1. Field of the Invention
A thermodynamic heat pump and heat engine system for selectively heating and cooling a target space, and more particularly such a thermodynamic system in which ambient air comprises the working fluid therefor.
2. Description of the Prior Art
Thermodynamic systems in the form of heat pumps are used in the prior art to alternatively heat or cool a target space in standard heating/cooling modes. Heat pumps generally include a compressor, two heat exchangers, and an expander all disposed in a common fluid flow path. Most heat pump systems are of the closed loop type in which the working fluid, typically a two-phase refrigerant, is circulated through the system so as to absorb heat through one of the heat exchangers and to reject heat from the other heat exchanger. When the target space is to be heated, the system is configured so that the heat exchanger that rejects heat will be stationed in the target space or in thermodynamic communication therewith such as via suitable plumping or ducting. Alternatively, when the target space is to be cooled, the system is configured so that the heat exchanger that rejects heat will be stationed in (or ducted to) the ambient environment or other suitable heat sink. Both configurations are considered within a standard heating/cooling mode. Not all heat pump systems are of the closed loop type; some heat pump systems have been proposed in an open-loop arrangement using ambient air as the working fluid.
A target space may be any enclosed or localized space. The target space may be a human environment, such as a building or the passenger compartment in an automobile. Alternatively, the target space may be a relatively small or large area for objects like a personal computer enclosure or a server room.
While such known heat pump systems are adequate in many climates, they are frequently unable to provide adequate heating during extremely cold conditions. This is because a typically sized system is not capable of cooling the working fluid (even in the case of a hazardous refrigerant) to a cold enough temperature so that it has capacity to absorb heat from an exceptionally cold ambient atmosphere. In these conditions, it may be necessary to supplement the heat pump with a secondary furnace, stove, or other heating apparatus to adequately heat the target space.
U.S. Pat. No. 3,686,893, issued to Thomas C. Edwards on Aug. 29, 1972 and U.S. Pat. No. 4,008,426, issued to Thomas C. Edwards on May 9, 1978 (hereinafter referred to as “the Edwards patents”), show a positive displacement rotating vane-type device that operates a thermodynamic cycle for simultaneously compressing and expanding a working fluid which may be air. The devices shown in the Edwards patents each have a stator housing and a rotor disposed in the stator housing defining an interstitial space therebetween. A plurality of vanes are operatively disposed between the rotor and the stator housing for dividing the interstitial space into revolving compression and expansion chambers. The vanes are spring loaded to slidably engage the inner wall of the stator housing. The rotor is rotatably disposed within the stator housing for rotating in a first direction. While the rotor is rotating, the vanes slide along the inner wall of the stator housing and simultaneously compress the working fluid in the compression chambers and expand the fluid in the expansion chambers.
The stator housing of the Edwards patents further define several ports for conducting the working fluid into and out of the device. These ports include a compression chamber inlet, a compression chamber outlet, an expansion chamber inlet, and an expansion chamber outlet. Additionally, the stator housing of the Edwards patents defines an expansion chamber inlet and an expansion chamber outlet. The compression chamber inlet and the expansion chamber outlet are both disposed on the side of the stator housing and communicate with different chambers. Thus, the working fluid enters and exits the device of the Edwards patents through various ports in a carefully arranged radial direction.
The Edwards patents are typical of prior art positive displacement rotating vane-type devices where the transfer of working fluid into and out of the device via ports is accomplished though localized piping that is arranged to prevent inadvertent mixing of high and low pressure fluids. Elaborate seals and other measures are sometimes taken to ensure the high and low pressure fluids never mix, and thereby reduce operating efficiencies. Such measures add considerably to the complexity and cost of positive displacement rotating vane-type devices.
There exists a need for further efficiency improvements in the field of heat pump systems, and more particularly for air-aspirated systems in which ambient air serves as the working fluid. There exists a need for a heat pump system that can fully meet the heating needs of a target space during very cold conditions. Furthermore, there exists a need for a heat pump system that is capable of efficiently transferring a working fluid (be it air or otherwise) between high and low pressure ports of a positive displacement rotating vane-type device without unnecessary complexity or cost.
According to a first aspect, the invention comprises an air aspirated, open-loop hybrid heat pump and heat engine system operable between a standard heating/cooling mode and a high heating mode. The system includes an integrated combustion chamber located in the flow path between a compressor and a heat exchanger for combusting a fuel directly in the air flow. In the standard heating/cooling mode, the combustion chamber lies in a dormant or inactive state while the heat pump system heats or cools the target space. In the high heating mode, however, the combustion chamber is activated to combust a fuel directly in the working fluid air, causing both the temperature and the pressure of the working fluid to increase dramatically. Heat added to the working fluid by the combustion process is dissipated to the target space through the heat exchanger thereby providing substantially increased heat output compared with the standard heating/cooling mode. The pressure created in the working fluid (air) by the combustion process and by the compressor is later expanded in an expander and ultimately returned to ambient. An energy receiving device, operably connected to the expander, converts at least some of the decreasing air pressure to a useable form of energy, such as electricity for example and/or mechanical energy that may be used to power the compressor. Thus, in the high heating mode, the energy added to the air in the compression and combustion processes is used to heat the target space while some or all of the pressure energy in the working fluid is reclaimed via the energy receiving device.
