1. Field
The present application relates generally to thermoelectric cooling, heating, and power generation systems.
2. Description of Related Art
Thermoelectric (TE) devices and systems can be operated in either heating/cooling or power generation modes. In the former, electric current is passed through a TE device to pump the heat from the cold side to the hot side. In the latter, a heat flux driven by a temperature gradient across a TE device is converted into electricity. In both modalities, the performance of the TE device is largely determined by the figure of merit of the TE material and by the parasitic (dissipative) losses throughout the system. Working elements in the TE device are typically p-type and n-type semiconducting materials.
In certain embodiments, a thermoelectric power generating system is provided comprising at least one thermoelectric assembly. The at least one thermoelectric assembly comprises at least one first heat exchanger in thermal communication with at least a first portion of a first working fluid. The first portion of the first working fluid flows through the at least one thermoelectric assembly. The at least one thermoelectric assembly further comprises a plurality of thermoelectric elements in thermal communication with the at least one first heat exchanger. The at least one thermoelectric assembly further comprises at least one second heat exchanger in thermal communication with the plurality of thermoelectric elements and with a second working fluid flowing through the at least one thermoelectric assembly. The second working fluid is cooler than the first working fluid. The thermoelectric power generating system further comprises at least one heat exchanger portion configured to have at least some of the first portion of the first working fluid flow through the at least one heat exchanger portion after having flowed through the at least one thermoelectric assembly. The at least one heat exchanger portion is configured to recover heat from the at least some of the first portion of the first working fluid.
In some embodiments, the at least one heat exchanger portion can comprise a first conduit through which the at least some of the first portion of the first working fluid flows. The at least one heat exchanger portion can further comprise a second conduit through which at least a portion of the second working fluid flows. The second conduit is in thermal communication with the first conduit such that the portion of the second working fluid receives heat from the at least some of the first portion of the first working fluid.
In some embodiments, the at least one thermoelectric assembly is configured to convert high-temperature heat of the first working fluid to electricity such that low-temperature heat of the first working fluid is received by the at least one heat exchanger portion.
In some embodiments, the thermoelectric power generating system can comprise at least one bypass conduit. The thermoelectric power generating system further comprises at least one valve configured to selectively allow at least the first portion of the first working fluid to flow through the at least one first heat exchanger and to selectively allow at least a second portion of the first working fluid to flow through the bypass conduit.
In some embodiments, the at least one heat exchanger portion is configured to receive at least some of the second portion of the first working fluid after having flowed through the at least one bypass conduit and to recover heat from the at least some of the second portion of the first working fluid.
In some embodiments, the at least one valve can comprise a proportional valve.
In some embodiments, the at least one valve can comprise at least one component that is sensitive to high temperatures, and the at least one component is in thermal communication with the second working fluid.
In some embodiments, the first working fluid can comprise exhaust gas from an engine. The at least one heat exchanger portion is further configured to use the recovered heat to warm at least one of an engine block of the engine and a catalytic converter of the engine.
In some embodiments, the thermoelectric power generating system can further comprise at least one second heat exchanger portion configured to have at least the first portion of the first working fluid flow through the at least one second heat exchanger portion prior to flowing through the at least one thermoelectric assembly. The at least one second heat exchanger portion is configured to reduce a temperature of the first portion of the first working fluid.
In some embodiments, the first working fluid can comprise exhaust gas from an engine. The at least one thermoelectric assembly is integrated into at least one muffler of the engine.
In certain embodiments, a method of generating electricity is provided comprising receiving at least a first portion of a first working fluid. The method further comprises flowing the first portion of the first working fluid through at least one thermoelectric assembly and converting at least some heat from the first portion of the first working fluid to electricity. The method further comprises receiving at least some of the first portion of the first working fluid after having flowed through the at least one thermoelectric assembly. The method further comprises recovering at least some heat from the at least some of the first portion of the first working fluid.
In some embodiments, converting at least some heat from the first portion of the first working fluid to electricity can comprise converting high-temperature heat from the first working fluid to electricity. Recovering at least some heat from the at least some of the first portion of the first working fluid can comprise recovering low-temperature heat of the first working fluid.
In some embodiments, the method can further comprise selectively allowing at least the first portion of the first working fluid to flow through the at least one thermoelectric assembly and selectively allowing at least a second portion of the first working fluid to not flow through the at least one thermoelectric assembly.
In some embodiments, the first working fluid can comprise an exhaust gas from an engine. The method further comprises using the recovered heat to warm at least one of an engine block of the engine and a catalytic converter of the engine.
In some embodiments, the method can further comprise reducing a temperature of the first portion of the first working fluid prior to flowing through the at least one thermoelectric assembly.
In certain embodiments, a thermoelectric power generation system is provided comprising at least one thermoelectric assembly and a first flow path with a first flow resistance. The first flow path through the at least one thermoelectric assembly. The system further comprises a second flow path with a second flow resistance lower than the first flow resistance. The second flow path bypasses the at least one thermoelectric assembly. The system further comprises at least one valve configured to vary a first amount of a working fluid flowing along the first flow path and a second amount of the working fluid flowing along the second flow path.
In some embodiments, the system can further comprise at least one conduit comprising at least one wall portion having a plurality of perforations. The first flow path extends through the plurality of perforations.
In some embodiments, the at least one conduit can further comprises an inlet and an outlet. The at least one valve is between the inlet and the outlet.
In some embodiments, the at least one wall portion can further comprise a first wall portion with a first plurality of perforations and a second wall portion with a second plurality of perforations. The at least one valve between the first wall portion and the second wall portion. The first flow path extends through the first plurality of perforations outwardly from the at least one conduit and through the second plurality of perforations inwardly to the at least one conduit. The second flow path does not extend through the first plurality of perforations and not through the second plurality of perforations.
In some embodiments, the at least one valve can comprise a proportional valve. In some embodiments, the at least one valve can comprise a flap valve.
In some embodiments, the at least one thermoelectric assembly is integrated in a muffler of an engine exhaust system.
In certain embodiments, a method of generating electricity is provided comprising receiving a working fluid and selectively flowing at least a portion of the working fluid either along a first flow path having a first flow resistance or along a second flow path having a second flow resistance lower than the first flow resistance. The first flow path extends through at least one thermoelectric assembly. The second flow path does not extend through the at least one thermoelectric assembly.
In some embodiments, the first flow path extends through a plurality of perforations of at least one wall portion of at least one conduit.
In some embodiments, the at least one wall portion can further comprise a first wall portion with a first plurality of perforations and a second wall portion with a second plurality of perforations. The first flow path extends through the first plurality of perforations outwardly from the at least one conduit and through the second plurality of perforations inwardly to the at least one conduit.
The paragraphs above recite various features and configurations of one or more of a thermoelectric assembly, a thermoelectric module, or a thermoelectric system, that have been contemplated by the inventors. It is to be understood that the inventors have also contemplated thermoelectric assemblies, thermoelectric modules, and thermoelectric systems which comprise combinations of these features and configurations from the above paragraphs, as well as thermoelectric assemblies, thermoelectric modules, and thermoelectric systems which comprise combinations of these features and configurations from the above paragraphs with other features and configurations disclosed in the following paragraphs.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the thermoelectric assemblies or systems described herein. In addition, various features of different disclosed embodiments can be combined with one another to form additional embodiments, which are part of this disclosure. Any feature or structure can be removed, altered, or omitted. Throughout the drawings, reference numbers may be reused to indicate correspondence between reference elements.
