff”; Chemie Ingenieur Technik, Wiley Vch. Verlag, Weinheim, DE, vol. 30, No. 5, May 1, 1958; pp. 305-310; XP 000562734, ISSN: 0009-285X.
Grover et al.; “Structures of Very High Thermal Conductance”, Journal of Applied Physics USA; vol. 35, No. 6, 1964, pp. 1990-1991; XP 002521688.
Hessel et al.; “Chemiluminescent Reactions in a Heat-Pipe Oven”, Journal of Applied Physics, vol. 46, No. 5, May 1975, pp. 2317-2318, XP 002546569, DOI: 10.1063/1.321834.
Sakurai et al., “Chemically Reacting Bismuth and Nitrous Oxide in a Heat Pipe Oven”, Chemical Physics Letters Netherlands; vol. 38, No. 2, Mar. 1, 1976; pp. 234-236; CP 002546279; ISSN: 0009-2614; DOI: 10.1016/0009-2614(76)85144-5.
Bett; “High Pressure Technology—4. Manufacture of Pressure Vessels”, Kirk-Othmer Encyclopedia of Chemical Technology; Dec. 4, 2000; pp. 37-42; XP 002546843; DOI: 10.1002/0471238961.0809070802052020.a01.
Galle et al.; “Thermal N2O decomposition in regenerative heat exchanger reactors”; Chemical Engineering Science; Elsevier Ltd.; GB; vol. 56, No. 4, Mar. 19, 2001; pp. 1587-1595; XP 002546570; DOI: 10.1016/S0009-2509(00)00386-9.
Enertron Inc.; “Heat Pipe Selection” [Online], Apr. 12, 2001; XP 002521762; retrieved from the Internet: www.enertron-inc.com/enertron-resources/library.php.
Kosoy; “Heat Pipes”; Kirk-Othmer Encyclopedia of Chemical Technology; [online]; vol. 13, Nov. 19, 2004, pp. 225-241; XP 002546842; DOI: 10.1002/0471238961.0805012002090514.a01.pub2.
PCT International Search Report and Written Opinion of the International Searching Authority dated Sep. 22, 2009.
“Structures of Very High Thermal Conductance”, Journal of Applied Physics 35 (6) 1964; published by G. M. Grover, T. P. Cotter and G. F. Erickson.
“Design and Technology of Heat Pipes for Cooling and Heat Exchange”, Calvin C. Silverstein, 1992, Taylor and Francis [book furnished upon request].
Related Publications (1)
Number Date Country
20120141345 A1 Jun 2012 US
Provisional Applications (1)
Number Date Country
60917706 May 2007 US