High fidelity and reduced feedback contact hearing apparatus and methods

Information

  • Patent Grant
  • 10034103
  • Patent Number
    10,034,103
  • Date Filed
    Wednesday, March 18, 2015
    10 years ago
  • Date Issued
    Tuesday, July 24, 2018
    7 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Goins; Davetta W
    • Dabney; Phylesha
    Agents
    • Wilson Sonsini Goodrich and Rosati, P.C.
Abstract
An output transducer is coupled to a support structure, and the support structure configured to contact one or more of the tympanic membrane, an ossicle, the oval window or the round window. An input transducer is configured for placement near an ear canal opening to receive high frequency localization cues. A sound inhibiting structure, such as an acoustic resistor or a screen, may be positioned at a location along the ear canal between the tympanic membrane and the input transducer to inhibit feedback. A channel can be coupled to the sound or feedback inhibiting structure to provide a desired frequency response profile of the sound or feedback inhibiting structure.
Description
BACKGROUND
Field of the Invention

The present invention is related to systems, devices and methods that couple to tissue such as hearing systems. Although specific reference is made to hearing aid systems, embodiments of the present invention can be used in many applications in which a signal is used to stimulate the ear.


People like being able to hear. Hearing allows people to listen to and understand others. Natural hearing can include high frequency localization cues that allow a user to hear a speaker, even when background noise is present. People also like to communicate with those who are far away, such as with cellular phones, radios and other wireless and wired devices.


Hearing impaired subjects may need hearing aids to verbally communicate with those around them. Unfortunately, the prior hearing devices can provide less than ideal performance in at least some respects, such that users of prior hearing devices remain less than completely satisfied in at least some instances. Examples of deficiencies of prior hearing devices include feedback, distorted sound quality, less than desirable sound localization, discomfort and autophony. Feedback can occur when a microphone picks up amplified sound and generates a whistling sound. Autophony includes the unusually loud hearing of a person's own self-generated sounds such as voice, breathing or other internally generated sound. Possible causes of autophony include occlusion of the ear canal, which may be caused by an object blocking the ear canal and reflecting sound vibration back toward the eardrum, such as an unvented hearing aid or a plug of earwax reflecting sound back toward the eardrum.


Acoustic hearing aids can rely on sound pressure to transmit sound from a speaker within the hearing aid to the eardrum of the user. However, the sound quality can be less than ideal and the sound pressure can cause feedback to a microphone placed near the ear canal opening.


Although it has been proposed to couple a transducer to a vibratory structure of the ear to stimulate the ear with direct mechanical coupling, the clinical implementation of the prior direct mechanical coupling devices can be less than ideal in at least some instances. Coupling the transducer to the vibratory structure of the ear can provide amplified sound with decreased feedback. However, in at least some instances direct mechanical coupling of the hearing device to the vibratory structure of the ear can result in transmission of amplified sound from the eardrum to a microphone positioned near the ear canal opening that may result in feedback.


The prior methods and apparatus to decrease feedback can result in less than ideal results in at least some instances. For example, sealing the ear canal to inhibit sound leakage can result in autophony. Although, placement of the input microphone away from the ear canal opening can result in decreased feedback, microphone placement far enough from the ear canal opening to decrease feedback may also result in decreased detection of spatial localization cues.


For the above reasons, it would be desirable to provide hearing systems which at least decrease, or even avoid, at least some of the above mentioned limitations of the prior hearing devices. For example, there is a need to provide reliable, comfortable hearing devices which provide hearing with natural sound qualities, for example with spatial information cues, and which decrease autophony, distortion and feedback.


SUMMARY

The present disclosure provides improved methods and apparatus for hearing and listening, such as hearing instruments or hearing devices (including hearing aids devices, communication devices, other hearing instruments, wireless receivers and headsets), which overcome at least some of the aforementioned deficiencies of the prior devices.


In many embodiments, an output transducer may be coupled to a support structure, and the support structure configured to contact one or more of the tympanic membrane, an ossicle, the oval window or the round window. An input transducer is configured for placement near an ear canal opening to receive high frequency localization cues. A sound inhibiting structure, such as an acoustic resistor, acoustic damper, or a screen, may be positioned at a location along the ear canal between the tympanic membrane and the input transducer to inhibit feedback. A channel can be coupled to the sound inhibiting structure to provide a desired frequency response profile of the sound inhibiting structure. The channel may comprise a channel of a shell or housing placed in the ear canal, or a channel defined with components of the hearing apparatus placed in the ear canal, and combinations thereof. The channel may comprise a secondary channel extending away from an axis of the ear canal. The sound inhibiting structure (or feedback inhibiting structure) coupled to the channel can allow sound to pass through the ear canal to the tympanic membrane while providing enough attenuation to inhibit feedback. The feedback inhibiting structure can allow inhibition of resonance frequencies and frequencies near resonance frequencies such that feedback can be substantially reduced when the user hears high frequency sound localization cues with an input transducer positioned near the ear canal openings. The feedback inhibiting structure and channel can be configured to transmit high frequency localization cues and inhibit resonant frequencies. The feedback inhibiting structure can allow high frequency localization cues to be transmitted along the ear canal from the ear canal opening to the eardrum of the user.


The sound or feedback inhibiting structure can be configured in many ways, and may comprise one or more sound inhibiting structure configured for placement at one or more desired locations along the ear canal, which may comprise one or more predetermined locations along the ear canal to inhibit feedback at specific frequencies. The sound inhibiting structure may be configured to provide a predetermined amount of sound attenuation, for example, as described in the present disclosure. In many embodiments, a plurality of sound inhibiting structures can be placed at a plurality of locations along the ear canal to decrease secondary resonance peaks. Alternatively, or in combination, a channel can be provided with an opening near the one or more sound inhibiting structures to decrease resonance peaks and provide a more even distribution of frequencies transmitted through the ear canal. The channel may comprise a secondary channel having an opening located near one or more of the sound inhibiting structures and the channel may comprise a central axis extending away from an axis of the ear canal. The sound inhibiting structure can be configured so as to provide a first frequency response profile of the sound transmitted along the ear canal from the ear canal opening to the eardrum, and so as to provide a provide a second frequency response profile of the sound transmitted along the ear canal from the eardrum to the ear canal opening.


In many embodiments, the feedback inhibiting structure can be removed from the ear canal when the output transducer contacting the vibratory structure of the ear canal remains in contact with the vibratory structure of the ear. Removal of the feedback inhibiting structure can allow for increased user comfort and may allow the feedback inhibiting structure to be removed. The removable component may comprises the input transducer, such as a microphone and a support component to support the microphone near the ear canal opening and to support the one or more sound inhibiting structures.