The system of the present invention enables a more efficient thermodynamic cycle than heat pumps of the prior art because it utilizes an air aspirated open loop configuration in combination with an integral combustion chamber that burns a fuel in the working fluid and combined with an energy receiving device that reclaims available pressure energy from the working fluid. As a result, the system is more readily adapted to heat a target space in extremely cold conditions and to conserve energy by harnessing at least some of the residual energy in the working fluid that exists in the form of a pressure differential above the ambient atmospheric conditions.
According to another aspect of this invention, a positive displacement rotating vane-type device includes a rotor rotatably supported within a stator housing. The stator housing has opposite longitudinal ends. A plurality of vanes are operatively disposed between the rotor and the stator housing and divide the interstitial space between the rotor and stator housing into a plurality of compression and expansion chambers, each chamber being defined by the space between adjacent vanes. As the rotor rotates relative to the stator housing, the chambers defined between adjacent vanes sequentially and progressively transition between compression and expansion stages in a continuum so that the working fluid is simultaneously compressed in compression chambers and expanded in expansion chambers. At least one transition point corresponds with maximum compression or maximum expansion of the working fluid where the chambers defined between adjacent vanes transition between the compression and expansion stages, respectively. A compression chamber port is located on one of the longitudinal ends of the stator housing and an expansion chamber port is located on the other of the longitudinal ends of the stator housing. The compression chamber port and the expansion chamber port are continuously in communication with at least one common chamber at or near a transition point. In operation, the working fluid enters the at least one common chamber through one of the compression and expansion chamber ports while urging the working fluid currently occupying the associated chamber axially outwardly out of the stator housing through the other of the compression and expansion chamber ports. The working fluid may be air, a multi-phase refrigerant, or other suitable substance. Working fluid occupying the common chamber at the transition point is thus moved out of the common chamber under the direct influence of incoming working fluid such that the incoming and outgoing working fluids are momentarily comingled. One benefit of this arrangement is an improved (less restricted) flow of working fluid through the system. Another benefit is that a greater fractional use can be made of the swept volume of the rotating vane-type device.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, one embodiment of the invention is shown in
The hybrid heat pump and heat engine system 20 includes a working fluid (e.g., air) flow path 24, generally indicated in
A heat exchanger 32 is disposed in the flow path 24 between the inlet 26 and the outlet 28. In the exemplary embodiment of
In the exemplary embodiment of
The vane-type device 36 includes a generally cylindrical stator housing 38 longitudinally between spaced and opposite ends 40. A rotor 42 is disposed within the stator housing 38 and establishes an interstitial space between the rotor 42 and the inner wall 44 of the stator housing 38. A plurality of vanes 46 are operatively disposed between the rotor 42 and the stator housing 38 for dividing the interstitial space into intermittent compression and expansion chambers 48, 50. The vanes 46 are spring loaded to slidably engage the inner wall 44 of the stator housing 38. Accordingly, the plurality of compression 48 and expansion 50 chambers are each defined by a space between two adjacent vanes 46. As the rotor 42 rotates relative to the stator housing 38, the chambers 48, 50 defined between adjacent vanes 46 sequentially and progressively transition between compression and expansion stages in a continuum so that the working fluid is simultaneously compressed in compression chambers and expanded in expansion chambers. That is to say, at any time during rotation of the rotor 42, working fluid is being compressed in one portion of the device 36 and expanded in another portion of the device 36.
Two arcuately spaced transition points correspond with maximum compression and maximum expansion of the working fluid. In the particular embodiment illustrated in
Working fluid ports are provided to move the working fluid into and out of the device 36. In the embodiment illustrated in
The compression chamber inlet 52 and the expansion chamber outlet 58 are generally longitudinally aligned with one another relative to the stator housing 38 for simultaneously communicating with the same chamber 48, 50. In other words, the compression chamber inlet 52 and the expansion chamber outlet 58 may be located on opposite longitudinal ends of the stator housing 38 so as to communicate simultaneously with a common chamber or chambers 48, 50. Thus a compression chamber port (inlet 52 in this example) and an expansion chamber port (outlet 58 in this example) are continuously in communication with at least one common chamber at or near a transition point. A pump 60 may be disposed in the flow path 24 between inlet 26 and the compression chamber inlet 52 for propelling the working fluid into the stator housing 38 through the compression chamber inlet 52. The arrangement of the ports according to this invention enable a greater fractional use of the swept volume of the rotating vane-type device. Furthermore, the flow of working fluid through the device 36 is improved.
