1. Field of the Invention
The present invention relates to implantable defibrillators, ICDs (Implantable Cardioverter-Defibrillators) and other battery powered medical devices designed to provide high-energy electrical stimulation of living tissue for therapeutic purposes.
2. Description of Prior Art High-energy battery powered medical devices designed for implantable use, such as implantable defibrillators and ICDs, are designed to deliver a strong electrical shock to the heart when called upon to correct an onset of tachyarrhythmia. In traditional devices of this type, the high-energy pulse is produced by charging one or more high-voltage energy storage capacitors from a low voltage battery and then rapidly discharging the capacitors to deliver the intended therapy. This concept is widely practiced and disclosed in numerous patents, including U.S. Pat. No. 4,475,551 of Mirowski dated Oct. 9, 1984. Additionally, much clinical data on defibrillation therapy has been collected and published. See, for example, Gregory P. Walcott, et al. “Mechanisms of Defibrillation for Monophasic and Biphasic Waveforms.” Pacing and Clinical Electrophysiology. March 1994:478 and Andrea Natale, et al. “Comparison of Biphasic and Monophasic Pulses.” Pacing and Clinical Electrophysiology. July 1995:1354.
As an alternative to using high-energy capacitors for defibrillation of a patient via an implantable device, U.S. Pat. No. 5,369,351 of Adams (the “'351 patent”) proposes a high-voltage charge storage array based on batteries. The '351 patent specifically identifies a Lithium Vanadium-Oxide (LiV6O13) battery cell comprising a polymer electrolyte that can be manufactured in foil sheets of thickness less than 0.005 inches (127 μm). These cells are said to have an energy-storage capacity of over 1000 times that of capacitors of equivalent volume. Each cell produces a voltage output of approximately three volts and it is stated that an array of two hundred such cells connected in series will produce the 600 volts commonly delivered by capacitor-based defibrillators. In one exemplary construction, the array of two hundred cells is configured in four 50-cell blocks that would each deliver 150 volts when in series, for a total of 600 volts. To facilitate charging of these cell blocks using a low-voltage charge source, such as a conventional 3-4 volt primary battery, a plurality of switches are provided, one for each cell, so that the cells can be switched from an all-series configuration, as required for high-voltage discharge, to an all-parallel configuration, in which each cell of each cell block can be charged in parallel by the low voltage charge source.
Notwithstanding the asserted advantages of the battery-cell array of the '351 patent for delivering defibrillatory energy to living tissue, there are aspects of the proposed array that suggest it may not be entirely suited for implantable use. For instance, assuming a most efficient configuration in which the batteries cells are stacked on top of each other, the total thickness of a two-hundred cell array at 127 μm per cell would be 200×127=25,400 μm=2.54 cm=1 inch. This is substantially thicker than commercially available ICDs on the market today, which average around 2 cm in thickness. The '351 patent is also silent with respect to the discharge current capacity of the disclosed battery cells. The amount of energy conventionally delivered by an implantable ICD is about 30 joules. Delivery of this amount of energy is not only a function of the voltage, but also the discharge current. It is not clear whether the battery cells disclosed in the '351 patent would provide sufficient discharge current to generate the required energy if the cells are arranged in series as disclosed. Moreover, the maximum discharge current of polymer-electrolyte batteries is typically given as a function of cell cross-sectional area. There is no mention in the '351 patent of the cross-sectional dimensions of the disclosed battery cells, and no indication of whether cells with sufficient discharge current capability could be produced within the cross-sectional constraints of the power supply section of a conventional ICD. The '351 patent also fails to provide information regarding the self-discharge characteristics of the disclosed battery cells, which are important when determining recharge requirements. Lastly, the switching system of the '351 patent, in which a switch is provided for each battery cell (and with three switches per cell being provided in some embodiments) raises a question of how the circuit resistance introduced by the switches impacts the peak discharge current of the battery-cell array. The impact on overall system volume of having so many switches is another question left unanswered.
U.S. Pat. No. 6,782,290 of Schmidt (the “'290 patent”) is similarly deficient. The '290 patent is directed to an implantable medical device with a rechargeable thin-film microbattery battery power source. In the only disclosed example in which battery electrical characteristics are discussed, it is said that three 4-volt microbatteries can be configured in a parallel configuration for charging, and then reconfigured in a series configuration via device programming to create a 12-volt microbattery for discharge. This is far less than the voltage output required for an implantable defibrillator or ICD. Moreover, there is no discussion of current discharge requirements or how to achieve high energy levels as required for medical applications such as defibrillation.
