The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
The present invention relates to a sublimation source suitable for fabricating devices such as organic light emitting diodes and other devices, including the same.
Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.
One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the following structure:
In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.
As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.
As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.
As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.
As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.
More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.
According to an embodiment, a material source for a deposition system is provided, which includes a cavity having a gas inlet port and a gas outlet port distinct from the gas inlet port, a plurality of baffles disposed within the cavity and physically positioned within the cavity to prevent a direct gas flow between the gas inlet port and the gas outlet port, and a coating of a material to be entrained in an outflow of gas from the gas outlet port disposed on at least one baffle of the plurality of baffles. The coating may have a different thickness depending upon a position within the cavity of the at least one baffle on which the coating is deposited. For example, the coating may be thicker on a portion of the at least one baffle at a position closer to the gas inlet port than to the gas outlet port. One or more of the baffles may be removably disposed within the cavity. The baffles may be removable individually, or they may be removable as a unit. The baffles may be covered by a chemically inert coating. The material source may include a headspace available for gas flow over a transfer surface of one or more baffles. Such a headspace may be not greater than 5 mm, or not greater than 1 mm. The headspace may be defined by the area between adjacent baffles. The baffles may include a turbulence-inducing surface, such as arc-like structures to induce eddy flow, chevron structures, grooves, prominences, ridges, columnar arrays, arrays of hemispheres, or the like. The material coating the baffles may be disposed in a region between two baffles, for example, coating adjacent sides of adjacent baffles and/or filling the region between adjacent baffles. The spacing between adjacent baffles may vary along the flow path of carrier gas within the material source. For example, the baffles may be spaced more closely together closer to the outlet port. The material source may include a source of dilution gas flow, and/or may be connectable to a source of dilution gas.
In an embodiment, a method for operating a material source is provided, where the material source includes a cavity with a gas inlet port and a gas outlet port distinct from the gas inlet port, a plurality of baffles disposed within the cavity and physically positioned within the cavity to prevent a direct gas flow between the gas inlet port and the gas outlet port, and a coating disposed on at least one baffle of the plurality of baffles. The method may include providing a carrier gas to the cavity via the gas inlet port at sufficient velocity that the carrier gas exits the cavity via the gas outlet port. The method may further include operating the source at elevated temperature, and/or operating the source at a temperature gradient along a path between the gas inlet port and the gas outlet port. The material source may be maintained at a specific temperature, such as within 20 C of a sublimation temperature of the coating at vacuum, a temperature 5-20 C below a temperature at which a linear material source is maintained when used in the deposition system, or the like.
In an embodiment, a method for preparing a material source is provided, where the material source includes an apparatus having a cavity with a gas inlet port and a gas outlet port distinct from the gas inlet port, a plurality of baffles disposed within the cavity and physically positioned within the cavity to prevent a direct gas flow between the gas inlet port and the gas outlet port, and a coating disposed on at least one baffle of the plurality ofbaffle. The method may include cooling the material source apparatus below a sublimation temperature of a material to be deposited within the material source apparatus, and providing a carrier gas saturated with the material to be deposited to the cavity via the gas inlet port. The method may include maintaining the temperature of the cavity at a temperature not greater than a sublimation temperature of the material to be deposited, and/or maintaining a temperature gradient such that the baffle surfaces in proximity to the inlet port are warmer than the baffle surfaces in proximity to the outlet port. As a result, the organic material condensing on the baffles of the source may have fewer impurities than the material charge from which the organic vapor is generated. A temperature gradient also may be maintained such that that material deposits in the source so that deposited material is thicker on at least one baffle closer to the gas inlet port than to the gas outlet port.
Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.
More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.
The simple layered structure illustrated in
Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in
Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJP. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.
Devices fabricated in accordance with embodiments of the present invention may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.
Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the invention can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, laser printers, telephones, cell phones, tablets, phablets, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays less than 2 inches diagonal, 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screens, and signs. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 C to 30 C, and more preferably at room temperature (20-25 C), but could be used outside this temperature range, for example, from −40 C to +80 C.
Transporting material by means of a saturated carrier gas from a storage container to the point of use is a common practice in techniques such as chemical vapor deposition (CVDI), metal-organic CVD (MOCVD), atomic layer etching (ALE), atomic layer deposition (ALD), and other techniques used to fabricate semiconductors, OLEDs, and other devices. Such techniques may be used for materials that are liquid at the saturation or storage temperature. Saturation of a carrier gas is easily achieved by bubbling the carrier gas through a column of the liquid material. An example source that may be used with such techniques is shown in
Many materials are solids at the temperatures of use. Saturation of a carrier gas vapor is often less than desired, or shows considerable variability, over the life of the source when using standard liquid-type bubblers with such materials. There are several reasons for the problems observed with solid sources. For example, the gas path through the solid material may be variable, and can depend on the particle size of the solid material. As shown in
Embodiments disclosed herein provide a source design that may overcome the deficiencies listed above by depositing the solid material on baffles or mandrels which provide a consistent surface area of the solid material to be deposited. Sources as disclosed herein also may provide well-defined gas pathways through the source, and/or good thermal contact to the solid material. Source as disclosed herein may differ from conventional sources in that a material manufacturer may deposit the source material on mandrels by vapor phase evaporation, recrystallization, or precipitation as the last phase of purification. For example,
Various configurations of such a source may be used. For example,
In some embodiments, it may be beneficial to arrange the mandrels or similar structures within the source to create specific flows of carrier gas within the source. For example,
Inside the housing 601, a stack of seven disc baffles 602 about 2 cm in diameter are affixed to a 6 mm diameter mandrel 603. The mandrel may be attached to the source vessel by one or more radial supports 604. The ends of the tube may be bounded by reduction fittings 605 that terminate in inlet 606 and outlet 607 nipples. The source may include a reversibly sealed break 608 in the tube, for example to permit the mandrel to be changed, or it may be single unit as shown. Valves may be added upstream and downstream of the nipples 606, 607 to facilitate replacement.
A source as shown in
The shape of the control volume through which delivery gas flows will change as solid or liquid organic material evaporates from the source crucible. The surface area of exposed organic will change as the source material is consumed and the saturation of organic vapor produced by the source will decrease as it approaches exhaustion. If all of the material in a given area of the source is depleted, then that area of the source stops contributing vapor and the effluent saturation may drop. A reasonable goal may be for a source to expend 75% of its material and still generate saturation.
One way to achieve this result is to use a slanted crucible that places the deepest bed of organic material at the upstream end of the source where evaporation is fastest. More generally, the thickness of the organic material, which may be disposed as a coating on one or more baffles as disclosed herein, may vary depending upon the position of the material relative to the inlet and outlet port of the source. An example of such an arrangement is shown in
Another approach is to vary the headspace over a flat crucible, as shown in
More spatially uniform evaporation rates may be achieved for larger angles. However, in some cases, the saturation may decrease.
Another technique to preserve the surface area of an evaporation bed as the material within the source depletes is to operate the source with a temperature gradient along the delivery gas flow path. The temperature of the material within the source smoothly varies from the coolest region, adjacent to the delivery gas inlet, to the warmest region, adjacent to the delivery gas outlet. Because delivery gas near the inlet is unladed with organic vapor, a low vapor pressure of organic material is sufficient to drive its transport into the delivery gas near the inlet. The concentration of organic vapor in the delivery gas increases further downstream, so a greater partial pressure of organic vapor is required to drive mass transport into the delivery gas at the same rate. The equilibrium partial pressure P* of organic vapor is characterized by the well-known Clausius-Clapyeron equation, where P0* is a scaling constant, ΔHv is the enthalpy of vaporization of the organic material, R is the gas constant, and T is temperature:
This relationship may be applied to a sublimation source as disclosed herein, which includes a hollow tube with walls coated in sublimable organic material. For example, an illustrative arrangement may include a tube 2.54 cm in diameter and 100 cm in length, designed to produce 1 slm of helium delivery gas at a pressure of 200 Torr that is 95% saturated with organic vapor. A typical value for Hv of 160 kJ/mol may be assumed for the source material. The wall temperature varies as T=517 K+40(K/m)z, where z is the distance from the inlet, for the first 50 cm of tube length. The temperature further downstream may be 537 K to permit saturation at the higher vapor pressure before it leaves the outlet. The rate of sublimation from the inner surface of a cylindrical tube source is plotted as a function of distance along the delivery gas flow path in
A “coated baffle” configuration, such as described with respect to
Alternatively or in addition, downstream baffles may be arranged so that streamlines of delivery gas that are unladed with organic vapor come in contact with the baffles. This may reduce the source surface area required to achieve a desired saturation, and also may permit more uniform utilization of material within the source.
Accordingly, in an embodiment, baffles may be arranged so that streamlines of gas flow that did not previously contact a baffle are brought into contact with one as the gas flow progresses through the source. One such configuration is to interdigitate baffles within the source.
The surface area required for a material source also may be reduced by introducing passive mixing elements into the flow path of the carrier gas within the source, such as to create patterns of turbulence and recirculation over the coated baffles. For example, one or more baffles or similar structures within a source as disclosed herein may have or be formed of turbulence-inducing structures that cause carrier gas passing through the source to follow particular flow paths and/or to exhibit a degree of turbulence. Such structures may include, without limitation, arc-like structures that induce eddy flow in the carrier gas, chevron structures or grooves to induce turbulence and guide the flow of carrier gas, or the like. More generally, turbulence-inducing structures may include depressions or prominences such as grooves, ridges, columnar structures, hemispheres, or any other similar structure. The structures may be arranged in an array. i.e., a repeated rectangular arrangement, or any other repeated, periodic, or non-repeated arrangement. The mixing elements themselves also may be coated with sublimable material. The effect of variable headspace illustrated in
Similar to the results described previously with respect to
A source as disclosed herein may be charged (i.e., loaded with organic material to be deposited when the source is used in a deposition apparatus) or recharged by condensing organic vapor within it, essentially running the evaporation process in reverse. For example, a source cell as disclosed herein may be connected in series to another sublimation source. The source cell then may receive a stream of organic vapor laden carrier gas generated by the other sublimation source, which condenses on structures within the source. The rate and locations of condensation within the source cell may be controlled, for example by adjusting the temperature profile within the source cell. It generally may be preferred for the temperature within the source cell to be lower, or slightly lower, than the sublimation temperature of the condensing material. If the temperature is too high, the material will not condense on the source at a sufficient rate. If it is too low, material will tend to build up in upstream portions of the source to a point of fouling without penetrating downstream. Setting the temperature at a proper intermediate level allows for uniform coverage of organic material.
