High efficiency slot fed microstrip antenna having an improved stub

Information

  • Patent Grant
  • 6791496
  • Patent Number
    6,791,496
  • Date Filed
    Monday, March 31, 2003
    21 years ago
  • Date Issued
    Tuesday, September 14, 2004
    20 years ago
Abstract
A slot fed microstrip antenna (100) having an improved stub (118) provides enhanced efficiency through more efficient coupling of electromagnetic energy between the feed line (117) and the slot (106). A dielectric layer (105) disposed between the feed line (117) and the ground plane (108) provides a first region (112) having a first relative permittivity and at least a second region (113) having a second relative permittivity. The second relative permittivity is higher as compared to the first relative permittivity. The stub (118) is disposed on the high permittivity region (113). The dielectric layer can include magnetic particles, which are preferably disposed underlying the stub.
Description




STATEMENT OF THE TECHNICAL FIELD




The inventive arrangements relate generally to slot antennas.




DESCRIPTION OF THE RELATED ART




RF circuits, transmission lines and antenna elements are commonly manufactured on specially designed substrate boards. Conventional circuit board substrates are generally formed by processes such as casting or spray coating which generally result in uniform substrate physical properties, including the dielectric constant.




For the purpose of RF circuits, it is generally important to maintain careful control over impedance characteristics. If the impedance of different parts of the circuit do not match, signal reflections and inefficient power transfer can result. Electrical length of transmission lines and radiators in these circuits can also be a critical design factor.




Two critical factors affecting circuit performance relate to the dielectric constant (sometimes referred to as the relative permittivity or ε


r


) and the loss tangent (sometimes referred to as the dissipation factor or δ) of the dielectric substrate material. The dielectric constant determines the electrical wavelength in the substrate material, and therefore the electrical length of transmission lines and other components disposed on the substrate. The loss tangent determines the amount of signal loss that occurs for signals traversing the substrate material. Losses tend to increase with increases in frequency. Accordingly, low loss materials become even more important with increasing frequency, particularly when designing receiver front ends and low noise amplifier circuits.




Printed transmission lines, passive circuits and radiating elements used in RF circuits are typically formed in one of three ways. One configuration known as microstrip, places the signal line on a board surface and provides a second conductive layer, commonly referred to as a ground plane. A second type of configuration known as buried microstrip is similar except that the signal line is covered with a dielectric substrate material. In a third configuration known as stripline, the signal line is sandwiched between two electrically conductive (ground) planes.




In general, the characteristic impedance of a parallel plate transmission line, such as stripline or microstrip line, is approximately equal to {square root over (L


1


/C


1


)}, where L


1


is the inductance per unit length and C


1


is the capacitance per unit length. The values of L


1


and C


1


are generally determined by the physical geometry and spacing of the line structure as well as the dielectric constant of the dielectric material(s) used to separate the transmission lines.




In conventional RF designs, a substrate material is selected that has a single dielectric constant and relative permeability value, the relative permeability value being about 1. Once the substrate material is selected, the line characteristic impedance value is generally exclusively set by controlling the geometry of the line, the slot, and coupling characteristics of the line and the slot.




Radio frequency (RF) circuits are typically embodied in hybrid circuits in which a plurality of active and passive circuit components are mounted and connected together on a surface of an electrically insulating board substrate, such as a ceramic substrate. The various components are generally interconnected by printed metallic conductors, such as copper, gold, or tantalum, which generally function as transmission lines (e.g. stripline or microstrip line or twin-line) in the frequency ranges of interest.




The dielectric constant of the selected substrate material for a transmission line, passive RF device, or radiating element determines the physical wavelength of RF energy at a given frequency for that structure. One problem encountered when designing microelectronic RF circuitry is the selection of a dielectric board substrate material that is reasonably suitable for all of the various passive components, radiating elements and transmission line circuits to be formed on the board.




In particular, the geometry of certain circuit elements may be physically large or miniaturized due to the unique electrical or impedance characteristics required for such elements. For example, many circuit elements or tuned circuits may need to have an electrical length of a quarter of a wavelength. Similarly, the line widths required for exceptionally high or low characteristic impedance values can, in many instances, be too narrow or too wide for practical implementation for a given substrate. Since the physical size of the microstrip line or stripline is inversely related to the dielectric constant of the dielectric material, the dimensions of a transmission line or a radiator element can be affected greatly by the choice of substrate board material.




Still, an optimal board substrate material design choice for some components may be inconsistent with the optimal board substrate material for other components, such as antenna elements. Moreover, some design objectives for a circuit component may be inconsistent with one another. For example, it may be desirable to reduce the size of an antenna element. This could be accomplished by selecting a board material with a high dielectric constant with values such as 50 to 100. However, the use of a dielectric with a high dielectric constant will generally result in a significant reduction in the radiation efficiency of the antenna.




Antenna elements are sometimes configured as microstrip slot antennas. Microstrip slot antennas are useful antennas since they generally require less space, are simpler and are generally less expensive to manufacture as compared to other antenna types. In addition, importantly, microstrip slot antennas are highly compatible with printed-circuit technology.




One factor in constructing a high efficiency microstrip slot antenna is minimizing the power loss, which may be caused by several factors including dielectric loss. Dielectric loss is generally due to the imperfect behavior of bound charges, and exists whenever a dielectric material is placed in a time varying electromagnetic field. The dielectric loss, often referred as loss tangent, is directly proportional to the conductivity of the dielectric medium. Dielectric loss generally increases with operating frequency.




The extent of dielectric loss for a particular microstrip slot antenna is primarily determined by the dielectric constant of the dielectric space between the radiator antenna element (e.g., slot) and the feed line. Free space, or air for most purposes, has a relative dielectric constant and relative permeability approximately equal to one.




A dielectric material having a relative dielectric constant close to one is considered a “good” dielectric material as a good dielectric material exhibits low dielectric loss at the operating frequency of interest. When a dielectric material having a relative dielectric constant substantially equal to the surrounding materials is used, the dielectric loss due to impedance mismatches is effectively eliminated. Therefore, one method for maintaining high efficiency in a microstrip slot antenna system involves the use of a material having a low relative dielectric constant in the dielectric space between the radiator antenna slot and the microstrip feed line exciting the slot.