It is to improvements in the practical design of high-energy implantable devices that the present invention is concerned. In particular, the invention is directed to a high-energy battery power source for use in an implantable defibrillator, ICD or other battery-powered medical device. Advantageously, the invention accomplishes the foregoing while adhering to commonly accepted constraints on size, shape and form factor.
A high-energy power source according to exemplary embodiments of the invention comprises of a multiplicity of small-energy capacity rechargeable cells that are interconnected to provide a high-energy source suitable for delivering electrical stimulation therapy to living tissue. The power source includes an input, an output, and two or more battery modules each comprising and two or more rechargeable battery cells. The battery cells are of relatively low voltage and permanently configured within each battery module in an electrically parallel arrangement in order to provide a desired current discharge level needed to achieve high-energy output. A switching system configures the battery modules between a first configuration wherein the battery modules are electrically connected in parallel to each other in order to receive charging energy from the input at the relatively low voltage, and a second configuration wherein the battery modules are electrically connected in series to each other in order to provide to the output a relatively high voltage corresponding to the number of battery modules at a current level corresponding to the number of battery cells in a single battery module.
The power source can be conveniently formed using a stack of large surface area, thin-film battery cells, with the stack being sized to occupy the space of a conventional electrolytic capacitor as commonly used in implantable defibrillators and ICDs. The stack may include plural battery modules arranged one on top of the other. Within each battery module, the battery cells are also arranged on top of one another, preferably in a repeating pattern of electrolyte and electrode layers. Each module will thus be substantially free of insulation layers so as to minimize battery module thickness. All electrode layer sets associated with the cathode side of a battery module are interconnected, as are the electrode layer sets associated with the anode side of the battery module. This results in the battery cells of each battery module being connected in an electrically parallel arrangement.
The foregoing and other features and advantages of the invention will be apparent from the following more particular description of exemplary embodiments of the invention, as illustrated in the accompanying Drawings in which:
Introduction
Exemplary high-energy battery power sources for use with implantable defibrillators, ICDs and other battery powered medical devices will now be described, together with an exemplary defibrillator that incorporates a high-energy battery power source therein. As indicated by way of summary above, the high-energy battery power source embodiments disclosed herein are characterized by a multiplicity of small capacity, thin-film rechargeable battery cells interconnected and densely packaged in a planar or rectilinear form factor. The rechargeable battery cells can be utilized on an intermittent basis to store and release electrical energy in order to deliver high-energy stimulus to living tissue for therapeutic purposes.
Turning now to the Drawings wherein like reference numerals signify like elements in all of the several views,
In
It should be understood that the number, size and location of cell stacks within an implantable device constructed in accordance with the invention could be varied from that shown in
Turning now to
Turning now to
As disclosed in the '968 patent, the battery cell 20 can be formed with a cathode current collector 30 made from a web of aluminum foil that is approximately 4 μm thick. Two cathodes 32 are respectively sputter-deposited on each side of the current collector 30 to a thickness of approximately 3 μm each. The cathodes 32 are made of a lithium intercalation compound, preferably a metal oxide such as LiNiO2, V2O5, LixMn2O4, LiCoO2, or TiS2. A cathode current collector cap 33 made from aluminum or other compatible material can be applied over the exposed ends of the cathode current collector 30 and the cathodes 32.
Following deposition of the cathodes 32, the assembly is annealed at high temperature to crystallize the cathode material. The '968 patent instructs that this annealing of cathode material on a substrate such as the cathode current collector 30 results in a favorable orientation of cathode constituents that improves battery performance significantly in comparison to other thin-film battery constructions. Following the high-temperature treatment, electrolyte layers 34 are deposited on the cathodes 32 by sputtering of lithium orthophosphate, Li5PO4, in a nitrogen atmosphere to produce lithium phosphorous oxynitride coatings.
A pair of anodes 36 are then respectively applied to the electrolyte layers 34 by sputtering. The anodes 36 can be made of silicon-tin oxynitride, SiTON, or other suitable materials such as lithium metal, zinc nitride or tin nitride. Following deposition of the anodes 36, a pair of anode current collectors 38 are respectively deposited onto the anodes 36 by the sputtering of copper or nickel.