Although certain embodiments and examples are disclosed herein, the subject matter extends beyond the examples in the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
A thermoelectric system as described herein comprise a thermoelectric generator (TEG) which uses the temperature difference between two fluids, two solids (e.g., rods), or a solid and a fluid to produce electrical power via thermoelectric materials. Alternatively, a thermoelectric system as described herein can comprise a heater, cooler, or both which serves as a solid state heat pump used to move heat from one surface to another, thereby creating a temperature difference between the two surfaces via the thermoelectric materials. Each of the surfaces can be in thermal communication with or comprise a solid, a liquid, a gas, or a combination of two or more of a solid, a liquid, and a gas, and the two surfaces can both be in thermal communication with a solid, both be in thermal communication with a liquid, both be in thermal communication with a gas, or one can be in thermal communication with a material selected from a solid, a liquid, and a gas, and the other can be in thermal communication with a material selected from the other two of a solid, a liquid, and a gas.
The thermoelectric system can include a single thermoelectric assembly (e.g., a single TE cartridge) or a group of thermoelectric assemblies (e.g., a group of TE cartridges), depending on usage, power output, heating/cooling capacity, coefficient of performance (COP) or voltage. Although the examples described herein may be described in connection with either a power generator or a heating/cooling system, the described features can be utilized with either a power generator or a heating/cooling system. Examples of TE cartridges compatible with certain embodiments described herein are provided by U.S. Pat. Appl. Publ. No. 2013/0104953, filed Jun. 5, 2012 and U.S. patent application Ser. No. 13/794,453, filed Mar. 11, 2013, each of which is incorporated in its entirety by reference herein.
The term “thermal communication” is used herein in its broad and ordinary sense, describing two or more components that are configured to allow heat transfer from one component to another. For example, such thermal communication can be achieved, without loss of generality, by snug contact between surfaces at an interface; one or more heat transfer materials or devices between surfaces; a connection between solid surfaces using a thermally conductive material system, wherein such a system can include pads, thermal grease, paste, one or more working fluids, or other structures with high thermal conductivity between the surfaces (e.g., heat exchangers); other suitable structures; or combinations of structures. Substantial thermal communication can take place between surfaces that are directly connected (e.g., contact each other) or indirectly connected via one or more interface materials.
As used herein, the terms “shunt” and “heat exchanger” have their broadest reasonable interpretation, including but not limited to a component (e.g., a thermally conductive device or material) that allows heat to flow from one portion of the component to another portion of the component. Shunts can be in thermal communication with one or more thermoelectric materials (e.g., one or more thermoelectric elements) and in thermal communication with one or more heat exchangers of the thermoelectric assembly or system. Shunts described herein can also be electrically conductive and in electrical communication with the one or more thermoelectric materials so as to also allow electrical current to flow from one portion of the shunt to another portion of the shunt (e.g., thereby providing electrical communication between multiple thermoelectric materials or elements). Heat exchangers (e.g., tubes and/or conduits) can be in thermal communication with the one or more shunts and one or more working fluids of the thermoelectric assembly or system. Various configurations of one or more shunts and one or more heat exchangers can be used (e.g., one or more shunts and one or more heat exchangers can be portions of the same unitary element, one or more shunts can be in electrical communication with one or more heat exchangers, one or more shunts can be electrically isolated from one or more heat exchangers, one or more shunts can be in direct thermal communication with the thermoelectric elements, one or more shunts can be in direct thermal communication with the one or more heat exchangers, an intervening material can be positioned between the one or more shunts and the one or more heat exchangers). Furthermore, as used herein, the words “cold,” “hot,” “cooler,” “hotter” and the like are relative terms, and do not signify a particular temperature or temperature range.
Certain embodiments described herein provide a thermoelectric power generating (TEG) system comprising at least one thermoelectric subsystem and at least one heat exchanger (or portion thereof) in thermal communication with the at least one thermoelectric subsystem.
For example, the at least one thermoelectric subsystem can comprise at least one “cartridge-based thermoelectric system” or “cartridge” with at least one thermoelectric assembly 10 or at least one thermoelectric system as disclosed in U.S. Pat. Appl. Publ. No. 2013/0104953, which is incorporated in its entirety by reference herein. The cartridge is configured to apply a temperature differential across an array of thermoelectric elements 30, 40 of the cartridge in accordance with certain embodiments described herein. FIG. 6B of U.S. Pat. Appl. Publ. No. 2013/0104953 illustrates a perspective cross-sectional view of an example cartridge compatible with certain embodiments described herein. The cartridge of this figure includes an anodized aluminum “cold side” tube or conduit which is in thermal communication with a plurality of thermoelectric elements and a plurality of “hot side” heat transfer assemblies in thermal communication with the plurality of thermoelectric elements, such that a temperature differential is applied across the thermoelectric elements. As described in U.S. Pat. Appl. Publ. No. 2013/0104953 regarding certain configurations, the “hot side” heat transfer assemblies can have a first working fluid (e.g., gas or vapor) flowing across the “hot side” heat transfer assemblies and the “cold side” tube can have a second working fluid (e.g., water) flowing through it.
In certain embodiments, the at least one heat exchanger comprises at least one heat pipe or at least one thermosyphon. For example, the at least one heat pipe or at least one thermosyphon can replace the “cold side” tube of the cartridge of FIG. 6B of U.S. Pat. Appl. Publ. No. 2013/0104953. As used herein, the term “heat pipe” has its broadest reasonable interpretation, including but not limited to a device that contains a material in a first phase (e.g., a liquid) that is configured (i) to absorb heat at a first position within the device and to change (e.g., evaporate) into a second phase (e.g., gas or vapor) and (ii) to move while in the second phase from the first position to a second position within the device, (iii) to emit heat at the second position and to change back (e.g., condense) into the first phase, and (iv) to return while in the first phase to the first position. As used herein, the term “thermosyphon” has its broadest reasonable interpretation, including but not limited to a device that contains a material (e.g., water) that is configured (i) to absorb heat at a first position within the device, (ii) to move from the first position to a second position within the device, (iii) to emit heat at the second position. For example, the material within the thermosyphon can circulate between the first position and the second position passively (e.g., without being pumped by a mechanical liquid pump) to provide convective heat transfer from the first position to the second position. In certain embodiments, the at least one heat exchanger can utilize gravity or can otherwise be orientation-dependent. In certain embodiments, the at least one heat exchanger does not comprise any moving parts (except the material moving between the first and second positions), and can be characterized as providing passive energy transfer or heat exchange.
TEG Portion and HEX Portion
In some embodiments, a TEG system 100 is provided that comprises at least one thermoelectric assembly 10 (e.g., at least one TEG portion 13 such as one or more TE cartridges as disclosed in U.S. Pat. Appl. Publ. No. 2013/0104953). The at least one thermoelectric assembly 10 comprises at least one first heat exchanger 50 in thermal communication with at least a first portion of a first working fluid (e.g., hot-side fluid, gas, vapor as indicated by arrow 19). The first portion of the first working fluid flows through the at least one thermoelectric assembly 10. The at least one thermoelectric assembly 10 further comprises a plurality of thermoelectric elements 30, 40 (e.g., n-type and/or p-type) in thermal communication with the at least one first heat exchanger 50. The at least one thermoelectric assembly 10 further comprises at least one second heat exchanger (e.g., thermally conductive conduit or tube 102 and/or shunts 110) in thermal communication with the plurality of thermoelectric elements 30, 40 and with a second working fluid (e.g., cold-side fluid, gas, vapor, water) flowing through the at least one thermoelectric assembly 10. The second working fluid is cooler than the first working fluid. The TEG system 100 further comprises at least one heat exchanger portion 15 configured to have at least some of the first portion of the first working fluid flow through the at least one heat exchanger portion 15 after having flowed through the at least one thermoelectric assembly 10. The at least one heat exchanger portion 15 is configured to recover heat from the at least some of the first portion of the first working fluid as discussed below.