Furthermore, the use of a material with a lower dielectric constant permits the use of wider transmission lines that, in turn, reduce conductor losses and further improve the radiation efficiency of the microstrip slot antenna. However, the use of a dielectric material having a low dielectric constant can present certain disadvantages, such as the large size of the slot antenna fabricated on a low dielectric constant substrate as compared to a slot antenna fabricated on a high dielectric constant substrate.




The efficiency of microstrip slot antennas is compromised through the selection of a particular dielectric material for the feed which has a single uniform dielectric constant. A low dielectric constant is helpful in allowing wider feed lines, that result in a lower resistive loss, to the minimization of the dielectric induced line loss, and the minimization of the slot radiation efficiency. However, available dielectric materials when placed in the junction region between the slot and the feed result in reduced antenna radiation efficiency due to the poor coupling characteristics through the slot.




A tuning stub is commonly used to tune out the excess reactance in microstrip slot antennas. However, the impedance bandwidth of the stub is generally less than both the impedance bandwidth of the radiator and the impedance bandwidth of the slot. Therefore, although conventional stubs can generally be used to tune out excess reactance of the antenna circuit, the low impedance bandwidth of the stub generally limits the performance of the overall antenna circuit.




SUMMARY OF THE INVENTION




The performance of a microstrip antenna can be optimized by improving the performance of the feed stub. A feed stub is commonly used to tune out the excess reactance of slot fed antennas, but has limited design flexibility because of the constraints imposed by a common uniform dielectric substrate. The common dielectric substrate is generally selected to obtain good transmission line characteristics. Using the invention, the dielectric substrate region across the slot as well as underlying the stub can be optimized separately from the dielectric substrate characteristics needed for good transmission line characteristics.




In addition, the stub impedance bandwidth can be improved by disposing the feed stub on a high dielectric constant material. The high dielectric region preferably includes optional magnetic particles therein for a further efficiency enhancement. By including magnetic particles in the dielectric region underlying the stub, the intrinsic impedance of the dielectric junction region disposed between the feed line and slot can be matched to the dielectric material underlying the stub. Impedance matching these regions can reduce the amount of signal distortion and ringing caused by the discontinuity.




A slot fed microstrip antenna includes an electrically conducting ground plane, the ground plane having at least one slot. A feed line transfers signal energy to or from the slot, the feed line including a stub region which extends beyond the slot. A first dielectric layer is disposed between the feed line and the ground plane, the first dielectric layer having a first set of dielectric properties including a first relative permittivity over a first region, and at least a second region of the first dielectric layer having a second set of dielectric properties. The second set of dielectric properties provide a higher relative permittivity as compared to the first relative permittivity. The stub is disposed on the second region.




The first dielectric layer preferably includes magnetic particles. At least a portion of the magnetic particles are disposed in the second region which underlies the stub. The second region can provide a relative permeability of at least 1.1.




The intrinsic impedance of the dielectric junction region disposed between the feed line and slot is impedance matched to the second region which underlies the stub. This reduces ringing and signal distortion. The intrinsic impedance of the dielectric junction region can also be impedance matched to an intrinsic impedance of an environment around the antenna. As used herein, the phrase “intrinsic impedance matched” refers to an impedance match which is improved as compared to the intrinsic impedance matching that would result given the respective actual permittivity values of the regions comprising the interface, but assuming the relative permeabilities to be 1 for each of the respective regions. As noted earlier, prior to the invention, although board substrates provided a choice regarding a single relative permittivity value, the relative permeability of the board substrates available was necessarily equal nearly 1.




The first dielectric layer can comprises a ceramic material, the ceramic material having a plurality of voids, at least a portion of the voids filled with magnetic particles. The magnetic particles can comprise meta-materials. The antenna can be a patch antenna by including at least one patch radiator and a second dielectric layer, the second dielectric layer disposed between the ground plane and the patch radiator. The second dielectric layer can include a third region which provides a third set of dielectric properties including a third relative permittivity, and at least a fourth region including a fourth set of dielectric properties including a fourth relative permittivity. The fourth relative permittivity is higher as compared to the third relative permittivity, wherein the patch is disposed on the fourth region. The fourth region can include magnetic particles and provide a relative permeability of at least 1.1.




The invention can be used to impedance match the various medium interfaces provided by the antenna. For example, the intrinsic impedance of the fourth region underlying the patch can match the intrinsic impedance of an environment around the antenna. The intrinsic impedance of the dielectric junction region disposed between the feed line and slot can match the intrinsic impedance of the fourth region and/or the second region underlying the stub.




The antenna can include multiple patches, such as a first and a second patch radiator, the first and second patch radiators being separated by a third dielectric layer. The third dielectric layer can be structured in accordance with the principles applied to the first and second dielectric layers as explained above.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of a slot fed microstrip antenna formed on a dielectric which includes a high dielectric region and a low dielectric region, wherein the stub is disposed on the high dielectric region, according to an embodiment of the invention.





FIG. 2

is a side view of the microstrip antenna shown in

FIG. 1

, with added magnetic particles in the dielectric region underlying the stub.





FIG. 3

is a side view of a slot fed microstrip patch antenna which includes a first dielectric region including magnetic particles disposed between the ground plane and the patch, and a second dielectric region disposed between the ground plane and the feed line which includes a high dielectric region underlying the stub, the high dielectric region including magnetic particles, according to another embodiment of the invention.





FIG. 4

is a flow chart that is useful for illustrating a process for manufacturing a slot fed microstrip antenna of reduced physical size and high radiation efficiency.





FIG. 5

is a side view of a slot fed microstrip antenna formed on an antenna dielectric which includes magnetic particles, the antenna providing impedance matching from the feed line into the slot, the slot into the environment, and the slot into the stub, according to an embodiment of the invention.





FIG. 6

is a side view of a slot fed microstrip patch antenna formed on an antenna dielectric which includes magnetic particles, the antenna providing impedance matching from the feed line into the slot, and the slot to its interface with the antenna dielectric beneath the patch and to the stub, according to an embodiment of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Low dielectric constant board materials are ordinarily selected for RF designs. For example, polytetrafluoroethylene (PTFE) based composites such as RT/duroid® 6002 (dielectric constant of 2.94; loss tangent of 0.0012) and RT/duroid® 5880 (dielectric constant of 2.2; loss tangent of 0.0007) are both available from Rogers Microwave Products, Advanced Circuit Materials Division, 100 S. Roosevelt Ave, Chandler, Ariz. 85226. Both of these materials are common board material choices. The above board materials provide are uniform across the board area in terms of thickness and physical properties and provide dielectric layers having relatively low dielectric constants with accompanying low loss tangents. The relative permeability of both of these materials is near 1.