A critical element of the cell 20 is the electrolyte layer 34 which must be ionically conductive and non-reactive with the anode and cathode materials in order to provide a cell with stable lifetime properties. One example of a suitable electrolyte material is the above-mentioned lithium phosphorus oxynitride material (LiPON, LixPOyNz), which is disclosed and described in detail in the '968 patent, and in patents referenced therein. Unlike the electrolyte material found in the majority of primary and secondary cells that are currently commercially available, LiPON is a solid glassy compound which not only provides the physical separation between the anode and cathode layers but also exhibits excellent long term stability in contact with the reactive anode and cathode materials.
It should be understood that each individual cell 20 has a small surface area, perhaps 10 to 15 cm2, with a total thickness of approximately 14 μm (see '968 patent). The extremely low thickness profile permits the fabrication of the multiple stacked individual cells 20 in a small volume consistent with the volume available to receive an electrolytic storage capacitor within a conventional implantable device. As shown by the additional battery cells structures placed on either side of the cell 20 in
As further shown in
In order to fabricate a useful battery system for a high-energy implantable device, it is necessary to combine multiple cells in both series and parallel configurations. The invention achieves this by virtue of the hardwiring of individual cells 20 of each battery module 16 in a parallel configuration, and then selectively connecting two or more battery modules 16 to each other in either a parallel charge configuration or a serial discharge configuration.
The operation of the individual components shown in
When the battery system 60 is required to deliver high-voltage energy, a trigger pulse is applied by conventional timing circuitry (not shown) to the inputs 64 labeled “Discharge Trigger.” This signal is applied to the switch driver unit 54 of each battery system subassembly 50. Each switch driver unit 54 has the principal function of providing galvanic isolation between each of the interconnected battery modules 16, since they will be electrically connected in series during the discharge pulse. The switch driver units 54 each produce a voltage output pulse that is applied between the gate and source of its associated switch 52. This voltage output pulse causes each switch 52 to simultaneously conduct, resulting in a series connection of the battery cells 20 in each of the interconnected battery modules 16. The series connection will produce an output voltage on the “HV Out+” and “HV Out−” outputs 66 that is the sum of the individual battery module voltages. In this example using a single cell voltage of 4.2 volts dc, the resulting system output voltage pulse will be 12.6 volts dc. During the discharge period when the switches 52 are conducting, the positive circuit of the topmost battery module 16 in
Turning now to
Under conditions of normal heart rhythm the battery system 72 is dormant and no signals are applied by the control system 78 to the inputs labeled “Discharge Trigger.” In the event that a condition such as tachycardia or fibrillation occurs in the heart 74, the condition will be sensed by the control system 78 by means of the electrodes and conventional sensing circuitry in the control system (not shown). If the condition exceed thresholds established within the control system 78, indicating a need for defibrillation or cardioversion, the control system 78 will assert its outputs labeled “HV Trigger” to cause the battery system 72 to provide high voltage at its outputs labeled “HV Out+” and “HV Out−.” The control system 78 will then assert its outputs labeled “Defib Enable” in an alternating sequence to cause the transistors Q1-Q4 within the switching network 74 to conduct. The transistors Q1-Q4 will conduct the high-voltage energy from the battery system 72 to the heart. By alternating the conduction of the transistor pairs Q1/Q4 and Q2/Q3 in the switching network 74, the circuit 70 device will deliver a bi-phasic defibrillation shock to the Heart 76. Upon completion of the defibrillation sequence, the control system 78 will negate its “HV Trigger” signals to the battery system 71.
The high-voltage outputs from the battery system 72 are also provided to the “State of Charge” inputs of the control system 78 for the purpose of monitoring the energy delivered to the heart and the state of charge of the battery system 72. In the event that the monitored voltage falls below a pre-determined threshold for the battery system 72, the control system 78 will assert its output labeled “Charge Enable.” This signal is connected to an optional voltage boost circuit 80 that is powered from a primary battery cell 82. The voltage boost circuit 80 is conventionally adapted to convert the energy from the primary cell 82 to the voltage required to charge the cells of the battery system 72, assuming these voltages are different.
Turning now to
Using the thin-film battery technology disclosed herein, the battery system 92 should be easily capable of storing enough energy to operate the control system 98 for over one year and also deliver some number of defibrillation/cardioversion pulses. The battery system 92 can be periodically recharged by energy supplied from an extra-corporeal charger/programmer 104 through the patient skin 106. The charger/programmer 104 generates an a.c. electromagnetic field which is inductively coupled to the programmer interface 102 to transfer energy to the battery system 92.