In some embodiments, the at least one thermoelectric assembly 10 (e.g., the at least one TEG portion 13) can be located in a region having a high temperature differential between the first working fluid and the environment of the at least one thermoelectric assembly 10, thereby providing a high thermoelectric efficiency. The at least one heat exchanger portion 15 can be in fluidic communication with the TEG portion 13 (e.g., downstream of the TEG portion 13) and dedicated to a particular use of the heat of the first working fluid that is not converted into electricity by the TEG portion 13.
For example, as schematically illustrated by
As another example, as schematically illustrated by
Thus, the TEG system 100 can be configured to provide electrical power generation with high efficiency, and/or to provide recuperation (e.g., recovery) of the residual (e.g., low quality or low temperature) heat with high efficiency. In certain embodiments, the particular purpose for which the at least one heat exchanger portion 15 can use the low quality or low temperature heat can comprise recovering heat and applying it to other portions of the engine. In some embodiments, the first working fluid of the TEG system 100 comprises exhaust gas from an engine, and the at least one heat exchanger portion 15 is further configured to use recovered heat to warm at least one of an engine block of the engine, a catalytic converter of the engine, or a passenger compartment (e.g., cabin) of a vehicle. For example, at least a portion of the recovered heat can be put into the cooling system of an engine to achieve faster heating of the engine block at start-up (e.g., to warm up the oil lubrication system sooner) and/or at least a portion of the recovered heat can be put into the emission system to achieve faster heating or engagement of the catalytic converter to reach the “light-off” temperature sooner after start-up, thereby reducing overall emissions and/or at least a portion of the recovered heat can be used to improve the thermal comfort of the cabin to the driver and passengers of a vehicle. In certain such embodiments, the at least one heat exchanger portion 15 can comprise a first conduit through which the at least some of the first portion of the first working fluid flows and a second conduit through which at least a portion of the second working fluid flows. The second conduit can be in thermal communication with the first conduit such that the portion of the second working fluid receives heat from the at least some of the first portion of the first working fluid. In certain embodiments, the at least one thermoelectric assembly 10 and the at least one heat exchanger 15 can both utilize the same second working fluid.
As illustrated and disclosed with respect to
While the example TEG systems 100 of
For example, as illustrated in
A method 300 for generating electricity according to certain embodiments described herein is illustrated in the flow diagram of
In some embodiments, converting at least some heat from the first portion of the first working fluid to electricity comprises converting high-temperature heat from the first working fluid to electricity. Further, recovering at least some heat from the at least some of the first portion of the first working fluid comprises recovering low-temperature heat of the first working fluid.
In some embodiments, the method 300 of generating electricity further comprises selectively allowing at least the first portion of the first working fluid to flow through the at least one thermoelectric assembly 10 and selectively allowing at least a second portion of the first working fluid to not flow through the at least one thermoelectric assembly 10 (e.g., through at least one bypass conduit 23).
In some embodiments, the first working fluid comprises an exhaust gas from an engine and the method further comprises using the recovered heat to warm at least one of an engine block of the engine and a catalytic converter of the engine.
In some embodiments, the method 300 of generating electricity further comprises reducing a temperature of the first portion of the first working fluid prior to flowing through the at least one thermoelectric assembly 10 (e.g., using at least one second heat exchanger portion 25).
Temperature-Activated Heat Exchanger
Regarding the overheating protection, in TEG operation, there is often a limit to the temperatures that the TE material can withstand. Unfortunately, in extreme situations, the exhaust gas temperatures can be excessive and can cause the TE surface temperature to exceed its limit unless it is regulated. To prevent the TE material from overheating, some or all of the exhaust flow can be bypassed (e.g., be directed away) from the TE material. However, such an embodiment may bypass more potentially valuable heat than is necessary or desirable. For example, all of the heat may be bypassed when the flow is bypassed, as opposed to just the high quality or high temperature heat.
In certain embodiments described herein, the TE surface temperature can be controlled by dissipating the excessive heat prior to entering the at least one thermoelectric assembly 10. The remainder of the heat in the exhaust flow could then continue into the at least one thermoelectric assembly 10, thereby preventing the unnecessary bypass of valuable heat.
Certain embodiments described herein advantageously only dissipate heat when there is an excess amount of heat.
As schematically illustrated in
For example, the outer region 21 (e.g., the second concentric annular region bounded by the second conduit) can be configured to allow a coolant (e.g., gas or liquid) to flow through (e.g., in a direction generally perpendicular to the plane of the cross-sectional view in
In certain embodiments, the heat pipe 27 can be used to provide a temperature-activated heat exchanger. The evaporator portion of the heat pipe or thermal plane could work above a certain temperature (e.g., 700 C), for example, using one or more high-temperature heat pipe fluids 31, such as Li, Na, K, and Cs, which are known in the art. In certain embodiments, at low temperatures (e.g., before the high temperature condition is reached), the heat transfer is poor, based on natural convection of the high-temperature fluid. Once activated, the heat exchanger portion 26 of certain embodiments can use the high heat transfer capability of boiling and condensing to transfer heat. For example, heat transfer coefficients can go up by a factor of 100 from the low temperature regime to the high temperature regime.
Protecting Temperature-Sensitive Components
Thermoelectric Assemblies Integrated into a Muffler
In certain embodiments, the TEG system 100 can integrate at least one thermoelectric assembly 10 with acoustic dampening components (e.g., mufflers).
Multiple-Shell Muffler
In certain embodiments, the inner shell 79 contains or carries the at least one thermoelectric assembly 10 and the outer shell 81 (e.g., cover shell) contains, supports, and protects the electrical cables and coolant (e.g., water) pipes. For a controlled routing of the pipes and their fixation, the shell design can be formed accordingly. Various configurations are also compatible with certain embodiments described herein. For example, the TEG system 100 can comprise an inner shell 79 for the at least one thermoelectric assembly 10 and inner baffles that can provide the desired acoustic reduction. A catalytic converter can be integrated into the inner shell 79 (e.g., upstream of the at least one thermoelectric assembly). The TEG system 100 can comprise a first (e.g., inner) shell 79 for the TE cartridges, a second shell containing a thermal insulation material 83, and a third (e.g., outer) shell 81 containing the electrical cabling and coolant (e.g., water) routing.
Coolant channels can be formed into the half-shell design without separate coolant tubing.
Integration of Bypass and Helmholtz Resonator
Valve to Control Mass Flow
For example, the at least one valve 201 can be controlled to vary the first amount (e.g., fraction) of the working fluid to be any value between zero and 100% of the total amount of working fluid flowing through the TEG system 200 (e.g., 0%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%). The at least one valve 201 can be controlled to vary the second amount (e.g., fraction) of the working fluid to be any value between zero and 100% of the total amount of working fluid flowing through the TEG system 200 (e.g., 0%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 100%).
In some embodiments, the at least one thermoelectric assembly 10 is integrated into a muffler of an engine exhaust system, in accordance with certain embodiments described herein. In certain embodiments, the TEG system 200 can be designed in order to ensure 100% mass flow through the bypass (e.g., second flow path) when the valve 201 is open.