Prior art antenna designs utilize mostly uniform dielectric materials. Uniform dielectric properties necessarily compromise antenna performance. A low dielectric constant substrate is preferred for transmission lines due to loss considerations and for antenna radiation efficiency, while a high dielectric constant substrate is preferred to minimize the antenna size and optimize energy coupling. Thus, inefficiencies and trade-offs necessarily result in conventional slot fed microstrip antennas.




Even when separate substrates are used for the antenna and the feed line, the uniform dielectric properties of each substrate still generally compromises antenna performance. For example, a substrate with a low dielectric constant in slot fed antennas reduces the feed line loss but results in poor energy transfer efficiency from the feed line through the slot due to the higher dielectric constant in the slot region.




By comparison, the present invention provides the circuit designer with an added level of flexibility by permitting the use of dielectric layers, or portions thereof, with selectively controlled dielectric constant and permeability properties which can permit the circuit to be optimized to improve the efficiency, the functionality and the physical profile of the antenna.




The dielectric regions may include magnetic particles to impart a relative permeability in discrete substrate regions that is not equal to one. In engineering applications, the permeability is often expressed in relative, rather than in absolute, terms. The relative permeability of a material in question is the ratio of the material permeability to the permeability of free space, that is μ


r


=μ/μ


0


. The permeability of free space is represented by the symbol μ


0


and it has a value of 1.257×10


−6


H/m.




Magnetic materials are materials having a relative permeability μ


r


either greater than 1, or less than 1. Magnetic materials are commonly classified into the three groups described below.




Diamagnetic materials are materials which have a relative permeability of less than one, but typically from 0.99900 to 0.99999. For example, bismuth, lead, antimony, copper, zinc, mercury, gold, and silver are known diamagnetic materials. Accordingly, when subjected to a magnetic field, these materials produce a slight decrease in the magnetic flux density as compared to a vacuum.




Paramagnetic materials are materials which have a relative permeability greater than one and up to about 10. Example of paramagnetic materials are aluminum, platinum, manganese, and chromium. Paramagnetic materials generally lose their magnetic properties immediately after an external magnetic field is removed.




Ferromagnetic materials are materials which provide a relative permeability greater than 10. Ferromagnetic materials include a variety of ferrites, iron, steel, nickel, cobalt, and commercial alloys, such as alnico and peralloy. Ferrites, for example, are made of ceramic material and have relative permeabilities that range from about 50 to 200.




As used herein, the term “magnetic particles” refers to particles when intermixed with dielectric materials, resulting in a relative permeability μ


r


greater than 1 for the dielectric material. Accordingly, ferromagnetic and paramagnetic materials are generally included in this definition, while diamagnetic particles are generally not included. The relative permeability μ


r


can be provided in a large range depending on the intended application, such as 1.1, 2, 3, 4, 6, 8,10, 20, 30, 40, 50, 60, 80, 100, or higher, or values in between these values.




The tunable and localizable electric and magnetic properties of the dielectric substrate may be realized by including metamaterials in the dielectric substrate. The term “Metamaterials” refers to composite materials formed from the mixing of two or more different materials at a very fine level, such as the molecular or nanometer level.




According to the present invention, a slot fed microstrip antenna design is presented that has improved efficiency and performance over prior art slot fed microstrip antenna designs. The improvement results from enhancements including a stub which improves coupling of electromagnetic energy between the feed line and the slot. A dielectric layer disposed between the feed line and the ground plane provides a first portion having a first dielectric constant and at least a second portion having a second dielectric constant. The second dielectric constant is higher as compared to the first dielectric constant. At least a portion of the stub is disposed on the high dielectric constant second portion. Portions of the dielectric layer can include magnetic particles, preferably including a dielectric region proximate to the stub to further increase the efficiency and the overall performance of the slot antenna.




Referring to

FIG. 1

, a side view of a slot fed microstrip antenna


100


according to an embodiment of the invention is presented. Antenna


100


includes a substrate dielectric layer


105


. Substrate layer


105


includes first dielectric region


112


, second dielectric region


113


(stub region), and third dielectric region


114


(dielectric junction region disposed between the feed line and slot). First dielectric region


112


has a relative permeability μ


r


and relative permittivity (or dielectric constant) ε


1


, second dielectric region


113


has a relative permeability of μ


2


and a relative permittivity of ε


2


, and third dielectric region


114


has a relative permeability of μ


3


and a relative permittivity of ε


3


.




Ground plane


108


including slot


106


is disposed on dielectric substrate


105


. Antenna


100


can include an optional dielectric cover disposed over ground plane


108


(not shown).




Feedline


117


is provided for transferring signal energy to or from the slot. Feedline includes stub region


118


. Feedline


117


may be a microstrip line or other suitable feed configuration and may be driven by a variety of sources via a suitable connector and interface.




Second dielectric region


113


has a higher relative permittivity as compared to the relative permittivity in dielectric region


112


. For example, the relative permittivity in dielectric region


112


can be 2 to 3, while the relative permittivity in dielectric region


113


can be at least 4. For example, the relative permittivity of dielectric region


113


can be 4, 6, 8,10, 20, 30, 40, 50, 60 or higher, or values in between these values.




Although ground plane


108


is shown as having a single slot


106


, the invention is also compatible with multislot arrangements. Multislot arrangements can be used to generate dual polarizations. In addition, slots may generally be any shape that provides adequate coupling between feed line


117


and slot


106


, such as rectangular or annular.




Third dielectric region


114


also preferably provides a higher relative permittivity as compared to the relative permittivity in dielectric region


112


to help concentrate the electromagnetic fields in this region. The relative permittivity in region


114


can be higher, lower, or equal to the relative permittivity in region


113


. In a preferred embodiment of the invention, the intrinsic impedance of region


114


is selected to match its environment. Assuming air is the environment, the environment behaves like a vacuum. In that case, μ


2





2


will impedance match region


114


to the environment.




Dielectric region


113


can also significantly influence the electromagnetic fields radiated between feed line


117


and slot


106


. Careful selection of the dielectric region


113


material, size, shape, and location can result in improved coupling between the feed line


117


and the slot


106


, even with substantial distances therebetween.