Rationale for Configuration
Most commercially available implantable defibrillators and ICDs are capable of producing defibrillation shocks at a peak voltage of about 600 volts and a total energy of about 30 joules, substantially all of which is delivered within about 20 milliseconds to the tissue being stimulated. This energy is delivered through endocardial electrodes with a typical impedance of 40 ohms. The peak current required at this voltage and impedance is:
V/R=I; 600 volts/40 ohms=15 amperes
Each of the above-described battery modules 16 can be designed to support this current level during the defibrillation pulse.
The battery cells 20 shown in
15 A/0.0824 A-cm−2=182 cm2
In the device 2 of
182 cm2/12 cm2-cell−1=15.17 cells=>15 parallel cells
Each battery cell 20 shown in
(15 parallel cells*14*10−6 m-cell−1=0.210 millimeters
The operating voltage for a representative cell 20 varies over the range of 4.2 volts at full charge to 3.4 volts when fully discharged. If the mean voltage is take to be 3.8 volts under load during discharge, the total number of battery modules 16 required to deliver the required 600 volts, and the total cell stack thickness, is:
600 volts/3.8 volts-cell subsystem−1=157.89=>158 battery modules
158 battery modules*0.210 millimeters=33.18 millimeters=3.32 cm
In the device 2 of
2 cm*6 cm*1.67 cm=20.04 cm3
This is comparable to the volume required for aluminum electrolytic storage capacitors as presently used in defibrillators and ICDs.
According to the '968 patent, the energy capacity of each battery cell 20 is 7.2 watt-seconds (joules)-cm−2. For an individual cell electrode surface area of 12 cm2 and 15 cells in parallel combination, the total energy capacity for a battery module 16 is:
15 cells*12 cm2-cell−1*7.2 j-cm−2=1296 j
Each battery module 16 will therefore have the capacity to deliver at least 43 defibrillation shocks of 30 joules each before requiring recharging.
The application of lithium secondary cells to implantable medical applications has been limited to date by poor cell performance with respect to cycle life, energy density and self-discharge. The use of thin-film cells in implantable devices is proposed by John Bates and Nancy Dudney in “Thin Film Rechargeable Lithium Batteries for Implantable Devices.” ASAIO Journal 1997; 43:M644-M647. The authors present data that predicts significant improvement in rechargeable cell cycle life and energy density. Similar improvements are disclosed in the '968 patent.
Another benefit of the thin-film technology is significant reduction in cell self-discharge as a result of improved electrolyte performance over traditional liquid or polymer electrolyte cell designs. In tests conducted by Nancy Dudney, et al. at Oak Ridge National Laboratories, very small capacity cells were constructed with constituent components disclosed in U.S. Pat. No. 5,569,520 of Bates (referenced above). After fabrication, the cells were stored and periodically monitored to assess self-discharge by measuring the cell terminal voltage. The data predicts a relationship wherein self-discharge is directly proportional to the electrode surface area and inversely proportional to the electrolyte layer thickness. This leads to a self-discharge rate of 0.6 μAh-cm−2-year−1 with an electrolyte layer thickness of 1.2 μm. When this predicted rate is applied to a 15-cell battery module, the predicted self discharge rate is:
0.6 μAh-cm−2-year−1*12 cm2*15 cells=108 μAh-year−1
The battery module 16 has a capacity of 1483 mAh when configured with 15 cells, so the rate of self-discharge expressed as a percentage is:
(45 μAh-year−1/1483 mAh)*100=0.03%-year−1
This low rate of self-discharge enables the application of these cells to implantable systems without sacrificing device lifetime due to wasted energy.
In the circuit 90 of
2.8 VDC*30 μA*31.56*106 sec-year−1=2651 watt-second-year−1
If the efficiency of the voltage step-down process is estimated at 75% and the patient requires no more than two defibrillations, the battery would be capable of supporting all device operation for at least 60 weeks. This embodiment therefore eliminates the need for a primary battery by stipulating that the high-voltage secondary battery be recharged periodically, perhaps every 12 months.
Accordingly, a high-energy battery power source for implantable medical use has been disclosed. Although specific exemplary embodiments have been shown and described, it will be apparent that various modifications, combinations and changes can be made to the disclosed designs in accordance with the invention. It should be understood, therefore, that the invention is not to be in any way limited except in accordance with the spirit of the appended claims and their equivalents.