In some embodiments, the TEG system 200 further comprises at least one conduit 207 comprising at least one wall portion 209 having a plurality of perforations 211. The first flow path extends through the plurality of perforations 211. In some embodiments, the at least one conduit 207 further comprises an inlet 213 and an outlet 215, and the at least one valve 201 is between the inlet 213 and the outlet 215
In some embodiments, the at least one wall portion 209 comprises a first wall portion 209A with a first plurality of perforations 211A and a second wall portion 209B with a second plurality of perforations 211B. The at least one valve 201 is positioned between the first wall portion 209A and the second wall portion 209B. The first flow path extends through the first plurality of perforations 211A outwardly from the at least one conduit 207 and through the second plurality of perforations 211B inwardly to the at least one conduit 207. The second flow path does not extend through the first plurality of perforations 211A and does not extend through the second plurality of perforations 211B.
For example, a flow path can be designed for the TEG branch in which the back-pressure field is higher than the pressure field in the bypass when the at least one valve 201 is open. While
A method 400 for generating electricity according to certain embodiments described herein is illustrated in the flow diagram of
In some embodiments, the first flow path extends through a plurality of perforations 211 of at least one wall portion 209 of at least one conduit 207.
In some embodiments, the at least one wall portion 209 comprises a first wall portion 209A with a first plurality of perforations 211A and a second wall portion 209B with a second plurality of perforations 211B. The first flow path extends through the first plurality of perforations 211A outwardly from the at least one conduit 207 and through the second plurality of perforations 211B inwardly to the at least one conduit 207.
Integrated Proportional Bypass Valve
Certain embodiments described herein provide a thermoelectric power generating (TEG) system 500 comprising at least one thermoelectric subsystem 509 (e.g., at least one thermoelectric assembly 10) and at least one bypass conduit 511. The TEG system 500 further comprises at least one proportional valve 513 and is configured to receive a first working fluid (e.g., hot gas such as exhaust gas) from a source (e.g., an engine). The at least one proportional valve 513 is configured to controllably allow a first fraction of the first working fluid to flow in thermal communication with the at least one thermoelectric subsystem 509 and to controllably allow a second fraction of the first working fluid to flow through the at least one bypass conduit 511 such that the second fraction is not in thermal communication with the at least one thermoelectric subsystem 509. For example, the at least one proportional valve 513 can be integrated into the TEG system 500, the at least one bypass conduit 511 can be integrated into a main shell 515 of the TEG system 500, and the TEG system 500 can have double-wall thermal insulation 517 (e.g., top and bottom walls) that provide thermal insulation of the at least one thermoelectric subsystem 509 from the environment.
As discussed in accordance with other embodiments above, the at least one thermoelectric subsystem 509 can comprise at least one “cartridge-based thermoelectric system” or “cartridge” with at least one thermoelectric assembly or at least one thermoelectric system as disclosed in U.S. Pat. Appl. Publ. No. 2013/0104953 which is incorporated in its entirety by reference herein. The thermoelectric subsystem 509 can be configured to apply a temperature differential across an array of thermoelectric elements of the thermoelectric subsystem 509 in accordance with certain embodiments described herein. For example, FIG. 6B of U.S. Pat. Appl. Publ. No. 2013/0104953 illustrates a perspective cross-sectional view of an example cartridge of the thermoelectric subsystem 509 compatible with certain embodiments described herein. The cartridge of this figure can include an anodized aluminum “cold side” tube which is in thermal communication with a plurality of thermoelectric elements, and a plurality of “hot side” heat transfer assemblies in thermal communication with the plurality of thermoelectric elements, such that a temperature differential is applied across the thermoelectric elements. As described in U.S. Pat. Appl. Publ. No. 2013/0104953 regarding certain configurations, the “cold side” tube can have a first working fluid (e.g., water) flowing through it, and the “hot side” heat transfer assemblies can have a second working fluid (e.g., gas or vapor) flowing across the “hot side” heat transfer assemblies. The at least one proportional valve 513 can be used in a TEG system 100 that also includes one or more of the structures described above with regard to
Discussion of the various embodiments herein has generally followed the embodiments schematically illustrated in the figures. However, it is contemplated that the particular features, structures, or characteristics of any embodiments discussed herein may be combined in any suitable manner in one or more separate embodiments not expressly illustrated or described. In many cases, structures that are described or illustrated as unitary or contiguous can be separated while still performing the function(s) of the unitary structure. In many instances, structures that are described or illustrated as separate can be joined or combined while still performing the function(s) of the separated structures.