The rotor 42 is rotatably disposed within the stator housing 38 for rotating in a first direction. While the rotor 42 is rotating, the vanes 46 slide along the inner wall 44 of the stator housing 38 and simultaneously reduce the volume of the compression chambers 48 and increase the volume of the expansion chambers 50. In the exemplary embodiment, vane-type device 36 accomplishes the simultaneous compression and expansion because the cross-section of the inner wall 44 of the stator housing 38 is circular and the rotor 42 rotates about an axis A that is off-set from the center of the circular inner wall 44. Alternatively, the stator housing 38 could be elliptically shaped and the rotor 42 could rotate about the center of the elliptical stator housing 38. Other configurations are of course possible, including those described in U.S. Pat. No. 7,556,015 as well as those described in priority document U.S. Provisional Application Ser. No. 61/256,559 filed Oct. 30, 2009, the entire disclosure of which is hereby incorporated by reference and relied upon.
The embodiment of
Next, the air is pushed out of the vane-type device 36 through the expansion chamber outlet 58 by the air entering the vane-type device 36 through the compression chamber inlet 52. Finally, the air is discharged to the atmosphere 30 through the outlet 28. The difference in the pressure of the air entering the expansion chambers 50 and the atmospheric pressure represents potential energy. The expansion chambers 50 of the vane-type device 36 harness that potential energy and use it to provide power to the rotor 42.
The system includes a combustion chamber 62 in the flow path 24 between the compression chamber outlet 54 of the vane-type device 36 and the heat exchanger 32. During the standard heating/cooling mode, described above, the combustion chamber 62 remains dormant. However, during an optional high heating mode, a fuel introduced into the combustion chamber 62 is combusted, or burned, in the working fluid to greatly increase both its temperature and pressure within the flow path 24. The fuel may be any suitable type including for examples natural gas, propane, gasoline, methanol, grains, particulates or other combustible materials.
The compression chambers 48 of the vane-type device 36 compress the air by a first predetermined ratio, and the expansion chambers 50 of the vane-type device 36 expand the air by a second predetermined ratio. In the
In operation, during the high heating mode, the pump 60 propels atmospheric air into the vane-type device 36 through the compression chamber inlet 52. The temperature and pressure of the air both increase as the air is compressed in the compression chambers 48. The pressurized and warmed air then exits the vane-type device 36 through the compression chamber outlet 54 and flows into the combustion chamber 62. In the combustion chamber 62, the fuel is mixed with the air and combusted to greatly increase the pressure and temperature of the air. The air then flows through the heat exchanger 32 where it dispenses heat to warm the target space 22. Next, the valve 64 directs a predetermined amount of the air to the expansion chamber inlet 56 of the vane-type device 36 and the remaining air to the secondary expander 66. In the vane-type device 36, the pressurized air is expanded, preferably to or nearly to the atmospheric pressure, before it is discharged out of the flow path 24 and to the atmosphere 30 through the outlet 28. A secondary heat exchanger (not shown) may be incorporated into the flow path 24 between the expansion chamber outlet 58 and the flow path outlet 28 to scavenge any remaining heat in the working fluid and thereby further increase thermodynamic efficiencies. Ideally, the temperature of the working fluid as it emerges from the outlet 28 is at or only very slightly greater than the ambient air temperature. The air in the secondary expander 66 is also expanded, preferably to or nearly to atmospheric pressure, while powering the generator 68 to produce electricity. After the air is expanded by the secondary expander 66, it is also directed to the outlet 28 to be discharged to the atmosphere 30.
Through reconfiguration, the embodiment of
The vane-type device 36 can also work in a closed loop system 70, as generally shown in
The closed loop system 70
In the first operating mode, the rotor 42 rotates in a first direction, causing the pressure and temperature of the working fluid in the compression chambers 48 to increase as the volume of those compression chambers 48 decreases. That working fluid then flows into the high-pressure side heat exchanger 72 where it dissipates heat to either the target space or the atmosphere. The pressurized and cooled working fluid then flows into the expansion chambers 50 through the expansion chamber inlet 56. In the expansion chambers 50, the temperature and the pressure of the working fluid decrease as the volume of the expansion chambers 50 increases. The working fluid leaves the expansion chambers 50 through the expansion chamber outlet 58 and flows to the low-pressure side heat exchanger 74. In the low-pressure side heat exchanger 74, the working fluid receives heat from either the target space or the atmosphere before flowing back into the compression chambers 48.