Regarding the shape of dielectric region


113


, region


113


can be structured to be a column shape with a triangular or oval cross section. In another embodiment, region


113


can be in the shape of a cylinder.




In a preferred embodiment of the invention, the intrinsic impedance of stub region


113


is selected to match the intrinsic impedance of junction region


114


. By matching the intrinsic impedance of dielectric junction region


114


to the intrinsic impedance of stub region


113


, the radiation efficiency of antenna


100


is enhanced. Assuming the intrinsic impedance of region


114


is selected to match air, μ


3


can be selected to equal ε


3


. Matching the intrinsic impedance of region


113


to region


114


also reduces signal distortion and ringing which can cause significant problems which can arise from impedance mismatches into the stub present in related slot antennas art.




In a preferred embodiment, dielectric region


113


includes a plurality of magnetic particles disposed therein to provide a relative permeability greater than


1


.

FIG. 2

shows antenna


200


which is identical to antenna


100


shown in

FIG. 1

, except a plurality of magnetic particles


214


are provided in dielectric region


113


. Magnetic particles


214


can be metamaterial particles, which can be inserted into voids created in substrate


105


, such as a ceramic substrate, as discussed in detail later. Magnetic particles can provide dielectric substrate regions having significant magnetic permeability. As used herein, significant magnetic permeability refers to a relative magnetic permeability of at least about 1.1. Conventional substrates materials have a relative magnetic permeability of approximately 1. Using methods described herein, μ


r


can be provided in a wide range depending on the intended application, such as 1.1, 2, 3, 4, 6, 8,10, 20, 30, 40, 50, 60, 80, 100, or higher, or values in between these values.




The invention can also be used to form slot fed microstrip patch antennas having improved efficiency and performance.

FIG. 3

shows patch antenna


300


, the patch antenna


300


including at least one patch radiator


309


and a second dielectric layer


305


. The structure below second dielectric layer


305


is the same as FIG.


1


and

FIG. 2

, except reference numbers have been renumbered as


300


series numbers.




A second dielectric layer is disposed between the ground plane


308


and patch radiator


309


. Second dielectric


305


comprises first dielectric region


310


and second dielectric region


311


, the first region


310


preferably having a higher relative permittivity as compared to second dielectric region


311


. Region


310


also preferably includes,magnetic particles


314


. Inclusion of magnetic particles


314


permits region


310


to be impedance matched to antenna's environment using a relative permeability equal to the relative permittivity in region


310


, to match to air. Thus, antenna


300


provides improved radiation efficiency by matching the intrinsic impedance in region


310


(between slot


306


and patch


309


) and the intrinsic impedance of region


314


(between feed line


317


and slot


306


).




For example, the relative permittivity in dielectric region


311


can be 2 to 3, while the relative permittivity in dielectric region


310


can be at least 4. For example, the relative permittivity of dielectric region


310


can be 4, 6, 8,10, 20, 30, 40, 50, 60 or higher, or values in between these values.




Antenna


300


achieves improved efficiency through enhanced coupling of electromagnetic energy from feed line


317


through slot


306


to patch


309


through use of an improved stub


318


. As discussed earlier, improved stub


318


is provided through use of a high permittivity substrate region proximate therein


313


, which preferably also includes optional magnetic particles


324


. As noted above, coupling efficiency is further improved through use permittivity in dielectric region


313


which is proximate to stub


318


being higher than dielectric region


312


.




Dielectric substrate boards having metamaterial portions providing localized and selectable magnetic and dielectric properties can be prepared as shown in

FIG. 4

for use as customized antenna substrates. In step


410


, the dielectric board material can be prepared. In step


420


, at least a portion of the dielectric board material can be differentially modified using meta-materials, as described below, to reduce the physical size and achieve the best possible efficiency for the antenna and associated circuitry. The modification can include creating voids in a dielectric material and filling some or substantially all of the voids with magnetic particles. Finally, a metal layer can be applied to define the conductive traces and surface areas associated with the antenna elements and associated feed circuitry, such as the patch radiators.




As defined herein, the term “meta-materials” refers to composite materials formed from the mixing or arrangement of two or more different materials at a very fine level, such as the angstrom or nanometer level. Metamaterials allow tailoring of electromagnetic properties of the composite, which can be defined by effective dielectric constant (or relative permittivity) and the effective relative permeability.




The process for preparing and modifying the dielectric board material as described in steps


410


and


420


shall now be described in some detail. It should be understood, however, that the methods described herein are merely examples and the invention is not intended to be so limited.




Appropriate bulk dielectric substrate materials can be obtained from commercial materials manufacturers, such as DuPont and Ferro. The unprocessed material, commonly called Green Tape™, can be cut into sized portions from a bulk dielectric tape, such as into 6 inch by 6 inch portions. For example, DuPont Microcircuit Materials provides Green Tape material systems, such as 951 Low-Temperature Cofire Dielectric Tape and Ferro Electronic Materials ULF28-30 Ultra Low Fire COG dielectric formulation. These substrate materials can be used to provide dielectric layers having relatively moderate dielectric constants with accompanying relatively low loss tangents for circuit operation at microwave frequencies once fired.




In the process of creating a microwave circuit using multiple sheets of dielectric substrate material, features such as vias, voids, holes, or cavities can be punched through one or more layers of tape. Voids can be defined using mechanical means (e.g. punch) or directed energy means (e.g., laser drilling, photolithography), but voids can also be defined using any other suitable method. Some vias can reach through the entire thickness of the sized substrate, while some voids can reach only through varying portions of the substrate thickness.




The vias can then be filled with metal or other dielectric or magnetic materials, or mixtures thereof, usually using stencils for precise placement of the backfill materials. The individual layers of tape can be stacked together in a conventional process to produce a complete, multi-layer substrate. Alternatively, individual layers of tape can be stacked together to produce an incomplete, multi-layer substrate generally referred to as a sub-stack.




Voided regions can also remain voids. If backfilled with selected materials, the selected materials preferably include metamaterials. The choice of a metamaterial composition can provide tunable effective dielectric constants over a relatively continuous range from 1 to about 2650. Tunable magnetic properties are also available from certain metamaterials. For example, through choice of suitable materials the relative effective magnetic permeability generally can range from about 4 to 116 for most practical RF applications. However, the relative effective magnetic permeability can be as low as about 1 or reach into the thousands.