In an embodiment, even distribution of the material within the source cell may be further facilitated by establishing a temperature gradient across the source, so that upstream portions are maintained at a higher temperature than downstream portions. Such a temperature gradient will cause the material to be more likely to migrate downstream. In general, the effect of a temperature gradient on the recharge of a source is analogous to the effect of temperature on evaporation of the material to be deposited within the source. Material is more prone to deposit in cooler regions where it is less likely to evaporate, while it is less prone to deposit in warmer regions where it is more likely to evaporate. It is also possible to deliberately vary the thickness of material deposited within in the source as a function of path length by controlling the temperature gradient. For example, the gradient may be selected so that material deposits most heavily in locations where evaporation is most rapid. An arrangement such as illustrated in
An example of a sublimation source filling system as disclosed herein is shown in
Alternatively or in addition, one or more mandrels, baffles, or similar source structures may be removed from a source vessel and separately coated with organic material. For example, mandrels may be coated by a line of sight technique such as vacuum thermal evaporation (VTE), a conformal technique such as organic vapor phase deposition, or any other suitable technique. Each baffle may be removable from the source separately from the others, for example to allow for recharging of only those baffles that have exhausted a supply of material if the baffle coatings are exhausted unevenly. Alternatively, the baffles may be removable as a unit. Configurations using removable baffles may allow for a relatively fast recharge of a fixed source. However, in contrast to a technique as shown in
Using an evaporation and condensation process to charge a source, such as illustrated in
A similar process and/or result may be achieved in the presence of a rarified carrier gas, and it can be at least approximated by either of the previously described loading procedures. This may allow for loading of a source and final purification of the material within the source in a single step or process, thereby providing for shorter processing times and simpler processing techniques than may be achievable using conventional methods. If a source cell as disclosed herein is held at the correct temperature, high volatility impurities will flow across the surface area of the source without condensing while low volatility impurities do not evaporate and are therefore not loaded into the source. Thus, the primary or only material that will condense within the source cell is the purified desired compound.
In some embodiments, baffles or similar source structures as disclosed herein may be coated with an initial coating, prior to the sublimable material be deposited on the baffles as previously disclosed. For example, one or more baffles may be coated with a chemically inert film. Such a coating may allow for improved efficiency by allowing more material to be entrained within a carrier gas, more efficient recharging and/or cleaning of the baffles, and the like.
In some embodiments, a material may be disposed on only a portion of one or more baffles within a source as disclosed herein, or the material may be disposed only on structures other than baffles within the source. For example, the material may be disposed on opposite surfaces of adjacent baffles, such that a region between the baffles is filled with the material. Alternatively, the baffles may define a region within which the material is disposed, such that the baffles provide varying headspace above or across the material.
As previously disclosed, the use of a source as disclosed herein may provide for a higher, more efficient concentration of carrier gas with a desired material. Hence, in some configurations it may be desirable for the source cell itself, or a deposition within which the source will be used, to include a source of dilution gas. Thus, the dilution gas in combination with the material-loaded carrier gas may provide a total concentration equivalent to concentrations expected from conventional sources. This may allow for a source as disclosed herein to be used in a deposition apparatus in place of a conventional source, without requiring modification of the deposition apparatus. The source cell may include a source of dilution gas flow that can be connected to a source of dilution gas, such as a dilution inlet. The dilution gas itself may be provided in a dilution gas source that is integral with the material source, or it may be provided from an external source that is placed in fluid communication with the dilution gas flow of the source cell.
The use of a source cell configuration and associated processes as disclosed herein also may allow for preparing, loading, transporting, and use of a source cell without requiring additional or specialty preparation or processing by an end user of the source, such as an operator of a material deposition system. For example, a material supplier may obtain a source cell as disclosed herein and charge the source using the techniques disclosed herein, resulting in a charged source containing a purified material to be used in a deposition system. The source then may be transported to an end user, such as an operator of a deposition system or the like, without additional preparation or specialty packaging of the source.
It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.
This application is a non-provisional and claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/326,310, filed Apr. 22, 2016, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62326310 | Apr 2016 | US |