The present disclosure also provides the methods for determining configuration and positioning of the sound inhibiting structure to achieve a desired amount of attenuation. A characteristic impedance of the hearing apparatus may be determined based on a position of the hearing apparatus when placed in the ear canal. A damper value may be determined based on the characteristic impedance. In some embodiments, a determination is made of a position of a sound inhibiting structure with the determined damper value relative to the one or more channels of the hearing apparatus to provide a predetermined amount of sound attenuation along the ear canal sufficient to inhibit feedback while allowing user audible high frequency localization cues to be transmitted toward the tympanic membrane. In some embodiments, a sound inhibiting structure with the determined damper value is coupled to the one or more channels of the hearing apparatus to provide a predetermined amount of sound attenuation along the ear canal sufficient to inhibit feedback while allowing user audible high frequency localization cues to be transmitted toward the tympanic membrane. In some embodiments, a sound inhibiting structure with the determined damper value is provided for placement relative to the one or more channels of the hearing apparatus to provide a predetermined amount of sound attenuation along the ear canal sufficient to inhibit feedback while allowing user audible high frequency localization cues to be transmitted toward the tympanic membrane.


Additional aspects of the present disclosure are recited in the claims below, and can provide additional summary in accordance with embodiments. It is contemplated that the embodiments as described herein and recited in the claims may be combined in many ways, and any one or more of the elements recited in the claims can be combined with any one or more additional or alternative elements as recited in the claims, in accordance with embodiments of the present disclosure and teachings as described herein.


Other features and advantages of the devices and methodology of the present disclosure will become apparent from the following detailed description of one or more implementations when read in view of the accompanying figures. Neither this summary nor the following detailed description purports to define the invention. The invention is defined by the claims.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

It should be noted that the drawings are not to scale and are intended only as an aid in conjunction with the explanations in the following detailed description. In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIG. 1A shows an example of a hearing system comprising a user removable input transducer assembly configured to transmit electromagnetic energy to an output transducer assembly, in accordance with various embodiments;



FIG. 1B shows an example of a hearing system comprising a user removable input transducer assembly having a behind the ear (hereinafter “BTE”) unit configured to transmit electromagnetic energy to an output transducer assembly, in accordance with various embodiments;



FIGS. 2A and 2B show isometric and top views, respectively, of examples of the output transducer assembly, in accordance with some embodiments;



FIG. 3A shows an example of a schematic model of acoustic impedance from the eardrum to outside the ear canal, in accordance with various embodiments;



FIG. 3B shows an example of a schematic model of acoustic impedance from the outside the ear canal to the eardrum, in accordance with various embodiments;



FIG. 4 shows an example of a schematic of a second channel 58 coupled to first channel 54, in order to tune the sound transmission properties from the eardrum toward the opening of the ear canal and from the ear canal opening toward the ear drum, in accordance with various embodiments;



FIG. 5 shows an isometric view of an example of a behind-the-ear (BTE) assembly with a light source in the ear tip and a microphone located in the ear tube cable, in accordance with some embodiments;



FIGS. 6A and 6B show isometric views (medial to lateral and lateral to medial, respectively) of the ear tip of FIG. 5, in accordance with embodiments;



FIG. 7A shows an example of a schematic of a model simulating the middle ear driven by the force generated by a transducer at the umbo, in accordance with embodiments;



FIG. 7B shows an example of a schematic of a model simulating the ear canal without an ear tip;



FIG. 7C shows an example of a schematic of a model simulating the placement of an ear tip tube with a resistive screen or damper and its effect on feedback pressure from the eardrum Pec1 to the lateral portion of the ear canal Pec, in accordance with various embodiments; and



FIG. 8 shows an example of a graph of model calculations demonstrating that increasing values of acoustic dampening R in the ear canal tip can increase the maximum stable gain (MSG), wherein the amount of improvement in MSG may be proportional to the amount of acoustic dampening (R) and the characteristic impedance of the ear canal is Zo and values of R can be uniquely chosen to be proportional to Zo, in accordance with various embodiments.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, some examples of embodiments in which the disclosure may be practiced. In this regard, directional terminology, such as “medial” and “lateral,” may be used with reference to the orientation of the figure(s) being described. Because components or embodiments of the present disclosure can be positioned or operated in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure.


As used herein, light encompasses electromagnetic radiation having wavelengths within the visible, infrared and ultraviolet regions of the electromagnetic spectrum.


In many embodiments, the hearing device comprises a photonic hearing device, in which sound is transmitted with photons having energy, such that the signal transmitted to the ear can be encoded with transmitted light.


As used herein, an emitter encompasses a source that radiates electromagnetic radiation and a light emitter encompasses a light source that emits light.


As used herein like references numerals and letters indicate similar elements having similar structure, function and methods of use.



FIG. 1A shows a hearing system 10 comprising a user removable input transducer assembly 20 configured to transmit electromagnetic energy EM to an output transducer assembly 100 positioned in the ear canal EC of the user. The hearing system 10 may serve as a hearing aid to a hearing-impaired subject or patient. Alternatively or in combination, the hearing system 10 may be used as an audio device to transmit sound to the subject. The input transducer assembly 20 can be removed by the user u, and may comprise a sound inhibiting structure 50 which may be configured to inhibit feedback resulting from sound transmission from the output transducer assembly 100 to the microphone 22. The input transducer assembly 20 comprising the sound inhibiting structure 50 can be removed from the ear canal EC such that the output transducer assembly 100 remains in the ear canal, which can allow the sound inhibiting structure 50 to be cleaned when the output transducer assembly 100 remains in the ear canal or middle ear, for example. Alternatively, the output transducer assembly 100 may comprise the sound inhibiting structure 50. The input transducer assembly 20 may comprise a completely in the ear canal (hereinafter CIC) input transducer assembly. Alternatively, one or more components of input transducer assembly 20 can be placed outside the ear canal when in use. The hearing system 10 and the input transducer assembly 20 in particular may comprise any of the ear tip apparatuses described in U.S. patent application Ser. No. 14/554,606, filed Nov. 26, 2014, the contents of which are fully incorporated herein by reference.