A given dielectric substrate may be differentially modified. The term “differentially modified” as used herein refers to modifications, including dopants, to a dielectric substrate layer that result in at least one of the dielectric and magnetic properties being different at one portion of the substrate as compared to another portion. A differentially modified board substrate preferably includes one or more metamaterial containing regions. For example, the modification can be selective modification where certain dielectric layer portions are modified to produce a first set of dielectric or magnetic properties, while other dielectric layer portions are modified differentially or left unmodified to provide dielectric and/or magnetic properties different from the first set of properties. Differential modification can be accomplished in a variety of different ways.




According to one embodiment, a supplemental dielectric layer can be added to the dielectric layer. Techniques known in the art such as various spray technologies, spin-on technologies, various deposition technologies or sputtering can be used to apply the supplemental dielectric layer. The supplemental dielectric layer can be selectively added in localized regions, including inside voids or holes, or over the entire existing dielectric layer. For example, a supplemental dielectric layer can be used for providing a substrate portion having an increased effective dielectric constant. The dielectric material added as a supplemental layer can include various polymeric materials.




The differential modifying step can further include locally adding additional material to the dielectric layer or supplemental dielectric layer. The addition of material can be used to further control the effective dielectric constant or magnetic properties of the dielectric layer to achieve a given design objective.




The additional material can include a plurality of metallic and/or ceramic particles. Metal particles preferably include iron, tungsten, cobalt, vanadium, manganese, certain rare-earth metals, nickel or niobium particles. The particles are preferably nanometer size particles, generally having sub-micron physical dimensions, hereafter referred to as nanoparticles.




The particles, such as nanoparticles, can preferably be organofunctionalized composite particles. For example, organofunctionalized composite particles can include particles having metallic cores with electrically insulating coatings or electrically insulating cores with a metallic coating.




Magnetic metamaterial particles that are generally suitable for controlling magnetic properties of dielectric layer for a variety of applications described herein include ferrite organoceramics (FexCyHz)-(Ca/Sr/Ba-Ceramic). These particles work well for applications in the frequency range of 8-40 GHz. Alternatively, or in addition thereto, niobium organoceramics (NbCyHz)-(Ca/Sr/Ba-Ceramic) are useful for the frequency range of 12-40 GHz. The materials designated for high frequency are also applicable to low frequency applications. These and other types of composite particles can be obtained commercially.




In general, coated particles are preferable for use with the present invention as they can aid in binding with a polymer matrix or side chain moiety. In addition to controlling the magnetic properties of the dielectric, the added particles can also be used to control the effective dielectric constant of the material. Using a fill ratio of composite particles from approximately 1 to 70%, it is possible to raise and possibly lower the dielectric constant of substrate-dielectric layer and/or supplemental dielectric layer portions significantly. For example, adding organofunctionalized nanoparticles to a dielectric layer can be used to raise the dielectric constant of the modified dielectric layer portions.




Particles can be applied by a variety of techniques including polyblending, mixing and filling with agitation. For example, a dielectric constant may be raised from a value of 2 to as high as 10 by using a variety of particles with a fill ratio of up to about 70%. Metal oxides useful for this purpose can include aluminum oxide, calcium oxide, magnesium oxide, nickel oxide, zirconium oxide and niobium (II, IV and V) oxide. Lithium niobate (LiNbO


3


), and zirconates, such as calcium zirconate and magnesium zirconate, also may be used.




The selectable dielectric properties can be localized to areas as small as about 10 nanometers, or cover large area regions, including the entire board substrate surface. Conventional techniques such as lithography and etching along with deposition processing can be used for localized dielectric and magnetic property manipulation.




Materials can be prepared mixed with other materials or including varying densities of voided regions (which generally introduce air) to produce effective dielectric constants in a substantially continuous range from 2 to about 2650, as well as other potentially desired substrate properties. For example, materials exhibiting a low dielectric constant (<2 to about 4) include silica with varying densities of voided regions. Alumina with varying densities of voided regions can provide a dielectric constant of about 4 to 9. Neither silica nor alumina have any significant magnetic permeability. However, magnetic particles can be added, such as up to 20 wt. %, to render these or any other material significantly magnetic. For example, magnetic properties may be tailored with organofunctionality. The impact on dielectric constant from adding magnetic materials generally results in an increase in the dielectric constant.




Medium dielectric constant materials generally have a range from 70 to 500+/−10%. As noted above these materials may be mixed with other materials or voids to provide desired effective dielectric constant values. These materials can include ferrite doped calcium titanate. Doping metals can include magnesium, strontium and niobium. These materials have a range of 45 to 600 in relative magnetic permeability.




For high dielectric constant applications, ferrite or niobium doped calcium or barium titanate zirconates can be used. These materials have a dielectric constant of about 2200 to 2650. Doping percentages for these materials are generally from about 1 to 10%. As noted with respect to other materials, these materials may be mixed with other materials or voids to provide desired effective dielectric constant values.




These materials can generally be modified through various molecular modification processing. Modification processing can include void creation followed by filling with materials such as carbon and fluorine based organo functional materials, such as polytetrafluoroethylene PTFE.




Alternatively or in addition to organofunctional integration, processing can include solid freeform fabrication (SFF), photo, uv, x-ray, e-beam or ion-beam irradiation. Lithography can also be performed using photo, uv, x-ray, e-beam or ion-beam radiation.




Different materials, including metamaterials, can be applied to different areas on substrate layers (sub-stacks), so that a plurality of areas of the substrate layers (sub-stacks) have different dielectric and/or magnetic properties. The backfill materials, such as noted above, may be used in conjunction with one or more additional processing steps to attain desired, dielectric and/or magnetic properties, either locally or over a bulk substrate portion.




A top layer conductor print is then generally applied to the modified substrate layer, sub-stack, or complete stack. Conductor traces can be provided using thin film techniques, thick film,techniques, electroplating or any other suitable technique. The processes used to define the conductor pattern include, but are not limited to standard lithography and stencil.




A base plate is then generally obtained for collating and aligning a plurality of modified board substrates. Alignment holes through each of the plurality of substrate boards can be used for this purpose.