Various embodiments have been described above. Although the inventions have been described with reference to these specific embodiments, the descriptions are intended to be illustrative and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the spirit and scope of the inventions as defined in the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/678,511, filed Aug. 1, 2012 and U.S. Provisional Application No. 61/678,975, filed Aug. 2, 2012. The entire contents of each of the applications identified above are incorporated by reference herein and made a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
413136 | Dewey | Oct 1889 | A |
1120781 | Altenkirch et al. | Dec 1914 | A |
2027534 | Ingersoll | Jan 1936 | A |
2362259 | Findley | Nov 1944 | A |
2363168 | Findley | Nov 1944 | A |
2499901 | Brown, Jr. | Mar 1950 | A |
2519241 | Findley | Aug 1950 | A |
2944404 | Fritts | Jul 1960 | A |
2992538 | Siegfried | Jul 1961 | A |
3004393 | Alsing | Oct 1961 | A |
3006979 | Rich | Oct 1961 | A |
3019609 | Pietsch | Feb 1962 | A |
3070645 | Tracht | Dec 1962 | A |
3071495 | Hanlein | Jan 1963 | A |
3129116 | Corry | Apr 1964 | A |
3137142 | Venema | Jun 1964 | A |
3178895 | Mole et al. | Apr 1965 | A |
3196620 | Elfving et al. | Jul 1965 | A |
3197342 | Neild, Jr. | Jul 1965 | A |
3213630 | Mole | Oct 1965 | A |
3391727 | Armenag Topouszian | Jul 1968 | A |
3505728 | Hare et al. | Apr 1970 | A |
3522106 | Debiesse et al. | Jul 1970 | A |
3527621 | Newton | Sep 1970 | A |
3554815 | Osborn | Jan 1971 | A |
3599437 | Panas | Aug 1971 | A |
3607444 | DeBucs | Sep 1971 | A |
3615869 | Barker et al. | Oct 1971 | A |
3626704 | Coe, Jr. | Dec 1971 | A |
3635037 | Hubert | Jan 1972 | A |
3663307 | Mole | May 1972 | A |
3681929 | Schering | Aug 1972 | A |
3726100 | Widakowich | Apr 1973 | A |
3817043 | Zoleta | Jun 1974 | A |
3880674 | Saunders | Apr 1975 | A |
3885126 | Sugiyama et al. | May 1975 | A |
3958324 | Alais et al. | May 1976 | A |
3973524 | Rubin | Aug 1976 | A |
4038831 | Gaudel et al. | Aug 1977 | A |
4047093 | Levoy | Sep 1977 | A |
4055053 | Elfving | Oct 1977 | A |
4056406 | Markman et al. | Nov 1977 | A |
4065936 | Fenton et al. | Jan 1978 | A |
4095998 | Hanson | Jun 1978 | A |
4125122 | Stachurski | Nov 1978 | A |
4211889 | Kortier et al. | Jul 1980 | A |
4281516 | Berthet et al. | Aug 1981 | A |
4297841 | Cheng | Nov 1981 | A |
4297849 | Buffet | Nov 1981 | A |
4386596 | Tuckey | Jun 1983 | A |
4402188 | Skala | Sep 1983 | A |
4420940 | Buffet | Dec 1983 | A |
4448028 | Chao et al. | May 1984 | A |
4448157 | Eckstein et al. | May 1984 | A |
4494380 | Cross | Jan 1985 | A |
4499329 | Benicourt et al. | Feb 1985 | A |
4531379 | Diefenthaler, Jr. | Jul 1985 | A |
4595297 | Liu et al. | Jun 1986 | A |
4634803 | Mathiprakasam | Jan 1987 | A |
4651019 | Gilbert et al. | Mar 1987 | A |
4730459 | Schlicklin et al. | Mar 1988 | A |
4753682 | Cantoni | Jun 1988 | A |
4802929 | Schock | Feb 1989 | A |
4885087 | Kopf | Dec 1989 | A |
4907060 | Nelson et al. | Mar 1990 | A |
4989626 | Takagi et al. | Feb 1991 | A |
5006178 | Bijvoets | Apr 1991 | A |
5038569 | Shirota et al. | Aug 1991 | A |
5092129 | Bayes et al. | Mar 1992 | A |
5171372 | Recine, Sr. | Dec 1992 | A |
5180293 | Hartl | Jan 1993 | A |
5193347 | Apisdorf | Mar 1993 | A |
5228923 | Hed | Jul 1993 | A |
5232516 | Hed | Aug 1993 | A |
5254178 | Yamada et al. | Oct 1993 | A |
5291960 | Brandenburg et al. | Mar 1994 | A |
5316078 | Cesaroni | May 1994 | A |
5385020 | Gwilliam et al. | Jan 1995 | A |
5419780 | Suski | May 1995 | A |
5419980 | Okamoto et al. | May 1995 | A |
5429680 | Fuschetti | Jul 1995 | A |
5430322 | Koyanagi et al. | Jul 1995 | A |
5431021 | Gwilliam et al. | Jul 1995 | A |
5456081 | Chrysler et al. | Oct 1995 | A |
5497625 | Manz et al. | Mar 1996 | A |
5544487 | Attey et al. | Aug 1996 | A |
5549153 | Baruschke et al. | Aug 1996 | A |
5561981 | Quisenberry et al. | Oct 1996 | A |
5563368 | Yamaguchi | Oct 1996 | A |
5566774 | Yoshida | Oct 1996 | A |
5576512 | Doke | Nov 1996 | A |
5584183 | Wright et al. | Dec 1996 | A |
5592363 | Atarashi et al. | Jan 1997 | A |
5594609 | Lin | Jan 1997 | A |
5682748 | DeVilbiss et al. | Nov 1997 | A |
5705770 | Ogassawara et al. | Jan 1998 | A |
5713426 | Okamura | Feb 1998 | A |
5724818 | Iwata et al. | Mar 1998 | A |
5822993 | Attey | Oct 1998 | A |
5860472 | Batchelder | Jan 1999 | A |
5867990 | Ghoshal | Feb 1999 | A |
5917144 | Miyake et al. | Jun 1999 | A |
5959341 | Tsuno et al. | Sep 1999 | A |
5966941 | Ghoshal | Oct 1999 | A |
5987890 | Chiu et al. | Nov 1999 | A |
6000225 | Choshal | Dec 1999 | A |
6028263 | Kobayashi et al. | Feb 2000 | A |
6050326 | Evans | Apr 2000 | A |
6082445 | Dugan | Jul 2000 | A |
6084172 | Kishi et al. | Jul 2000 | A |
6096966 | Nishimoto et al. | Aug 2000 | A |
6127766 | Roidt | Oct 2000 | A |
6213198 | Shikata et al. | Apr 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6226994 | Yamada et al. | May 2001 | B1 |
6270015 | Hirota | Aug 2001 | B1 |
6282907 | Ghoshal | Sep 2001 | B1 |
6302196 | Haussmann | Oct 2001 | B1 |
6320280 | Kanesaka | Nov 2001 | B1 |
6334311 | Kim et al. | Jan 2002 | B1 |
6346668 | McGrew | Feb 2002 | B1 |
6347521 | Kadotani et al. | Feb 2002 | B1 |
6357518 | Sugimoto et al. | Mar 2002 | B1 |
6367261 | Marshall et al. | Apr 2002 | B1 |
6385976 | Yamamura et al. | May 2002 | B1 |
6393842 | Kim | May 2002 | B2 |
6446442 | Batchelor et al. | Sep 2002 | B1 |
6474073 | Uetsuji et al. | Nov 2002 | B1 |
6477844 | Ohkubo et al. | Nov 2002 | B2 |
6499306 | Gillen | Dec 2002 | B2 |
6530231 | Nagy et al. | Mar 2003 | B1 |
6539725 | Bell | Apr 2003 | B2 |
6541139 | Cibuzar | Apr 2003 | B1 |
6548750 | Picone | Apr 2003 | B1 |
6560968 | Ko | May 2003 | B2 |
6563039 | Caillat et al. | May 2003 | B2 |
RE38128 | Gallup et al. | Jun 2003 | E |
6580025 | Guy | Jun 2003 | B2 |
6598403 | Ghoshal | Jul 2003 | B1 |
6598405 | Bell | Jul 2003 | B2 |
6605773 | Kok | Aug 2003 | B2 |
6606866 | Bell | Aug 2003 | B2 |
6613972 | Cohen et al. | Sep 2003 | B2 |
6625990 | Bell | Sep 2003 | B2 |
6637210 | Bell | Oct 2003 | B2 |
6650968 | Hallum et al. | Nov 2003 | B2 |
6672076 | Bell | Jan 2004 | B2 |
6700052 | Bell | Mar 2004 | B2 |
6700053 | Hara et al. | Mar 2004 | B2 |
6705089 | Chu et al. | Mar 2004 | B2 |
6718954 | Ryon | Apr 2004 | B2 |
6779348 | Taban | Aug 2004 | B2 |
6787691 | Fleurial et al. | Sep 2004 | B2 |
6812395 | Bell | Nov 2004 | B2 |
6880346 | Tseng et al. | Apr 2005 | B1 |
6886356 | Kubo et al. | May 2005 | B2 |
6894215 | Akiba | May 2005 | B2 |
6907739 | Bell | Jun 2005 | B2 |
6948321 | Bell | Sep 2005 | B2 |
6959555 | Bell | Nov 2005 | B2 |
6973799 | Kuehl et al. | Dec 2005 | B2 |
6975060 | Styblo et al. | Dec 2005 | B2 |
6986247 | Parise | Jan 2006 | B1 |
7100369 | Yamaguchi et al. | Sep 2006 | B2 |
7111465 | Bell | Sep 2006 | B2 |
7134288 | Crippen et al. | Nov 2006 | B2 |
7171955 | Perkins | Feb 2007 | B2 |
7222489 | Pastorino | May 2007 | B2 |
7231772 | Bell | Jun 2007 | B2 |
7235735 | Venkatasubramanian et al. | Jun 2007 | B2 |
7273981 | Bell | Sep 2007 | B2 |
7380586 | Gawthrop | Jun 2008 | B2 |
7421845 | Bell | Sep 2008 | B2 |
7430875 | Sasaki et al. | Oct 2008 | B2 |
7475551 | Ghoshal | Jan 2009 | B2 |
7523607 | Sullivan | Apr 2009 | B2 |
7523617 | Venkatasubramanian et al. | Apr 2009 | B2 |
7587902 | Bell | Sep 2009 | B2 |
7608777 | Bell et al. | Oct 2009 | B2 |
7610993 | Sullivan | Nov 2009 | B2 |
7629530 | Inaoka | Dec 2009 | B2 |
7788933 | Goenka | Sep 2010 | B2 |
7868242 | Takahashi et al. | Jan 2011 | B2 |
7870745 | Goenka | Jan 2011 | B2 |
7915516 | Hu | Mar 2011 | B2 |
7921640 | Major | Apr 2011 | B2 |
7926293 | Bell | Apr 2011 | B2 |
7932460 | Bell | Apr 2011 | B2 |
7942010 | Bell | May 2011 | B2 |
7946120 | Bell | May 2011 | B2 |
8039726 | Zhang et al. | Oct 2011 | B2 |
8069674 | Bell | Dec 2011 | B2 |
8079223 | Bell | Dec 2011 | B2 |
8188359 | Chakraborty | May 2012 | B2 |
8297049 | Ohtani | Oct 2012 | B2 |
8327634 | Orihashi et al. | Dec 2012 | B2 |
8375728 | Bell | Feb 2013 | B2 |
8424315 | Goenka | Apr 2013 | B2 |
8445772 | Bell et al. | May 2013 | B2 |
8459984 | Duesel, Jr. et al. | Jun 2013 | B2 |
8495884 | Bell et al. | Jul 2013 | B2 |
8540466 | Halliar | Sep 2013 | B2 |
8552284 | Kanno et al. | Oct 2013 | B2 |
8613200 | Lagrandeur et al. | Dec 2013 | B2 |
8614390 | Watts | Dec 2013 | B2 |
8640466 | Bell et al. | Feb 2014 | B2 |
8646261 | Meisner et al. | Feb 2014 | B2 |
8646262 | Magnetto | Feb 2014 | B2 |
8656710 | Bell et al. | Feb 2014 | B2 |
8658881 | Cheng et al. | Feb 2014 | B2 |
8701422 | Bell et al. | Apr 2014 | B2 |
8969704 | Brûck et al. | Mar 2015 | B2 |
9003784 | Limbeck et al. | Apr 2015 | B2 |
9006556 | Bell et al. | Apr 2015 | B2 |
9006557 | LaGrandeur et al. | Apr 2015 | B2 |
9020572 | Mensinger et al. | Apr 2015 | B2 |
9105809 | Lofy | Aug 2015 | B2 |
20010029974 | Cohen et al. | Oct 2001 | A1 |
20020014261 | Caillat et al. | Feb 2002 | A1 |
20020024154 | Hara et al. | Feb 2002 | A1 |
20030041892 | Fleurial et al. | Mar 2003 | A1 |
20030094265 | Chu et al. | May 2003 | A1 |
20030106677 | Memory et al. | Jun 2003 | A1 |
20030140636 | Van Winkle | Jul 2003 | A1 |
20030140957 | Akiba | Jul 2003 | A1 |
20030217738 | Ryon | Nov 2003 | A1 |
20030223919 | Kwak et al. | Dec 2003 | A1 |
20040025516 | Van Winkle | Feb 2004 | A1 |
20040045594 | Hightower | Mar 2004 | A1 |
20040076214 | Bell et al. | Apr 2004 | A1 |
20040089336 | Hunt | May 2004 | A1 |
20040177876 | Hightower | Sep 2004 | A1 |
20040221577 | Yamaguchi et al. | Nov 2004 | A1 |
20040261831 | Hightower | Dec 2004 | A1 |
20040267408 | Kramer | Dec 2004 | A1 |
20050074646 | Rajashekara et al. | Apr 2005 | A1 |
20050105224 | Nishi | May 2005 | A1 |
20050121065 | Otey | Jun 2005 | A1 |
20050139692 | Yamamoto | Jun 2005 | A1 |
20050172993 | Shimoji et al. | Aug 2005 | A1 |
20050194034 | Yamaguchi et al. | Sep 2005 | A1 |
20050217714 | Nishijima et al. | Oct 2005 | A1 |
20050263176 | Yamaguchi et al. | Dec 2005 | A1 |
20060005548 | Ruckstuhl | Jan 2006 | A1 |
20060005873 | Kambe et al. | Jan 2006 | A1 |
20060080979 | Kitanovski et al. | Apr 2006 | A1 |
20060086118 | Venkatasubramanian et al. | Apr 2006 | A1 |
20060118159 | Tsuneoka et al. | Jun 2006 | A1 |
20060124165 | Bierschenk et al. | Jun 2006 | A1 |
20060130888 | Yamaguchi et al. | Jun 2006 | A1 |
20060157102 | Nakajima et al. | Jul 2006 | A1 |
20060168969 | Mei et al. | Aug 2006 | A1 |
20060174633 | Beckley | Aug 2006 | A1 |
20060179820 | Sullivan | Aug 2006 | A1 |
20060219281 | Kuroyanagi et al. | Oct 2006 | A1 |
20060240369 | Duesel, Jr. et al. | Oct 2006 | A1 |
20060254284 | Ito et al. | Nov 2006 | A1 |
20070000255 | Elliot et al. | Jan 2007 | A1 |
20070045044 | Sullivan | Mar 2007 | A1 |
20070125413 | Olsen et al. | Jun 2007 | A1 |
20070193617 | Taguchi | Aug 2007 | A1 |
20070220902 | Matsuoka et al. | Sep 2007 | A1 |
20070261729 | Hu | Nov 2007 | A1 |
20070272290 | Sims et al. | Nov 2007 | A1 |
20080035195 | Bell | Feb 2008 | A1 |
20080083445 | Chakraborty | Apr 2008 | A1 |
20080090137 | Buck et al. | Apr 2008 | A1 |
20080115818 | Cheng et al. | May 2008 | A1 |
20080283110 | Jin et al. | Nov 2008 | A1 |
20080289677 | Bell | Nov 2008 | A1 |
20090000310 | Bell et al. | Jan 2009 | A1 |
20090007952 | Kondoh et al. | Jan 2009 | A1 |
20090038302 | Yamada et al. | Feb 2009 | A1 |
20090133734 | Takahashi et al. | May 2009 | A1 |
20090151342 | Major | Jun 2009 | A1 |
20090293499 | Bell et al. | Dec 2009 | A1 |
20090301103 | Bell et al. | Dec 2009 | A1 |
20090301539 | Watts | Dec 2009 | A1 |
20100024859 | Bell et al. | Feb 2010 | A1 |
20100031987 | Bell | Feb 2010 | A1 |
20100052374 | Bell et al. | Mar 2010 | A1 |
20100095996 | Bell | Apr 2010 | A1 |
20100101238 | LaGrandeur et al. | Apr 2010 | A1 |
20100101239 | LaGrandeur et al. | Apr 2010 | A1 |
20100186399 | Huttinger | Jul 2010 | A1 |
20100236595 | Bell | Sep 2010 | A1 |
20100326092 | Goenka | Dec 2010 | A1 |
20100331657 | Mensinger et al. | Dec 2010 | A1 |
20110005562 | Bisges | Jan 2011 | A1 |
20110067742 | Bell et al. | Mar 2011 | A1 |
20110185715 | Limbeck et al. | Aug 2011 | A1 |
20110209740 | Bell et al. | Sep 2011 | A1 |
20110244300 | Closek et al. | Oct 2011 | A1 |
20110247668 | Bell et al. | Oct 2011 | A1 |
20110258995 | Limbeck et al. | Oct 2011 | A1 |
20110271994 | Gilley | Nov 2011 | A1 |
20110308771 | Heckenberger et al. | Dec 2011 | A1 |
20120060775 | Aixala | Mar 2012 | A1 |
20120073276 | Meisner et al. | Mar 2012 | A1 |
20120102934 | Magnetto | May 2012 | A1 |
20120111386 | Bell et al. | May 2012 | A1 |
20120174567 | Limbeck et al. | Jul 2012 | A1 |
20120174568 | Bruck et al. | Jul 2012 | A1 |
20120177864 | Limbeck et al. | Jul 2012 | A1 |
20120266608 | Kadle et al. | Oct 2012 | A1 |
20120305043 | Kossakovski et al. | Dec 2012 | A1 |
20130037073 | LaGrandeur et al. | Feb 2013 | A1 |
20130068273 | Kanno et al. | Mar 2013 | A1 |
20130104953 | Poliquin et al. | May 2013 | A1 |
20130160809 | Mueller | Jun 2013 | A1 |
20130167894 | Brueck et al. | Jul 2013 | A1 |
20130186448 | Ranalli et al. | Jul 2013 | A1 |
20130255739 | Kossakovski et al. | Oct 2013 | A1 |
20130276849 | Kossakovski et al. | Oct 2013 | A1 |
20130327368 | Crane | Dec 2013 | A1 |
20130327369 | Jovovic et al. | Dec 2013 | A1 |
20130340802 | Jovovic et al. | Dec 2013 | A1 |
20140034102 | Ranalli et al. | Feb 2014 | A1 |
20140096807 | Ranalli | Apr 2014 | A1 |
20140190185 | Bell et al. | Jul 2014 | A1 |
20140224291 | Bell | Aug 2014 | A1 |
20140325997 | Bell | Nov 2014 | A1 |
20150176872 | Goenka | Jun 2015 | A1 |
20150194590 | LaGrandeur | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
1195090 | Oct 1998 | CN |
1249067 | Mar 2000 | CN |
1295345 | May 2001 | CN |
1343294 | Apr 2002 | CN |
ZL 200510068776.8 | May 2010 | CN |
43 29 816 | Mar 1994 | DE |
10 2008 063701 | Jun 2010 | DE |
10 2009 003 737 | Oct 2010 | DE |
10 2010 012 629 | Sep 2011 | DE |
10 2010 035 152 | Feb 2012 | DE |
0 272 937 | Jun 1988 | EP |
0 878 851 | Nov 1998 | EP |
1 174 996 | Jan 2002 | EP |
1 475 532 | Nov 2004 | EP |
1 515 376 | Mar 2005 | EP |
1 679 480 | Jul 2006 | EP |
1 780 807 | May 2007 | EP |
2 159 854 | Mar 2010 | EP |
2 180 534 | Apr 2010 | EP |
2 275 755 | Jan 2011 | EP |
1 906 463 | Mar 2011 | EP |
2 378 577 | Oct 2011 | EP |
2 381 083 | Oct 2011 | EP |
2 439 799 | Apr 2012 | EP |
2 541 634 | Jan 2013 | EP |
2 313 938 | Oct 2013 | EP |
1 280 711 | Jan 1962 | FR |
2 261 638 | Sep 1975 | FR |
2 316 557 | Jan 1977 | FR |
2 419 479 | Oct 1979 | FR |
2 481 786 | Nov 1981 | FR |
2543275 | Sep 1984 | FR |
2 512 499 | Oct 1984 | FR |
2 550 324 | Feb 1985 | FR |
2 806 666 | Sep 2001 | FR |
2 879 728 | Jun 2006 | FR |
231 192 | May 1926 | GB |
817 077 | Jul 1959 | GB |
952 678 | Mar 1964 | GB |
1151947 | May 1969 | GB |
2 027 534 | Feb 1980 | GB |
2 267 338 | Dec 1993 | GB |
2 333 352 | Jul 1999 | GB |
45-008280 | Mar 1970 | JP |
59097457 | Jun 1984 | JP |
60-80044 | Jul 1985 | JP |
63-262076 | Oct 1988 | JP |
01-131830 | May 1989 | JP |
01-200122 | Aug 1989 | JP |
03-102219 | Oct 1991 | JP |
03-263382 | Nov 1991 | JP |
04-165234 | Jun 1992 | JP |
05-195765 | Aug 1993 | JP |
5-219765 | Aug 1993 | JP |
06-038560 | Feb 1994 | JP |
06-089955 | Mar 1994 | JP |
6-342940 | Dec 1994 | JP |
7-198284 | Jan 1995 | JP |
A-7-7187 | Jan 1995 | JP |
07-074397 | Mar 1995 | JP |
H07 111344 | Apr 1995 | JP |
09-321355 | May 1995 | JP |
7 156645 | Jun 1995 | JP |
A-7-202275 | Aug 1995 | JP |
07-253264 | Feb 1996 | JP |
08-037322 | Feb 1996 | JP |
08-098569 | Apr 1996 | JP |
08-222771 | Aug 1996 | JP |
A-8-293627 | Nov 1996 | JP |
09-042801 | Feb 1997 | JP |
9-089284 | Apr 1997 | JP |
09-275692 | Oct 1997 | JP |
09-276076 | Oct 1997 | JP |
H 09-276076 | Oct 1997 | JP |
10 012935 | Jan 1998 | JP |
10-035268 | Feb 1998 | JP |
10 163538 | Jun 1998 | JP |
H10-325561 | Aug 1998 | JP |
10238406 | Sep 1998 | JP |
10-275943 | Oct 1998 | JP |
10290590 | Oct 1998 | JP |
11-317481 | Nov 1998 | JP |
11-032492 | Feb 1999 | JP |
11 046021 | Feb 1999 | JP |
11-182907 | Jul 1999 | JP |
11-201475 | Jul 1999 | JP |
11-274574 | Oct 1999 | JP |
11-274575 | Oct 1999 | JP |
11-041959 | Dec 1999 | JP |
2000 018095 | Jan 2000 | JP |
H2000-58930 | Feb 2000 | JP |
2000-208823 | Jul 2000 | JP |
2002-21534 | Jul 2000 | JP |
H2000-214934 | Aug 2000 | JP |
2000-274788 | Oct 2000 | JP |
2000-274871 | Oct 2000 | JP |
2000-274874 | Oct 2000 | JP |
2000 286469 | Oct 2000 | JP |
2000 323759 | Nov 2000 | JP |
01 007263 | Jan 2001 | JP |
2001-24240 | Jan 2001 | JP |
2001 210879 | Aug 2001 | JP |
2001-267642 | Sep 2001 | JP |
2001304778 | Oct 2001 | JP |
2001-336853 | Jan 2002 | JP |
2002-13758 | Jan 2002 | JP |
2002-059736 | Feb 2002 | JP |
2002 111078 | Apr 2002 | JP |
2002 199761 | Jul 2002 | JP |
2002 232028 | Aug 2002 | JP |
2002 325470 | Nov 2002 | JP |
2003 86223 | Mar 2003 | JP |
2003 175720 | Jun 2003 | JP |
2003 259671 | Sep 2003 | JP |
2003 332642 | Nov 2003 | JP |
2004 079883 | Mar 2004 | JP |
2004-332596 | Nov 2004 | JP |
2004 343898 | Dec 2004 | JP |
2004 360522 | Dec 2004 | JP |
2004-360681 | Dec 2004 | JP |
2005-151661 | Jun 2005 | JP |
2005 212564 | Aug 2005 | JP |
2005-299417 | Oct 2005 | JP |
2005 317648 | Nov 2005 | JP |
2006 214350 | Aug 2006 | JP |
2006-250524 | Sep 2006 | JP |
2008 042994 | Feb 2008 | JP |
2008 274790 | Nov 2008 | JP |
2008 300465 | Dec 2008 | JP |
2008-546954 | Dec 2008 | JP |
2009-010138 | Jan 2009 | JP |
2009 033806 | Feb 2009 | JP |
2012-522176 | Sep 2012 | JP |
2013-500590 | Jan 2013 | JP |
66619 | Feb 1973 | LU |
2 099 642 | Dec 1997 | RU |
2 142 178 | Nov 1999 | RU |
2 154 875 | Aug 2000 | RU |
2 174 475 | Oct 2001 | RU |
2174475 | Oct 2001 | RU |
329 870 | Oct 1970 | SE |
337 227 | May 1971 | SE |
184886 | Jul 1966 | SU |
1142711 | Feb 1985 | SU |
1170234 | Jul 1985 | SU |
WO 9520721 | Aug 1995 | WO |
WO 9722486 | Jun 1997 | WO |
WO 9747930 | Dec 1997 | WO |
WO 98034451 | Oct 1998 | WO |
WO 9850686 | Nov 1998 | WO |
WO 9856047 | Dec 1998 | WO |
WO 9910191 | Mar 1999 | WO |
WO 0152332 | Jul 2001 | WO |
WO 02065029 | Aug 2002 | WO |
WO 02065030 | Aug 2002 | WO |
WO 02081982 | Oct 2002 | WO |
WO 03074951 | Sep 2003 | WO |
WO 03090286 | Oct 2003 | WO |
WO 03104726 | Dec 2003 | WO |
WO 2004019379 | Mar 2004 | WO |
WO 2004026757 | Apr 2004 | WO |
WO 2004059139 | Jul 2004 | WO |
WO 2004092662 | Oct 2004 | WO |
WO 2005020422 | Mar 2005 | WO |
WO 2005023571 | Mar 2005 | WO |
WO 2005098225 | Oct 2005 | WO |
WO 2006001827 | Jan 2006 | WO |
WO 2006037178 | Apr 2006 | WO |
WO 2006064432 | Jun 2006 | WO |
WO 2007001289 | Jan 2007 | WO |
WO 2007002891 | Jan 2007 | WO |
WO 2007109368 | Sep 2007 | WO |
WO 2008013946 | Jan 2008 | WO |
WO 2008042077 | Apr 2008 | WO |
WO 2008091293 | Jul 2008 | WO |
WO 2008123330 | Oct 2008 | WO |
WO 2010135173 | Nov 2010 | WO |
WO 2012022684 | Feb 2012 | WO |
WO 2012031980 | Mar 2012 | WO |
WO 2012045542 | Apr 2012 | WO |
WO 2012170443 | Dec 2012 | WO |
WO 2014055447 | Apr 2014 | WO |
WO 2014022428 | May 2014 | WO |
Entry |
---|
Crane, D. T.: “Progress Towards Maximizing the Performance of a thermoelectric Power Generator”, ICT '06, 25th, USA, IEEE, Aug. 1, 2006, 11-16l. |
Derwent-Acc-No. 1998-283540, Kwon, H et al., Hyundai Motor Co., corresponding to KR 97026106 A, published Jun. 24, 1997 (2 pages). |
Diller, R. W., et al.: “Experimental results confirming improved performance of systems using thermal isolation” Thermoelectrics, 2002. Proceedings ICT '02. Twenty-First International Conference on Aug. 25-29, 2002, Piscataway, NJ USA, IEEE, Aug. 25, 2002, pp. 548-550, XP010637541 ISBN: 0-7803-7683-8. |
Diller, R.W., et al., “Experimental Results Confirming Improved Efficiency of Thermoelectric Power Generation Systems with Alternate Thermodynamic Cycles,” 22nd International Conference on Thermoelectrics, 2003, pp. 571-573. |
Fleurial, et al., “Development of Segmented Thermoelectric Multicopule Converter Technology,” Aerospace Conference, 2006 IEEE Big Sky, Mt., Mar. 4-11, 2006, pp. 1-10. |
Funahashi et al., “A portable thermoelectric-power-generating module composed of oxide devices,” Journal of Applied Physics 99, 066117 (2006). |
Funahashi et al., “Preparation and properties of thermoelectric pipe-type modules”, ICT 25th International Conference on Aug. 6-10, 2006, Thermoelectrics, 2006, pp. 58-61. |
Hendricks, Terry et al., “Advanced Thermoelectric Power System Investigations for Light-Duty and Heavy Duty Applications,” National Renewable Energy Laboratory, Center for Transportation Technology & Systems, Colorado, 2002. |
Min et al., “Ring-structured thermoelectric module”, Semiconductor Science and Technology, Aug. 2007, vol. 22, No. 8, pp. 880-888. |
Miner, A., et al. “Thermo-Electro-Mechanical Refrigeration Based on Transient Thermoelectric Effects”, Applied Physics letters, vol. 75, pp. 1176-1178 (1999). |
Snyder, G. Jeffrey, et al., “Thermoelectric Efficiency and Compatibility,” The American Physical Society, Oct. 2, 2003, vol. 91, No. 14. |
Snyder, G. Jeffrey: “Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators” Applied Physics Letters, AIP, American Institute of Physics, Melville, NY, vol. 84, No. 13, Mar. 29, 2004, pp. 2436-2438, XPO12060957 ISSN: 0003-6951. |
Tada, S., et al., “A New Concept of Porous Thermoelectric Module Using a Reciprocating Flow for Cooling/Heating Systems (Numerical Analysis for Heating Systems)” 16th International Conference on Thermoelectrics (1977). |
Thermoelectrics Handbook: Macro to Nano, 2006, Chpt. 11, Section 11.7, pp. 11-11 to 11-15, CRC Press, Boca Raton, FL. |
Ursell, T.S. et al., “Compatibility of Segmented Thermoelectric Generators,” 21st International Conference on Thermoelectronics, 2002, p. 412-417. |
International Preliminary Report on Patentability for PCT/US2013/052776, mailed Dec. 3, 2014. |
U.S. Appl. No. 14/109,783, filed Dec. 17, 2013, Bell, Lon et al. |
U.S. Appl. No. 14/152,741, filed Jan. 10, 2014, LaGrandeur, John et al. |
International Search Report and Written Opinion dated Dec. 16, 2013, Application No. PCT/US2013/022299, filed Jan. 18, 2013 in 15 pages. |
International Search Report and Written Opinion re Application No. PCT/US2013/052776, mailed Mar. 17, 2014. |
International Search Report with Written Opinion dated Mar. 17, 2010, Application No. PCT/US2009/046166, filed Jun. 3, 2009. |
Supplementary International Written Opinion re Application No. PCT/US2013/052776, mailed Aug. 27, 2014. |
U.S. Appl. No. 14/760,680, filed Jul. 13, 2015, Piggott et al. |
Ikoma, K., et al., “Thermoelectric Module and Generator for Gasoline Engine Vehicles,” 17th Int'l Conf. on Thermo-electrics, Nagoya, Japan,pp. 464-467 (1998). |
Kambe et al., “Encapsulated Thermoelectric Modules and Compliant Pads for Advanced Thermoelectric Systems,” J. Electronic Materials, vol. 39, No. 9, 1418-21 (2010). |
Lofy, John et al., “Thermoelectrics for Environmental Control Automobiles,” 21st International Conference on Thermoelectronics, 2002, p. 471-476. |
Menchen, et al., “Thermoelectric Conversion to Recover Heavy Duty Diesel Exhaust Energy”, Proceedings of the Annual Automotive Technology Development Contractors Meeting, pp. 445-449, Apr. 1991. |
English Translation of Notice of Reasons for Rejection for Japanese Patent Application No. 2015-525520 mailed Feb. 2, 2016. |
Number | Date | Country | |
---|---|---|---|
20140034102 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61678511 | Aug 2012 | US | |
61678975 | Aug 2012 | US |