Similar to the open loop embodiment of
An open-loop air aspirated hybrid heat pump and heat engine system 20 having a compressor 76 separated from the expander 78 is generally shown in
An energy receiving device is mechanically connected to the expander 78 for harnessing potential energy from the air in the flow path 24 as will be discussed in further detail below. In the exemplary embodiment, the energy receiving device is a generator 68 for generating electricity. The electricity can then be used immediately, stored in batteries or inserted into the power grid. Alternatively or additionally, the energy receiving device could be a mechanical connection between the expander 78 and the compressor 76 for powering the compressor 76 with the energy reclaimed from the air in the flow path 24. The energy receiving device could also be any other device for harnessing the energy produced by the expander 78.
A controller 82 is in communication with the compressor 76 and the expander 78 for controlling the hybrid heat pump and heat engine system 20. The controller 82 manipulates or switches the system 20 between different operating modes: a standard heating/cooling mode (in which the target space 22 can be either heated or cooled), and a high heating mode (in which the target space 22 is heated). The operating mode may be selected by a person, or the controller 82 can be coupled to a thermostat for automatically keeping the target space 22 at a desired temperature.
In reference to
In the standard heating mode, the controller 82 directs the compressor 76 to compress the air from the inlet to increase the pressure and the temperature of the air, as will be understood by those skilled in the art. The pressurized and warmed air then flows through the flow path 24 to the heat exchanger 32. The heat exchanger 32 dispenses heat to the target space 22 to warm the target space 22. Although the air in the flow path 24 is cooled by the heat exchanger 32, the air remains pressurized when compared to the air entering the flow path 24. This difference in pressure represents potential energy, which can be harnessed. The generator 68, which is coupled to the expander 78, harnesses this potential energy while the expander 78 expands the pressurized air to reduce the pressure of the air. Preferably, the air is expanded back to the same pressure at which it entered the flow path 24. Following the expansion, the air is discharged from the flow path 24 through the outlet 28.
In the high heating mode, the compressor 76 receives air aspirated from the inlet 26 and then compresses the air to increase its pressure and also its temperature (in compliance with relevant thermodynamic gas laws). The pressurized and high temperature air then flows through the flow path 24 to the combustion chamber 62, which mixes a suitable fuel with the air and then combusts the mixture. The combustion of the fuel and air mixture further increases both the pressure and the temperature of the air in the flow path 24. The pressurized and heated air then flows through the heat exchanger 32 and dispenses heat to the target space 22. Air leaving the heat exchanger 32 in the high heating mode remains substantially highly pressurized relative to the ambient air pressure, and therefore represents a valuable amount of potential energy. The generator 68 maybe of any suitable type that is effective to convert this potential energy into another form, such as electricity and/or mechanical energy. This potential energy may be harnessed while the expander 78 expands the air to reduce the pressure of the air, or accumulated for conversion at a later time. In other words, any residual pressure energy put into the air through the initial compression and combustion processed is subsequently re-claimed by the generator 68. Once the potential energy has been reclaimed, the low pressure air is then discharged from the flow path 24 through the outlet 28 back into the environment 30.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility. The use of the word “said” in the apparatus claims refers to an antecedent that is a positive recitation meant to be included in the coverage of the claims whereas the word “the” precedes a word not meant to be included in the coverage of the claims. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/256,559 filed Oct. 30, 2009.
Number | Name | Date | Kind |
---|---|---|---|
3686893 | Edwards | Aug 1972 | A |
3904327 | Edwards et al. | Sep 1975 | A |
4009573 | Satz | Mar 1977 | A |
4088426 | Edwards | May 1978 | A |
4347711 | Noe et al. | Sep 1982 | A |
4357800 | Hecker | Nov 1982 | A |
4361204 | Earle | Nov 1982 | A |
4793832 | Veltman et al. | Dec 1988 | A |
4898526 | Sakamaki et al. | Feb 1990 | A |
5722229 | Provost | Mar 1998 | A |
6523347 | Jimov et al. | Feb 2003 | B1 |
6606850 | Logvinov et al. | Aug 2003 | B2 |
7124585 | Kim et al. | Oct 2006 | B2 |
7416137 | Hagen et al. | Aug 2008 | B2 |
7556015 | Staffend | Jul 2009 | B2 |
20060236715 | Nikai et al. | Oct 2006 | A1 |
20100050628 | Staffend et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
63166619 | Jul 1988 | JP |
Entry |
---|
Driver et al., A Rotary Positive Displacement Heat Pump Compressor and Turbine Combined in One Rotor, (1996). International Compressor Engineering Conference. Paper 1181. http://docs.lib.purdue.edu/icec/1181. |
Fischer, Feasibility Study and Hardware Design of A Pivoting-Tip Rotary-Vane Compressor and Expander Applied to a Solar-Driven Heat Pump (1978). International Compressor Engineering Conference. Paper 271. http://docs.lib.purdue.edu/icec/271. |
Number | Date | Country | |
---|---|---|---|
20110100011 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61256559 | Oct 2009 | US |