The plurality of layers of substrate, one or more sub-stacks, or combination of layers and sub-stacks can then be laminated (e.g. mechanically pressed) together using either isostatic pressure, which puts pressure on the material from all directions, or uniaxial pressure, which puts pressure on the material from only one direction. The laminate substrate is then is further processed as described above or placed into an oven to be fired to a temperature suitable for the processed substrate (approximately 850° C. to 900° C. for the materials cited above).




The plurality of ceramic tape layers and stacked sub-stacks of substrates can then be fired, using a suitable furnace that can be controlled to rise in temperature at a rate suitable for the substrate materials used. The process conditions used, such as the rate of increase in temperature, final temperature, cool down profile, and any necessary holds, are selected mindful of the substrate material and any material backfilled therein or deposited thereon. Following firing, stacked substrate boards, typically, are inspected for flaws using an acoustic, optical, scanning electron, or X-ray microscope.




The stacked ceramic substrates can then be optionally diced into cingulated pieces as small as required to meet circuit functional requirements. Following final inspection, the cingulated substrate pieces can then be mounted to a test fixture for evaluation of their various characteristics, such as to assure that the dielectric, magnetic and/or electrical characteristics are within specified limits.




Thus, dielectric substrate materials can be provided with localized tunable dielectric and magnetic characteristics for improving the density and performance of circuits, including those comprising microstrip antennas, such as slot fed microstrip patch antennas.




EXAMPLES




Several specific examples dealing with impedance matching using dielectrics including magnetic particles according to the invention is now presented. Impedance matching from the feed into the slot, the slot into the stub, as well as the slot and the environment (e.g. air) is demonstrated.




The condition necessary for having equal intrinsic impedances at the interface between two different mediums, for a normally incidence (θ


i


=0


0


) plane wave, is given by








μ
n


ε
n


=



μ
m


ε
m


.











This equation is used in order to obtain an impedance match between the dielectric medium in the slot and the adjacent dielectric medium, for example, an air environment (e.g. a slot antenna with air above) or another dielectric (e.g. antenna dielectric in the case of a patch antenna). The impedance match into the environment is frequency independent. In many practical applications, assuming that the angle of incidence is zero is a generally reasonable approximation. However, when the angle of incidence is substantially greater than zero, cosine terms should be used along with the above equations in order to match the intrinsic impedance of two mediums.




The materials considered are all assumed to be isotropic. A computer program can be used to calculate these parameters. However, since magnetic materials for microwave circuits have not be used for matching the intrinsic impedance between two mediums before the invention, no reliable software currently exists for calculating the required material parameters necessary for impedance matching.




The computations presented were simplified in order to illustrate the physical principles involved. A more rigorous approach, such as a finite element analysis can be used to model the problems presented herein with additional accuracy.




Example 1




Slot with air above.




Referring to

FIG. 5

, a slot antenna


500


is shown having air (medium


1


) above. Antenna


500


comprises transmission line


505


and ground plane


510


, the ground plane including slot


515


. A dielectric


530


having a dielectric constant ε


r


=7.8 is disposed between transmission line


505


and ground plane


510


and comprises region/medium


5


, region/medium


4


, region/medium


3


and region/medium


2


. Region/medium


3


has an associated length (L) which is indicated by reference


532


. Stub region


540


of transmission line


505


is disposed under region/medium


5


. Region


525


which extends beyond stub


540


is assumed to have little bearing on this analysis and is thus neglected.




The magnetic relative permeability values for medium


2


and


3





r






2




and μ


r






3




) are determined by using the condition for the intrinsic impedance matching of mediums


2


and


3


. Specifically, the relative permeability μ


r






2




of medium


2


is determined to permit the matching of the intrinsic impedance of medium


2


to the intrinsic impedance of medium


1


(the environment). Similarly, the relative permeability μ


r






3




of medium


3


is determined to permit the impedance matching of medium


2


to medium


4


. In addition, the length L of the matching section in medium


3


is determined in order to match the intrinsic impedances of medium


2


and


4


. The length of L is a quarter of a wavelength at the selected frequency of operation.




First, medium


1


and


2


are impedance matched to theoretically eliminate the reflection coefficient at their interface using the equation:











μ

r
1



ε

r
1



=


μ

r
2



ε

r
2







(
1
)













then the relative permeability for medium


2


is found as,










μ

r
2


=



μ

r
1





ε

r
2



ε

r
1




=



1
·

7.8
1








μ

r
2



=
7.8






(
2
)













Thus, to match the slot into the environment (e.g. air) the relative permeability μ


r






2




of medium (


2


) is 7.8.




Next, medium


4


can be impedance matched to medium


2


. Medium


3


is used to match medium


2


to


4


using a length (L) of matching section


532


in region


3


having an electrical length of a quarter wavelength at a selected operating frequency, assumed to be 3 GHz. Thus, matching section


432


functions as a quarter wave transformer. To match medium


4


to medium


2


, a quarter wave section


532


is required to have an intrinsic impedance of:




 η


3


={square root over (η


2


·η


4


)}  (3)




The intrinsic impedance for region


2


is:










η
2

=




μ

r
2



ε

r
2






η
0






(
4
)













where η


0


is the intrinsic impedance of free space, given by:






η


0


=120πΩ≈377Ω  (5)






hence, the intrinsic impedance η


2


of medium


2


becomes,










η
2

=





7.8
7.8


·
377






Ω

=

377

Ω






(
6
)













The intrinsic impedance for region


4


is:










η
4

=





μ

r
4



ε

r
4






η
0


=





1
7.8


·
377






Ω



135

Ω







(
7
)













Substituting (0.7) and (0.6) in (0.3) gives the intrinsic impedance for medium


3


,






η


3


={square root over (377·135)}Ω=225.6Ω  (8)






Then, the relative permeability in medium


3


is found as:











η
3

=


225.6

Ω

=





μ

r
3



ε

r
3




·

η
0


=




μ

r
3


7.8


·
377











μ

r
3


=


7.8
·


(

225.6
377

)

2


=
2.79






(
9
)













The guided wavelength in medium


3


at 3 GHz, is given by










λ
3

=



c
f



1



ε

r
3


·

μ

r
3






=




3
×

10
10






cm


/


s


3
×

10
9






Hz


·

1


7.8
·
2.79




=

2.14





cm







(
10
)













where c is the speed of light, and f is the frequency of operation. Consequently, the length (L) of quarter wave matching section


532


is given by









L
=



λ
3

4

=



2.14
4






cm

=

0.536





cm







(
11
)













Note that the reactance between mediums (


2


) and (


3


) must be zero, or very small, so that the impedance of medium (


2


) be matched to the impedance of medium (


4


) using a quarter wave transformer located in medium (


3


). This fact is well known in the theory of quarter wave transformers.




Similarly, medium


5


can be impedance matched to medium


2


. As noted earlier, an improved stub


540


providing a high Q can permit formation of a slot antenna having improved efficiency by disposing stub


540


over a high dielectric constant medium/region


5


while also impedance matching medium


5


to medium


2


. Since region


2


is impedance matched to air, region


5


should have a relative permeability value that equals the dielectric constant value of region/medium


5


. For example, if ε


r


=20, then μ


r


should be set to 20 as well.




Example 2




Slot with dielectric above, the dielectric having a relative permeability of 1 and a dielectric constant of 10.




Referring to

FIG. 6

, a side view of a slot fed microstrip patch antenna


600


is shown formed on an antenna dielectric


610


which provides a dielectric constant ε


r


=10 and a relative permeability μ


r


=1. Antenna


600


includes the microstrip patch antenna


615


and the ground plane


620


. The ground plane


620


includes a cutout region comprising a slot


625


. The feed line dielectric


630


is disposed between ground plane


620


and microstrip feed line


605


.




The feed line dielectric


630


comprises region/medium


5


, region/medium


4


, region/medium


3


and region/medium


2


. Region/medium


3


has an associated length (L) which is indicated by reference


632


. Stub region


640


of transmission line


605


is disposed over region/medium


5


. Region


635


which extends beyond stub


640


is assumed to have little bearing on this analysis and is thus neglected.




Since the relative permeability of the antenna dielectric is equal to 1 and the dielectric constant is


10


, the antenna dielectric is clearly not matched to air as equal relative permeability and dielectric constant, such as μ


r


=10 and ε


r


=10 for the antenna dielectric would be required. Although not demonstrated in this example, such a match can be implemented using the invention. In this example, the relative permeability for mediums


2


and


3


are calculated for optimum impedance matching between mediums


2


and


4


as well as between mediums


1


and


2


. In addition, a length of the matching section in medium


3


is then determined which has a length of a quarter wavelength at a selected operating frequency. In this example, the unknowns are again the relative permeability μ


r






2




, of medium


2


, the relative permeability μ


r






3




of medium


3


and L. First, using the equation











μ

r
1



ε

r
1



=


μ

r
2



ε

r
2







(
12
)













the relative permeability in medium


2


is:










μ

r
2


=



μ

r
1





ε

r
2



ε

r
1




=


1
·

7.8
10


=
0.78






(
13
)













In order to match medium


2


to medium


4


, a quarter wave section


632


is required with an intrinsic impedance of






η


3


={square root over (η


2


·η


4


)}  (14)






The intrinsic impedance for medium


2


is










η
2

=




μ

r
2



ε

r
2






η
0






(
15
)













where η


0


is the intrinsic impedance of free space, given by






η


0


=120πΩ≈377Ω  (16)






Hence, the intrinsic impedance η


2


of medium


2


becomes,










η
2

=





0.78
7.8


·
377


Ω

=

119.2

Ω






(
17
)













The intrinsic impedance for medium


4


is










η
4

=





μ

r
4



ε

r
4






η
0


=





1
7.8


·
377


Ω



135

Ω







(
18
)













Substituting (


18


) and (


17


) in (


14


) gives the intrinsic impedance for medium


3


of






η


3


={square root over (19.2·135Ω=126.8Ω)}  (19)






Then, the relative permeability for medium


3


is found as











η
3

=


126.8

Ω

=





μ

r
3



ε

r
3




·

η
0


=




μ

r
3


7.8


·
377











μ

r
3


=


7.8
·


(

126.8
377

)

2


=
0.8823






(
20
)













The guided wavelength in medium (


3


), at 3 GHz, is given by










λ
3

=



c
f



1



ε

r
3


·

μ

r
3






=




3
×

10
10






cm


/


s


3
×

10
9






Hz


·

1


7.8
·
0.8823




=

3.81





cm







(
21
)













where c is the speed of light and f is the frequency of operation. Consequently, the length L is given by









L
=



λ
3

4

=



3.81
4






cm

=

0.952





cm







(
22
)













As in example


1


, the radiation efficiency of the antenna can be further improved by matching the intrinsic impedance of medium


2


to medium


5


. This can be accomplished by setting the relative permeability and dielectric constant values in medium/region


5


to provide an intrinsic impedance which is impedance matched to η


2


.




Since the relative permeability values required for impedance matching in this example include values that are substantially less than one, such matching will be difficult to implement with existing materials. Therefore, the practical implementation of this example will require the development of new materials tailored specifically for this or similar applications which require a medium having a relative permeability less than 1.




Example 3




Slot with dielectric above, that has a relative permeability of 10, and a dielectric constant of 20.




This example is analogous to example 2, having the structure shown in

FIG. 6

, except the dielectric constant ε


r


of the antenna dielectric


610


is 20 instead of 10. Since the relative permeability of antenna dielectric


610


is equal to 10, and it is different from its relative permittivity, antenna dielectric


610


is again not matched to air. In this example, as in the previous example, the permeability for mediums


2


and


3


for optimum impedance matching between mediums


2


and


4


as well as for optimum impedance matching between mediums


1


and


2


are calculated. In addition, a length of the matching section in medium


3


is then determined which has a length of a quarter wavelength at a selected operating frequency. As before, the relative permeabilities μ


r






2




, of medium


2


and μ


r






3




of medium


3


, and the length L in medium


3


will be determined to match the impedance of adjacent dielectric media.




First, using the equation











μ

r
1



ε

r
1



=


μ

r
2



ε

r
2







(
23
)













the relative permeability of medium


2


is found as,










μ

r
2


=



μ

r
1





ε

r
2



ε

r
1




=


10
·

7.8
20


=
3.9






(
24
)













In order to match the impedance of medium


2


to medium


4


, a quarter wave section is required with an intrinsic impedance of






η


3


={square root over (η


2


·η


4


)}  (25)






The intrinsic impedance for medium


2


is










η
2

=




μ

r
2



ε

r
2






η
0






(
26
)













where η


0


is the intrinsic impedance of free space, given by






η


0


=120πΩ≈377Ω  (27)






hence, the intrinsic impedance η


2


of medium


2


becomes,










η
2

=





3.9
7.8


·
377


Ω

=

266.58

Ω






(
28
)













The intrinsic impedance for medium (


4


) is










η
4

=





μ

r
4



ε

r
4






η
0


=





1
7.8


·
377


Ω



135

Ω







(
29
)













Substituting (


29


) and (


28


) in (


25


) gives the intrinsic impedance for medium


3


, which is






η


3


={square root over (266.58·135)}Ω=189.7Ω  (30)






Then, the relative permeability for medium (


3


) is found as











η
3

=


189.7

Ω

=





μ

r
3



ε

r
3




·

η
0


=




μ

r
3


7.8


·
377











μ

r
3


=


7.8
·


(

189.7
377

)

2


=
1.975






(
31
)













The guided wavelength in medium


3


, at 3 GHz, is given by










λ
3

=



c
f



1



ε

r
3


·

μ

r
3






=




3
×

10
10






cm


/


s


3
×

10
9






Hz


·

1


7.8
·
1.975




=

2.548





cm







(
32
)













where c is the speed of light and f is the frequency of operation. Consequently, the length


632


(L) is given by









L
=



λ
3

4

=



2.548
4






cm

=

0.637





cm







(
33
)













As in examples 1 and 2, the radiation efficiency of the antenna can be further improved by matching the intrinsic impedance of medium


2


to medium


5


. This can be accomplished by setting the relative permeability and dielectric constant values in medium/region


5


to provide an intrinsic impedance which is impedance matched to η


2


.




Comparing examples 2 and 3, through use of an antenna dielectric


610


having a relative permeability substantially greater than 1 facilitates, impedance matching between mediums


1


and


2


, as well as between mediums


2


and


4


and


2


and


5


, as the required permeabilities for mediums


2


,


3


and


5


for matching these mediums are both readily realizable as described herein.




While the preferred embodiments of the invention have been illustrated and described, it will be clear that the invention is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as described in the claims.



Claims
  • 1. A slot fed microstrip antenna, comprising:an electrically conducting ground plane, said ground plane having at least one slot; a feed line for transferring signal energy to or from said slot, said feed line including a stub which extends beyond said slot, and a first dielectric layer disposed between said feed line and said ground plane, said first dielectric layer having a first set of dielectric properties including a first relative permittivity over a first region, and at least a second region of said first dielectric layer having a second set of dielectric properties, said second set of dielectric properties providing a higher relative permittivity as compared to said first relative permittivity, wherein said stub is disposed on said second region.
  • 2. The antenna of claim 1, wherein said first dielectric layer includes magnetic particles.
  • 3. The antenna of claim 2, wherein at least a portion of said magnetic particles are disposed in said second region.
  • 4. The antenna of claim 3, wherein said second region provides a relative permeability of at least 1.1.
  • 5. The antenna of claim 1, wherein an intrinsic impedance of a first dielectric junction region disposed between said feed line and said slot is impedance matched to said second region.
  • 6. The antenna of claim 1, wherein an intrinsic impedance of a first dielectric junction region disposed between said feed line and said slot is impedance matched to an intrinsic impedance of an environment around said antenna.
  • 7. The antenna of claim 1, wherein said first dielectric layer comprises a ceramic material, said ceramic material having a plurality of voids, at least a portion of said voids filled with magnetic particles.
  • 8. The antenna of claim 7, wherein said magnetic particles comprise meta-materials.
  • 9. The antenna of claim 1, further comprising at least one patch radiator and a second dielectric layer, said second dielectric layer disposed between said ground plane and said patch radiator.
  • 10. The antenna of claim 9, wherein said second dielectric layer includes a third region providing a third set of dielectric properties including a third relative permittivity, and at least a fourth region including a fourth set of dielectric properties, said fourth set of dielectric properties including a higher relative permittivity as compared to said third relative permittivity, wherein said patch is disposed on said fourth region.
  • 11. The antenna of claim 10, wherein said fourth region includes magnetic particles.
  • 12. The antenna of claim 11, wherein said fourth region provides a relative permeability of at least 1.1.
  • 13. The antenna of claim 10, wherein an intrinsic impedance of said fourth region matches an intrinsic impedance of an environment around said antenna.
US Referenced Citations (22)
Number Name Date Kind
3571722 Vendelin Mar 1971 A
3678418 Woodward Jul 1972 A
4495505 Shields Jan 1985 A
4525720 Corzine et al. Jun 1985 A
4800344 Graham Jan 1989 A
4825220 Edward et al. Apr 1989 A
4882553 Davies et al. Nov 1989 A
4916410 Littlefield Apr 1990 A
4924236 Schuss et al. May 1990 A
5039891 Wen et al. Aug 1991 A
5148130 Dietrich Sep 1992 A
5379006 McCorkle Jan 1995 A
5455545 Garcia Oct 1995 A
5523728 McCorkle Jun 1996 A
5678219 Agarwal et al. Oct 1997 A
6052039 Chiou et al. Apr 2000 A
6114940 Kakinuma et al. Sep 2000 A
6133806 Sheen Oct 2000 A
6137376 Imbornone et al. Oct 2000 A
6184845 Leisten et al. Feb 2001 B1
6281845 Ittipiboon et al. Aug 2001 B1
6307509 Krantz Oct 2001 B1
Non-Patent Literature Citations (21)
Entry
U.S. patent application Ser. No. 10/448,973, Delgado et al., filed May 30, 2003.
U.S. patent application Ser. No. 10/184,277, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,443, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/184,332, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,251, Parsche et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,847, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,275, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,273, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/308,500, Killen et al., filed Dec. 3, 2002.
U.S. patent application Ser. No. 10/373,935, Killen et al., filed Feb. 25, 2003.
U.S. patent application Ser. No. 10/404,981, Killen et al., filed Mar. 31, 2003.
U.S. patent application Ser. No. 10/404,960, Killen et al., filed Mar. 31, 2003.
U.S. patent application Ser. No. 10/185,144, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,266, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,162, Rumpf, Jr., et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,824, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,187, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,855, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,459, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/185,480, Killen et al., filed Jun. 27, 2002.
U.S. patent application Ser. No. 10/439,094, Delgado et al., filed May 15, 2003.