The output transducer assembly 100 can be configured to reside in and couple to one or more structures of the ear when input transducer assembly 20 has been removed from the ear canal EC. In many embodiments, the output transducer assembly 100 is configured to reside in the ear canal EC and couple to the middle ear ME. The ear comprises an external ear, a middle ear ME and an inner ear. The external ear comprises a Pinna P and an ear canal EC and is bounded medially by an eardrum TM. Ear canal EC extends medially from pinna P to eardrum TM. Ear canal EC is at least partially defined by a skin SK disposed along the surface of the ear canal. The eardrum TM comprises an annulus TMA that extends circumferentially around a majority of the eardrum to hold the eardrum in place. The middle ear ME is disposed between eardrum TM of the ear and a cochlea CO of the ear. The middle ear ME comprises the ossicles OS to couple the eardrum TM to cochlea CO. The ossicles OS comprise an incus IN, a malleus ML and a stapes ST. The malleus ML is connected to the eardrum TM and the stapes ST is connected to an oval window OW, with the incus IN disposed between the malleus ML and stapes ST. Stapes ST is coupled to the oval window OW so as to conduct sound from the middle ear ME and the stapes ST to the cochlea CO. The round window RW of the cochlea CO is situated below the oval window OW and separated by the promontory PR. The round window RW additionally allows sound to conduct to the middle ear ML to the cochlea CO. The output transducer assembly 100 can be configured to reside in the middle ear of the user and couple to the input transducer assembly 20 placed in the ear canal EC, for example.


The input transducer assembly 20 can receive a sound input, for example an audio sound. With hearing aids for hearing impaired individuals, the input can be ambient sound. The input transducer assembly 20 comprises at least one input transducer 30, for example a microphone 32. Microphone 32 is shown positioned to detect spatial localization cues from the ambient sound, such that the user can determine where a speaker is located based on the transmitted sound. The pinna P of the ear can diffract sound waves toward the ear canal opening such that sound localization cues can be detected with frequencies above at least about 4 kHz. The sound localization cues can be detected when the microphone is positioned within ear canal EC and also when the microphone is positioned outside the ear canal EC and within about 15 mm of the ear canal opening, for example within about 5 mm of the ear canal opening. The at least one input transducer 30 may comprise one or more input transducers in addition or alternatively to microphone 32.


The input transducer assembly 20 comprises electronic components mounted on a printed circuit board (hereinafter “PCB”) assembly 80. In some embodiments, the input may comprise an electronic sound signal from a sound producing or receiving device, such as a telephone, a cellular telephone, a Bluetooth connection, a radio, a digital audio unit, and the like. The electronic components mounted on the PCB of PCB assembly 80 may comprise microphone 32, a signal output transducer 40 such as a light source 42, an input amplifier 82, a sound processor 85, an output amplifier 86, a battery 88, and wireless communication circuitry 89. The signal output transducer 40 may comprise light source 42 or alternatively may comprise an electromagnet such as a coil of wire to generate a magnetic field, for example. The light source 42 may comprise an LED or a laser diode, for example. A transmission element 44 can be coupled to the signal output transducer and may comprise one or more of a ferromagnetic material or an optically transmissive material. The transmission element 44 may comprise a rod of ferrite material to deliver electromagnetic energy to a magnet of the output transducer assembly 100, for example. Alternatively, transmission element 44 may comprise an optical transmission element such as a window, a lens or an optical fiber. The optical transmission element can be configured to transmit optical electromagnetic energy comprising one or more of infrared light energy, visible light energy, or ultraviolet light energy, for example.


The signal output transducer 40 can produce an output such as electromagnetic energy EM based on the sound input, so as to drive the output transducer assembly 100. Output transducer assembly 100 can receive the output from input transducer assembly 20 and can produce mechanical vibrations in response. Output transducer assembly 100 comprises a sound transducer and may comprise at least one of a coil, a magnet, a magnetostrictive element, a photostrictive element, or a piezoelectric element, for example. For example, the output transducer assembly 100 can be coupled input transducer assembly 20 comprising an elongate flexible support having a coil supported thereon for insertion into the ear canal. Alternatively or in combination, the input transducer assembly 20 may comprise a light source coupled to a fiber optic. The light source of the input transducer assembly 20 may also be positioned in the ear canal, and the output transducer assembly and the BTE circuitry components may be located within the ear canal so as to fit within the ear canal. When properly coupled to the subject's hearing transduction pathway, the mechanical vibrations caused by output transducer assembly 100 can induce neural impulses in the subject, which can be interpreted by the subject as the original sound input.


In many embodiments, the sound inhibiting structure 50 may be located on the input transducer assembly 20 so as to inhibit sound transmission from the output transducer assembly 100 to the microphone 32 and to transmit sound from the ear canal opening to the eardrum TM, such that the user can hear natural sound. The sound inhibiting structure 50 may comprise a channel 54 coupled a source of acoustic resistance such as acoustic resistor 52. The acoustic resistor can be located at one or more of many locations to inhibit feedback and transmit sound to the eardrum. For example, in those embodiments where support 25 has a shell or a housing, the acoustic resistor 52 can be located on the distal end of such shell of the support 25. Alternatively, the acoustic resistor 52 can be located on the proximal end of shell of the support 25. The acoustic resistor 52 may comprise a known commercially available acoustic resistor or a plurality of openings formed on the shell of the support 25 and having a suitable size and number so as to inhibit feedback and transmit sound from the ear canal opening to the eardrum TM. In some embodiments, a second acoustic resistor 56 can be provided and coupled to the channel 54 away from the acoustic resistor 52. The second acoustic resistor 56 can be combined with the resistor 52 to inhibit sound at frequencies corresponding to feedback and to transmit high frequency localization cues from the ear canal to the tympanic membrane, for example.



FIG. 1B shows an example of hearing system 10 comprising user removable input transducer assembly 20 having a behind the ear (hereinafter “BTE”) unit configured with the sound inhibiting structure 50 as described herein. The sound inhibiting structure 50 is shown placed in ear canal EC between microphone 32 and output transducer assembly 100. The support 25 may be coupled to the first acoustic resistor 52 and the second acoustic resistor 56 with chamber 54 located therebetween. The support 25 may comprise a shell component configured to conform to the ear canal EC of the user. Alternatively or in combination, support 25 may comprise an elongate portion to place the electromagnetic output transducer 40 near output transducer assembly, so as to couple the electromagnetic output transducer 40 with the output transducer assembly 100. The acoustic resistance of the acoustic resistor 52 combined with the volume and cross sectional size of channel 54 can provide sound transmission from the ear canal opening to the eardrum TM, and can provide inhibition of feedback with attenuation of sound from the eardrum to the ear canal opening. The second resistor and second channel, as described herein, can be combined with acoustic resistor 52 and channel 54 to provide the transmission of high frequency localization cues and attenuation of sound capable of causing feedback when transmitted from the eardrum TM to the microphone 32.


The input transducer assembly 20 may comprise external components for placement outside the ear canal such as the components of the printed circuit board assembly 80 as described herein. Many of the components of the printed circuit board assembly 80 can be located in the BTE unit, for example the battery 88, the sound processor 85, the output amplifier 86 and the output light source 42 may be placed in the BTE unit. In some embodiments, the battery 88 is located in the BTE unit and the other components of PCB assembly 80 are located on the PCB housed within the shell of the support 25 placed in the ear canal. For example, the microphone 32, the input amplifier 82, the sound processor 85 and the output amplifier 86 may be placed in shell of the support 25 placed in the ear canal and the battery 88 placed in the BTE unit.


The BTE unit may comprise many components of system 10 such as a speech processor, battery, wireless transmission circuitry and input transducer assembly 10. The input transducer assembly 20 can be located at least partially behind the pinna P, although the input transducer assembly may be located at many sites. For example, the input transducer assembly may be located substantially within the ear canal. The input transducer assembly may comprise a blue tooth connection to couple to a cell phone and my comprise, for example, components of the commercially available Sound ID 300, available from Sound ID of Palo Alto, Calif. The output transducer assembly 100 may comprise components to receive the light energy and vibrate the eardrum in response to light energy.


In many embodiments, support 25 can be provided without the shell as described herein, and the support 25 may comprise one or more spacers configured to engage the wall of the ear canal EC and place an elongate portion of the support near a central axis of the ear canal EC. The one or more spacers of support 25 may comprise an acoustic resistance to transmit sound localization cues and inhibit feedback. The one or more spacers may comprise first resistor 52 and second resistor 56, in which canal 54 comprises a portion of the ear canal EC extending therebetween. Alternatively, the one or more spacers may comprise a single spacer containing acoustic resistor 52 and configured for placement in the ear canal to position the elongate portion of support 25 near the central axis of the ear canal. When the elongate support is placed near the central axis of the ear canal, one or more of the electromagnetic output transducer or the transmission element may be located near the central axis of the ear canal to position the one or more of the electromagnetic output transducer or the transmission element 44 to deliver power and signal to the output transducer assembly 100.



FIGS. 2A and 2B show isometric and top views, respectively, of an example of the output transducer assembly 100. The output transducer assembly 100 can be configured in many ways and may comprise one or more of a magnet, a magnetic material, a photo transducer, a photomechanical transducer, a photostrictive transducer, a photovoltaic transducer, or a photodiode, for example. The output transducer assembly may comprise a magnet on an elastomeric support configured to be placed on the eardrum and coupled to the eardrum with a fluid, for example. Alternatively, the output transducer assembly may comprise a photomechanical transducer on an elastomeric support configured to be placed on the eardrum. The output transducer assembly may be configured for placement in the middle ear, for example with attachment to one or more ossicles. In many embodiments, output transducer assembly 100 comprises a retention structure 110, a support 120, a transducer 130, at least one spring 140 and a photodetector 150. Retention structure 110 is sized to couple to the eardrum annulus TMA and at least a portion of the anterior sulcus AS of the ear canal EC. Retention structure 110 comprises an aperture 110A. Aperture 110A is sized to receive transducer 130.


The retention structure 110 can be sized to the user and may comprise one or more of an o-ring, a c-ring, a molded structure, or a structure having a shape profile so as to correspond to a mold of the ear of the user. For example retention structure 110 may comprise a polymer layer 115 coated on a positive mold of a user, such as an elastomer or other polymer. Alternatively or in combination, retention structure 110 may comprise a layer 115 of material formed with vapor deposition on a positive mold of the user, as described herein. Retention structure 110 may comprise a resilient retention structure such that the retention structure can be compressed radially inward as indicated by arrows 102 from an expanded wide profile configuration to a narrow profile configuration when passing through the ear canal and subsequently expand to the wide profile configuration when placed on one or more of the eardrum, the eardrum annulus, or the skin of the ear canal.


The retention structure 110 may comprise a shape profile corresponding to anatomical structures that define the ear canal. For example, the retention structure 110 may comprise a first end 112 corresponding to a shape profile of the anterior sulcus AS of the ear canal and the anterior portion of the eardrum annulus TMA. The first end 112 may comprise an end portion having a convex shape profile, for example a nose, so as to fit the anterior sulcus and so as to facilitate advancement of the first end 112 into the anterior sulcus. The retention structure 110 may comprise a second end 114 having a shape profile corresponding to the posterior portion of eardrum annulus TMA.


The support 120 may comprise a frame, or chassis, so as to support the components connected to support 120. Support 120 may comprise a rigid material and can be coupled to the retention structure 110, the transducer 130, the at least one spring 140 and the photodetector 150. The support 120 may comprise a biocompatible metal such as stainless steel so as to support the retention structure 110, the transducer 130, the at least one spring 140 and the photodetector 150. For example, support 120 may comprise cut sheet metal material. Alternatively, support 120 may comprise injection molded biocompatible plastic. The support 120 may comprise an elastomeric bumper structure 122 extending between the support and the retention structure, so as to couple the support to the retention structure with the elastomeric bumper. The elastomeric bumper structure 122 can also extend between the support 120 and the eardrum, such that the elastomeric bumper structure 122 contacts the eardrum TM and protects the eardrum TM from the rigid support 120. The support 120 may define an aperture 120A formed thereon. The aperture 120A can be sized so as to receive the balanced armature transducer 130, for example such that the housing of the balanced armature transducer 130 can extend at least partially through the aperture 120A when the balanced armature transducer is coupled to the eardrum TM. The support 120 may comprise an elongate dimension such that support 120 can be passed through the ear canal EC without substantial deformation when advanced along an axis corresponding to the elongate dimension, such that support 120 may comprise a substantially rigid material and thickness.


The transducer 130 comprises structures to couple to the eardrum when the retention structure 120 contacts one or more of the eardrum, the eardrum annulus, or the skin of the ear canal. The transducer 130 may comprise a balanced armature transducer having a housing and a vibratory reed 132 extending through the housing of the transducer. The vibratory reed 132 is affixed to an extension 134, for example a post, and an inner soft coupling structure 136. The soft coupling structure 136 has a convex surface that contacts the eardrum TM and vibrates the eardrum TM. The soft coupling structure 136 may comprise an elastomer such as silicone elastomer. The soft coupling structure 136 can be anatomically customized to the anatomy of the ear of the user. For example, the soft coupling structure 136 can be customized based a shape profile of the ear of the user, such as from a mold of the ear of the user as described herein.


At least one spring 140 can be connected to the support 120 and the transducer 130, so as to support the transducer 130. The at least one spring 140 may comprise a first spring 122 and a second spring 124, in which each spring is connected to opposing sides of a first end of transducer 130. The springs may comprise coil springs having a first end attached to support 120 and a second end attached to a housing of transducer 130 or a mount affixed to the housing of the transducer 130, such that the coil springs pivot the transducer about axes 140A of the coils of the coil springs and resiliently urge the transducer toward the eardrum when the retention structure contacts one or more of the eardrum, the eardrum annulus, or the skin of the ear canal. The support 120 may comprise a tube sized to receiving an end of the at least one spring 140, so as to couple the at least one spring to support 120.


A photodetector 150 can be coupled to the support 120. A bracket mount 152 can extend substantially around photodetector 150. An arm 154 may extend between support 120 and bracket 152 so as to support photodetector 150 with an orientation relative to support 120 when placed in the ear canal EC. The arm 154 may comprise a ball portion so as to couple to support 120 with a ball-joint. The photodetector 150 can be coupled to transducer 130 so as to driven transducer 130 with electrical energy in response to the light energy signal from the output transducer assembly.


Resilient retention structure 110 can be resiliently deformed when inserted into the ear canal EC. The retention structure 110 can be compressed radially inward along the pivot axes 140A of the coil springs such that the retention structure 110 is compressed as indicated by arrows 102 from a wide profile configuration having a first width 110W1 to an elongate narrow profile configuration having a second width 110W2 when advanced along the ear canal EC as indicated by arrow 104 and when removed from the ear canal as indicated by arrow 106. The elongate narrow profile configuration may comprise an elongate dimension extending along an elongate axis corresponding to an elongate dimension of support 120 and aperture 120A. The elongate narrow profile configuration may comprise a shorter dimension corresponding to a width 120W of the support 120 and aperture 120A along a shorter dimension. The retention structure 110 and support 120 can be passed through the ear canal EC for placement. The reed 132 of the balanced armature transducer 130 can be aligned substantially with the ear canal EC when the assembly 100 is advanced along the ear canal EC in the elongate narrow profile configuration having second width 110W2.


The support 120 may comprise a rigidity greater than the resilient retention structure 110, such that the width 120W remains substantially fixed when the resilient retention structure is compressed from the first configuration having width 110W1 to the second configuration having width 110W2. The rigidity of support 120 greater than the resilient retention structure 110 can provide an intended amount of force to the eardrum TM when the inner soft coupling structure 136 couples to the eardrum, as the support 120 can maintain a substantially fixed shape with coupling of the at least one spring 140. In many embodiments, the outer edges of the resilient retention structure 110 can be rolled upwards toward the side of the photodetector 150 so as to compress the resilient retention structure from the first configuration having width 110W1 to the second configuration having width 110W2, such that the assembly can be easily advanced along the ear canal EC.



FIG. 3A shows a schematic model of acoustic impedance from the eardrum to outside the ear canal. The impedance from the eardrum to outside the ear canal in reverse may comprise an impedance from the canal (hereinafter “Zecr”), an impedance of free space (hereinafter “Zfs”) and a resistance from the one or more acoustic resistors coupled to a chamber as described herein (hereinafter “ZR”). The reverse canal impedance Zecr may comprise an impedance of the ear canal EC (hereinafter “ZEC)” and an impedance of the channel 54, for example.



FIG. 3B shows a schematic model of forward acoustic impedance from the outside the ear canal to the eardrum. The impedance from outside the ear canal to the eardrum may comprise an impedance looking forward through the canal (hereinafter “Zecf”), an impedance of the tympanic membrane (hereinafter “ZTM”), and a resistance from the one or more acoustic resistors as described herein (ZR). The forward canal impedance Zecf may comprise an impedance of the ear canal EC (ZEC) and an impedance of one or more channels such as the channel 54, for example.


The impedance for sound along the sound path from the entrance to the ear canal where the microphone is located can be different than the impedance for sound along the feedback path from the tympanic membrane to the opening of the ear canal, so as to inhibit feedback and allow sound comprising high frequency localization cues to travel from the ear canal opening to the tympanic membrane, for at least some frequencies of sound comprising high frequency localization cues.


According to further aspects of the present disclosure, methods are provided for reducing feedback generating by a hearing apparatus configured to be placed in an ear canal of a user, including methods for determining the proper positioning and configuration of the sound inhibiting structure. The hearing apparatus may have one or more channels to provide an open ear canal from an ear canal opening to a tympanic membrane of the patient thereby reducing occlusion. A characteristic impedance of the hearing apparatus may be determined based on a position of the hearing apparatus when placed in the ear canal. A damper value may be determined based on the characteristic impedance. Using the methodology of the present disclosure, a determination may be made, for example, as to particular positioning of the sound inhibiting structure with the determined damper value (e.g., positioning within one or more channels of the hearing apparatus) to provide a predetermined amount of sound attenuation along the ear canal sufficient to inhibit feedback while allowing user audible high frequency localization cues to be transmitted toward the tympanic membrane. The new and novel methodology and devices of the present disclosure allow, for example, using acoustic dampers in an ear tip that are designed to attenuate feedback pressure to increase the maximum stable gain while transmitting sounds from the environment to the eardrum.


The characteristic impedance of the hearing system may be determined from the hearing system without the sound inhibiting structure coupled to the one or more channels of the hearing apparatus. The characteristic impedance of the hearing apparatus may be determined based on one or more of a density of air, a speed of sound, or a cross-sectional area of a location of the ear canal where the hearing apparatus is configured to be placed. The determination of the characteristic impedance of the hearing apparatus is further described herein and below.


The damper value may be determined based on a predetermined maximum stable gain of the hearing apparatus without the sound inhibiting structure coupled to the one or more channels of the hearing apparatus. The determination of the damper value is further described herein and below.


To couple the sound inhibiting structure to the one or more channels of the hearing apparatus, the sound inhibiting structure may be positioned within the one or more channels to be located at a predetermined position in the ear canal to provide the predetermined amount of sound attenuation. The one or more channels and the coupled sound inhibiting structure may combine to provide the predetermined amount of sound attenuation. The predetermined amount of sound attenuation may comprise a first frequency response profile of sound transmitted along the ear canal from the ear canal opening to the tympanic membrane and a second frequency response profile of sound transmitted along the ear canal from the tympanic membrane to the ear canal opening. The first frequency response profile may be different from the second frequency response profile.


In some embodiments, a plurality of sound inhibiting structures may be coupled to the one or more channels. The damper value may comprise a combined damper value for the plurality of sound inhibiting structures.


An impedance of the sound inhibiting structure may attenuate sound originating from the tympanic membrane toward an ear canal entrance of the user more than sound from originating from the ear canal entrance toward the tympanic membrane.


The sound inhibiting structure and the one or more channels when coupled may comprise a resonance frequency when the hearing apparatus is placed in the ear canal. The resonance frequency may be above a resonance frequency of the ear canal to transmit the high frequency localization cues and inhibit feedback.


The acoustic resistance of the acoustic resistors may be configured in many ways as described herein to inhibit feedback along the feedback path and allow audible transmission of high frequency localization cues. For example, the acoustic resistance may correspond no more than 10 dB of attenuation, so as to inhibit feedback and allow transmission of high frequency localization cues to the eardrum TM of the user. The amount of attenuation can be within a range from about 1 dB to about 30 dB, and can be frequency dependent. For example, the sound attenuation for low frequency sound can be greater than the sound attenuation for high frequency sound which may comprise localization cues. The amount of attenuation can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 dB, for example; and the range can be between any two of these amounts, for example a range from 5 to 10 dB. A person of ordinary skill in the art can determine the amount of attenuation and transmission based on the teachings described herein.


The damper value of the acoustic resistor(s) or damper(s) can be optimally chosen based on one or more of the measurement of feedback pressure and the determination of the maximum stable gain (“MSG”) of the system without the damper(s). The characteristic impedance Zo of the ear canal can be expressed as rho*c/A, where rho is the density of air, c is the speed of sound, and A is the ear canal area in the ear tip region (for example, the cross-sectional area of the ear canal where the input transducer assembly 20 has been placed). The acoustic damper value can be chosen to be proportional to Zo and the proportionality factor may depend on the amount of desired increase in MSG given the hearing loss profile of the ear.



FIG. 4 shows a second channel 58 coupled to first channel 54, in order to tune the sound transmission properties from the eardrum toward the opening of the ear canal and from the ear canal opening toward the ear drum. The second channel 58 can be coupled to the first channel 54 with an opening 59 extending between the two channels. The second channel 58 may extend a substantial distance along the ear canal adjacent the first channel 54 from a proximal end of the shell of the support 25 to a distal end of the shell of the support 25. The opening 59 can be located near the acoustic resistor 52. Alternatively, the opening 59 can be located away from the acoustic resistor 52, for example near a middle portion of the first channel 54. The second channel 58 may comprise a first acoustic resistor 52 and a second acoustic resistor 56.



FIG. 5 shows an example of a BTE hearing unit 500 coupled to an input transducer assembly or ear tip 510 configured to be placed in an ear canal. The BTE hearing unit 500 may be coupled to the ear tip 510 through an ear tube cable 520. The ear tip 510 is shown to have an opening 530, which may house the ear acoustic resistor, also referred to as the acoustic damper. The microphone 540 may be disposed in various locations, for example, at a location near the ear canal entrance with the ear tip 510 placed in the ear canal. The microphone 540 may be disposed within the ear tube cable 520.



FIG. 6A shows a close up of the ear tip 510 as viewed from the lateral to medial direction while FIG. 6B shows the same tip 510 as viewed from the medial to lateral direction which more clearly shows the acoustic resistor 550. Also shown in FIG. 6A is the microphone port and the microphone located within the ear tube cable.



FIG. 7A shows a block diagram 700A of the middle ear comprising the tympanic membrane 710, ossicular chain 715, cochlear load 720, middle ear cavity 725, and ear canal 730. The output transducer TMT may drive the umbo of the eardrum with force Fdrive and impedance Zmotor. FIG. 7B shows a block diagram 700B representing the normal open ear canal 725 without an ear tip. FIG. 7C shows a block diagram 700C of the ear canal 725 with an ear tip 735 and a feedback reduction structure, such as a resistive screen or damper 740, in a specific location, and its effect on feedback pressure from the eardrum Pec1 to the lateral portion of the ear canal Pec.



FIG. 8 shows an example of a chart 800 of the maximum stable gain (MSG, in dB) plotted as a function of frequency (in Hz), calculated using, for example, the model of FIGS. 7A-7C. Several damping values ranging from R=0 (no screen) to R=4*Zo were simulated. FIG. 8 shows that there can be an increase in MSG with an increased damping above about 1 kHz. For example, the amount of improvement in MSG may be proportional to the amount of acoustic dampening (R) wherein the characteristic impedance of the ear canal is Zo and values of R can be uniquely chosen to be proportional to Zo. The dip in MSG near 8 kHz may be due to a standing wave in the acoustics of the cylindrical tubes used in the simulations.


One or more processors may be programmed to perform various steps and methods as described in reference to various embodiments and implementations of the present disclosure. Embodiments of the apparatus and systems of the present disclosure may be comprised of various modules, for example, as discussed above. Each of the modules can comprise various sub-routines, procedures and macros. Each of the modules may be separately compiled and linked into a single executable program.


It will be apparent that the number of steps that are utilized for such methods are not limited to those described above. Also, the methods do not require that all the described steps are present. Although the methodology described above as discrete steps, one or more steps may be added, combined or even deleted, without departing from the intended functionality of the embodiments. The steps can be performed in a different order, for example. It will also be apparent that the method described above may be performed in a partially or substantially automated fashion.


As will be appreciated by those skilled in the art, the methods of the present disclosure may be embodied, at least in part, in software and carried out in a computer system or other data processing system. Therefore, in some exemplary embodiments hardware may be used in combination with software instructions to implement the present disclosure. Any process descriptions, elements or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or elements in the process. Further, the functions described in one or more examples may be implemented in hardware, software, firmware, or any combination of the above. If implemented in software, the functions may be transmitted or stored on as one or more instructions or code on a computer-readable medium, these instructions may be executed by a hardware-based processing unit, such as one or more processors, including general purpose microprocessors, application specific integrated circuits, field programmable logic arrays, or other logic circuitry.


While preferred embodiments have been shown and described herein, it will be apparent to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments described herein may be employed in practicing the invention. By way of non-limiting example, it will be appreciated by those skilled in the art that particular features or characteristics described in reference to one figure or embodiment may be combined as suitable with features or characteristics described in another figure or embodiment. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of reducing Feedback generated by a hearing apparatus configured to be placed in an ear canal of a user, the method comprising: determining a characteristic impedance of the hearing apparatus based on a position of the hearing apparatus when placed in the ear canal;determining a damper value based on the characteristic impedance; and determining a position of a sound inhibiting structure with the determined damper value relative to the one or more channels of the hearing apparatus to provide a predetermined amount of sound attenuation along the ear canal sufficient to inhibit feedback while allowing user audible high frequency localization cues to be transmitted toward the tympanic membrane.
  • 2. The method of claim 1, wherein the characteristic impedance of the hearing system is determined without the sound inhibiting structure coupled to the one or more channels of the hearing apparatus.
  • 3. The method of claim 1, wherein determining the characteristic impedance of the hearing apparatus comprises determining the characteristic impedance of the hearing system based on one or more of a density of air, a speed of sound, or a cross-sectional area of a location of the ear canal where the hearing apparatus is configured to be placed.
  • 4. The method of claim 1, wherein determining the damper value comprises determining the damper value based on a predetermined maximum stable gain of the hearing apparatus without the sound inhibiting structure coupled to the one or more channels of the hearing apparatus.
  • 5. The method of claim 1, further comprising positioning the sound inhibiting structure within the one or more channels at the determined position to couple the sound inhibiting structure to the one or more channels and provide the predetermined amount of sound attenuation.
  • 6. The method of claim 5, wherein the one or more channels and the sound inhibiting structure positioned at the determined position combine to provide the predetermined amount of sound attenuation.
  • 7. The method of claim 1, wherein the predetermined amount of sound attenuation comprises a first frequency response profile of sound transmitted along the ear canal from the ear canal opening to the tympanic membrane and a second frequency response profile of sound transmitted along the ear canal from the tympanic membrane to the ear canal opening, the first frequency response profile being different from the second frequency response profile.
  • 8. The method of claim 1, wherein determining the position of the sound inhibiting structure relative to the one or more channels comprises determining a plurality of positions of a plurality of sound inhibiting structures relative to the one or more channels, wherein the damper value comprises a combined damper value for the plurality of sound inhibiting structures.
  • 9. The method of claim 1, wherein an impedance of the sound inhibiting structure attenuates sound originating from the tympanic membrane toward an ear canal entrance of the user more than sound from originating from the ear canal entrance toward the tympanic membrane.
  • 10. The method of claim 1, wherein the sound inhibiting structure and the one or more channels when coupled to one another comprise a resonance frequency when the hearing apparatus is placed in the ear canal, and wherein the resonance frequency is above a resonance frequency of the ear canal to transmit the high frequency localization cues and inhibit feedback.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/955,016, filed Mar. 18, 2014, which application is incorporated herein by reference.

US Referenced Citations (494)
Number Name Date Kind
3209082 McCarrell et al. Sep 1965 A
3229049 Goldberg Jan 1966 A
3440314 Eldon Apr 1969 A
3549818 Justin Dec 1970 A
3585416 Mellen Jun 1971 A
3594514 Wingrove Jul 1971 A
3710399 Hurst Jan 1973 A
3712962 Epley Jan 1973 A
3764748 Branch et al. Oct 1973 A
3808179 Gaylord Apr 1974 A
3882285 Nunley et al. May 1975 A
3965430 Brandt Jun 1976 A
3985977 Beaty et al. Oct 1976 A
4002897 Kleinman et al. Jan 1977 A
4031318 Pitre Jun 1977 A
4061972 Burgess Dec 1977 A
4075042 Das Feb 1978 A
4098277 Mendell Jul 1978 A
4109116 Victoreen Aug 1978 A
4120570 Gaylord Oct 1978 A
4248899 Lyon et al. Feb 1981 A
4252440 Frosch Feb 1981 A
4303772 Novicky Dec 1981 A
4319359 Wolf Mar 1982 A
4334315 Ono et al. Jun 1982 A
4334321 Edelman Jun 1982 A
4338929 Lundin et al. Jul 1982 A
4339954 Anson et al. Jul 1982 A
4357497 Hochmair et al. Nov 1982 A
4380689 Giannetti Apr 1983 A
4428377 Zollner et al. Jan 1984 A
4524294 Brody Jun 1985 A
4540761 Kawamura et al. Sep 1985 A
4556122 Goode Dec 1985 A
4592087 Killion et al. May 1986 A
4606329 Hough Aug 1986 A
4611598 Hortmann et al. Sep 1986 A
4628907 Epley Dec 1986 A
4641377 Rush et al. Feb 1987 A
4654554 Kishi Mar 1987 A
4689819 Killion Aug 1987 A
4696287 Hortmann et al. Sep 1987 A
4729366 Schaefer Mar 1988 A
4741339 Harrison et al. May 1988 A
4742499 Butler May 1988 A
4756312 Epley Jul 1988 A
4759070 Voroba Jul 1988 A
4766607 Feldman Aug 1988 A
4774933 Hough et al. Oct 1988 A
4776322 Hough et al. Oct 1988 A
4782818 Mori Nov 1988 A
4800884 Heide et al. Jan 1989 A
4800982 Carlson Jan 1989 A
4817607 Tatge Apr 1989 A
4840178 Heide et al. Jun 1989 A
4845755 Busch et al. Jul 1989 A
4865035 Mori Sep 1989 A
4870688 Voroba et al. Sep 1989 A
4932405 Peeters et al. Jun 1990 A
4936305 Ashtiani et al. Jun 1990 A
4944301 Widin et al. Jul 1990 A
4948855 Novicky Aug 1990 A
4957478 Maniglia Sep 1990 A
4963963 Dorman Oct 1990 A
4999819 Newnham et al. Mar 1991 A
5003608 Carlson Mar 1991 A
5012520 Steeger Apr 1991 A
5015224 Maniglia May 1991 A
5015225 Hough et al. May 1991 A
5031219 Ward et al. Jul 1991 A
5061282 Jacobs Oct 1991 A
5066091 Stoy et al. Nov 1991 A
5068902 Ward Nov 1991 A
5094108 Kim et al. Mar 1992 A
5117461 Moseley May 1992 A
5142186 Cross et al. Aug 1992 A
5163957 Sade et al. Nov 1992 A
5167235 Seacord et al. Dec 1992 A
5201007 Ward et al. Apr 1993 A
5259032 Perkins et al. Nov 1993 A
5272757 Scofield et al. Dec 1993 A
5276910 Buchele Jan 1994 A
5277694 Leysieffer et al. Jan 1994 A
5282858 Bisch et al. Feb 1994 A
5360388 Spindel et al. Nov 1994 A
5378933 Pfannenmueller et al. Jan 1995 A
5402496 Soli et al. Mar 1995 A
5411467 Hortmann et al. May 1995 A
5425104 Shennib Jun 1995 A
5440082 Claes Aug 1995 A
5440237 Brown et al. Aug 1995 A
5455994 Termeer et al. Oct 1995 A
5456654 Ball Oct 1995 A
5531787 Lesinski et al. Jul 1996 A
5531954 Heide et al. Jul 1996 A
5535282 Luca Jul 1996 A
5554096 Ball Sep 1996 A
5558618 Maniglia Sep 1996 A
5572594 Devoe et al. Nov 1996 A
5606621 Reiter et al. Feb 1997 A
5624376 Ball et al. Apr 1997 A
5654530 Sauer et al. Aug 1997 A
5692059 Kruger Nov 1997 A
5699809 Combs Dec 1997 A
5701348 Shennib Dec 1997 A
5707338 Adams et al. Jan 1998 A
5715321 Andrea et al. Feb 1998 A
5721783 Anderson Feb 1998 A
5722411 Suzuki et al. Mar 1998 A
5729077 Newnham et al. Mar 1998 A
5740258 Goodwin-Johansson Apr 1998 A
5749912 Zhang et al. May 1998 A
5762583 Adams et al. Jun 1998 A
5772575 Lesinski et al. Jun 1998 A
5774259 Saitoh et al. Jun 1998 A
5782744 Money Jul 1998 A
5788711 Lehner et al. Aug 1998 A
5795287 Ball et al. Aug 1998 A
5797834 Goode Aug 1998 A
5800336 Ball et al. Sep 1998 A
5804109 Perkins Sep 1998 A
5804907 Park et al. Sep 1998 A
5814095 Mueller et al. Sep 1998 A
5825122 Givargizov et al. Oct 1998 A
5836863 Bushek et al. Nov 1998 A
5842967 Kroll Dec 1998 A
5857958 Ball et al. Jan 1999 A
5859916 Ball et al. Jan 1999 A
5868682 Combs Feb 1999 A
5879283 Adams et al. Mar 1999 A
5888187 Jaeger et al. Mar 1999 A
5897486 Ball et al. Apr 1999 A
5899847 Adams et al. May 1999 A
5900274 Chatterjee et al. May 1999 A
5906635 Maniglia May 1999 A
5913815 Ball et al. Jun 1999 A
5922077 Espy et al. Jul 1999 A
5940519 Kuo Aug 1999 A
5949895 Ball et al. Sep 1999 A
5984859 Lesinski Nov 1999 A
5987146 Pluvinage et al. Nov 1999 A
6005955 Kroll et al. Dec 1999 A
6024717 Ball et al. Feb 2000 A
6045528 Arenberg et al. Apr 2000 A
6050933 Bushek et al. Apr 2000 A
6068589 Neukermans May 2000 A
6068590 Brisken May 2000 A
6084975 Perkins Jul 2000 A
6093144 Jaeger et al. Jul 2000 A
6135612 Clore Oct 2000 A
6137889 Shennib et al. Oct 2000 A
6139488 Ball Oct 2000 A
6153966 Neukermans Nov 2000 A
6174278 Jaeger et al. Jan 2001 B1
6181801 Puthuff et al. Jan 2001 B1
6190305 Ball et al. Feb 2001 B1
6190306 Kennedy Feb 2001 B1
6208445 Reime Mar 2001 B1
6217508 Ball et al. Apr 2001 B1
6222302 Imada et al. Apr 2001 B1
6222927 Feng et al. Apr 2001 B1
6240192 Brennan et al. May 2001 B1
6241767 Stennert et al. Jun 2001 B1
6259951 Kuzma et al. Jul 2001 B1
6261224 Adams et al. Jul 2001 B1
6264603 Kennedy Jul 2001 B1
6277148 Dormer Aug 2001 B1
6312959 Datskos Nov 2001 B1
6339648 McIntosh et al. Jan 2002 B1
6354990 Juneau et al. Mar 2002 B1
6359993 Brimhall Mar 2002 B2
6366863 Bye et al. Apr 2002 B1
6385363 Rajic et al. May 2002 B1
6387039 Moses May 2002 B1
6393130 Stonikas et al. May 2002 B1
6422991 Jaeger Jul 2002 B1
6432248 Popp et al. Aug 2002 B1
6436028 Dormer Aug 2002 B1
6438244 Juneau et al. Aug 2002 B1
6445799 Taenzer et al. Sep 2002 B1
6473512 Juneau et al. Oct 2002 B1
6475134 Ball et al. Nov 2002 B1
6491644 Vujanic et al. Dec 2002 B1
6493453 Glendon Dec 2002 B1
6493454 Loi et al. Dec 2002 B1
6498858 Kates Dec 2002 B2
6519376 Biagi et al. Feb 2003 B2
6536530 Schultz et al. Mar 2003 B2
6537200 Leysieffer et al. Mar 2003 B2
6549633 Westermann Apr 2003 B1
6549635 Gebert Apr 2003 B1
6554761 Puria et al. Apr 2003 B1
6575894 Leysieffer et al. Jun 2003 B2
6592513 Kroll et al. Jul 2003 B1
6603860 Taenzer et al. Aug 2003 B1
6620110 Schmid Sep 2003 B2
6626822 Jaeger et al. Sep 2003 B1
6629922 Puria et al. Oct 2003 B1
6631196 Taenzer et al. Oct 2003 B1
6663575 Leysieffer Dec 2003 B2
6668062 Luo et al. Dec 2003 B1
6676592 Ball et al. Jan 2004 B2
6681022 Puthuff et al. Jan 2004 B1
6695943 Juneau et al. Feb 2004 B2
6697674 Leysieffer Feb 2004 B2
6724902 Shennib Apr 2004 B1
6726618 Miller Apr 2004 B2
6726718 Carlyle et al. Apr 2004 B1
6727789 Tibbetts et al. Apr 2004 B2
6728024 Ribak Apr 2004 B2
6735318 Cho May 2004 B2
6754358 Boesen et al. Jun 2004 B1
6754359 Svean et al. Jun 2004 B1
6754537 Harrison et al. Jun 2004 B1
6785394 Olsen et al. Aug 2004 B1
6801629 Brimhall et al. Oct 2004 B2
6829363 Sacha Dec 2004 B2
6837857 Stirnemann Jan 2005 B2
6842647 Griffith et al. Jan 2005 B1
6888949 Vanden et al. May 2005 B1
6900926 Ribak May 2005 B2
6912289 Vonlanthen et al. Jun 2005 B2
6920340 Laderman Jul 2005 B2
6931231 Griffin Aug 2005 B1
6940988 Shennib Sep 2005 B1
6940989 Shennib Sep 2005 B1
D512979 Corcoran et al. Dec 2005 S
6975402 Bisson et al. Dec 2005 B2
6978159 Feng et al. Dec 2005 B2
7043037 Lichtblau et al. May 2006 B2
7050675 Zhou et al. May 2006 B2
7050876 Fu et al. May 2006 B1
7057256 Mazur et al. Jun 2006 B2
7058182 Kates Jun 2006 B2
7072475 Denap et al. Jul 2006 B1
7076076 Bauman Jul 2006 B2
7095981 Voroba et al. Aug 2006 B1
7167572 Harrison et al. Jan 2007 B1
7174026 Niederdrank Feb 2007 B2
7203331 Boesen Apr 2007 B2
7239069 Cho Jul 2007 B2
7245732 Jorgensen et al. Jul 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7266208 Charvin et al. Sep 2007 B2
7289639 Abel et al. Oct 2007 B2
7313245 Shennib Dec 2007 B1
7322930 Jaeger et al. