Vehicles have been equipped with power transfer devices such as transfer cases for many years. Typically, transfer cases allow operation of the vehicle in a two-wheel drive mode or a four-wheel drive mode. Some transfer cases also provide multi-speed functionality.
Over the years, original equipment manufacturers have struggled to provide low cost and energy efficient transfer cases. For example, most transfer cases include wet clutches which exhibit oil churning losses as well as lubrication pump losses. In addition, some actuation systems require a relatively high electrical current draw to activate range and mode shifting systems.
Some of the two-speed transfer cases are relatively complex requiring a large number of relatively expensive components to provide the desired functions. In the past, dedicated single-speed or multi-speed transfer cases either shared few components or a single-speed version occupied the same packaging volume as the multi-speed version. Accordingly, it may be desirable to provide an optimized transfer case having a modular design to meet single-speed or multi-speed applications while maximizing the efficiency of the transfer case by minimizing the energy losses during operation.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A multi-speed power transmission device includes an input shaft, first and second output shafts and a planetary gearset. An axially moveable sleeve fixes the first output shaft and the input shaft for rotation when in a first position and sleeve fixes the sun gear and the input shaft for rotation when in a second position. A hub is axially moveable and free to rotate relative to the first output shaft when in the first position. The hub is fixed for rotation with the first output shaft when in the second position. A cam plate is continuously fixed for rotation with the carrier and urges the hub toward its second position when in a second axial position. The input shaft drives the first output shaft at a reduced speed via the planetary gearset when the sleeve, hub and cam plate are at their second positions.
A multi-speed power transmission device for a vehicle includes an input shaft, first and second output shafts and a planetary gearset. A sleeve is moveable to drivingly couple and decouple the sun gear with the input shaft. A cam plate is axially moveable between first and second positions. The cam plate is continuously fixed for rotation with the carrier and includes a helical cam surface that reacts an axial load such that rotation of the cam plate causes axial translation of the cam plate to control the sleeve position. The input shaft drives the first output shaft at a reduced speed via the planetary gearset when the cam plate is at its second position and the sleeve drivingly couples the sun gear to the input shaft.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Clutch 18 includes a drum 30 fixed for rotation with drive sprocket 20. A plurality of outer clutch plates 32 are fixed for rotation with and are axially moveable relative to drum 30. A hub 34 is integrally formed with input shaft 12. A plurality of inner clutch plates 36 are fixed for rotation with and are axially moveable relative to hub 34. An apply plate 38 is in splined engagement with input shaft 12 and is axially moveable to compress inner clutch plates 36 into engagement with outer clutch plates 32 and transfer torque across clutch 18. A coil 40 is selectively energizable to produce a magnetic field to attract an armature 42. Armature 42 is fixed with apply plate 38 such that energizing coil 40 controls the magnitude of torque transferred across clutch 18. Bearings 28 and 31 rotatably support drum 30 and drive sprocket 20 within a housing assembly 33.
A planetary gearset 50 is operable to transfer torque from input shaft 12 to first output shaft 14 and drive sprocket 20 at a direct drive ratio of 1:1 or a reduced drive ratio providing a torque multiplication. Planetary gearset 50 includes an annulus 52 fixed to a rear housing 54, a sun gear 56 and a plurality of pinion gears 58 in constant mesh with annulus 52 and sun gear 56. Each of pinion gears 58 are supported for rotation on a pinion pin 60 that forms a portion of a carrier 62. Carrier 62 includes a front carrier plate 64 fixed for rotation with drive sprocket 20 and a rear carrier plate 66. Rear carrier plate 66 includes a plurality of circumferentially spaced apart and axially extending lugs 67.
A range shift mechanism 70 is operable to place transfer case 10 in one of a reduced output shaft speed or low mode, a neutral mode or a high mode of operation. Range shift mechanism 70 includes a sleeve 72 movable to selectively drivingly interconnect input shaft 12 and first output shaft 14. A two-wheel drive high mode of operation may be provided by placing clutch 18 in an open, non-torque transferring mode and positioning sleeve 72 as shown in
Range shift mechanism 70 includes a rotary cam 74 splined on a hub 76. Rotary cam 74 includes a plurality of radially inwardly extending lugs 77 drivingly engaged with carrier lugs 67. A cam spring 78 urges cam 74 to the right as shown in
A range actuator 90 includes a cam follower 92 selectively engageable with a cam surface 94 of rotary cam 74. A solenoid 98 drives a pin 100 to translate cam follower 92. A spring 96 allows relative axial movement between pin 100 and cam follower 92. Rotation of cam 74 causes axial translation of cam 74 and provides range shaft control, as will be described.
Based on the relative position of the components previously described, it should be appreciated that sun gear 56 may be selectively connected and disconnected with input shaft 12. Carrier 62 may be selectively coupled and decoupled for rotation with first output shaft 14. When sun gear 56 is disconnected from input shaft 12, a ratio of 1:1 is produced between the input shaft and output shafts. When sun gear 56 is drivingly connected to input shaft 12 and carrier 62 is drivingly coupled with first output shaft 14, a ratio of approximately 2.7:1 is achieved between the input and output shafts. Other ratios are also contemplated.
When transfer case 10 is operating in the two-wheel drive high mode of operation depicted in
To achieve a high range mode of operation, range shift mechanism 70 activates coil 40 to cause torque to be transferred from input shaft 12 through clutch 18, drum 30, drive sprocket 20 and provide input to carrier 62. In this manner, the energy for the shift is provided by the vehicle driveline and not a separate actuator. Coil 40 is activated during the shift so that the components rotate as the vehicle is driven in a forward direction. Clutch 18 is deactivated once the shift is complete. Solenoid 98 is actuated but only a low current is required to axially translate cam 74 to the “H” position. At the “H” position, sleeve 72 couples input shaft 12 and first output shaft 14. Carrier 62 is fixed for rotation with first output shaft 14. Torque is also transferred through carrier 62 to drive sprocket 20.
A low range mode may be obtained by activating solenoid 98 and causing the shift system components to move to the positions identified in
An alternate transfer case 200 is depicted at
Transfer case 200 includes a range shift mechanism 202 where the energy for shifting is supplied by the kinetic energy of the vehicle as previously described in relation to transfer case 10. Shift mechanism 202 includes a first linear actuator assembly 204 and second linear actuator assembly 206. Each of the linear actuators is configured substantially similarly to range actuator 90. As such, the elements will be identified as before with “a” suffix elements relating to linear actuator assembly 204 and “b” suffix elements relating to linear actuator assembly 206.
First linear actuator assembly 204 is axially positioned at substantially the same location as range actuator 90 previously described. Second linear actuator assembly 206 is axially positioned closer to drive sprocket 20a than first linear actuator assembly 204. By configuring the actuators in this matter, the magnitude of axial translation experienced by cam 74a is doubled. The additional linear travel allows for additional modes of transfer case operation.
With reference to
A neutral mode of operation may be obtained by energizing second solenoid 98b and causing rotary cam 74a to rotate and translate to the position depicted in
Housing assembly 33 is a transmission adapted to mount to a variety of transmissions. A front housing 110 supports coil 40 and second output shaft 16. A bearing support plate 112 captures the chain loads and the annulus thrust loads. Rear housing 54 supports first output shaft 14. A lubrication system contains a passive lubrication system that pulls oil from a sump via the chain 26 when rotating to lubricate the appropriate bearings and seals. The entire input cavity containing clutch 18 is dry and contains a seal and a bearing 116. A rear output bearing 118, bushing and seal are lubricated via an elevated sump created by an oil dam at the rear output bearing.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/052562 | 9/21/2011 | WO | 00 | 1/17/2012 |
Number | Name | Date | Kind |
---|---|---|---|
2853890 | Kelbel | Sep 1958 | A |
5226860 | Baxter et al. | Jul 1993 | A |
5330030 | Eastman et al. | Jul 1994 | A |
5407024 | Watson et al. | Apr 1995 | A |
5499951 | Showalter | Mar 1996 | A |
5584776 | Weilant et al. | Dec 1996 | A |
6766889 | Pennycuff | Jul 2004 | B1 |
7425183 | Kelley, Jr. | Sep 2008 | B2 |
20020128113 | Tibbles | Sep 2002 | A1 |
20070049451 | Mizon et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
WO-2008030340 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20120178575 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61386805 | Sep 2010 | US |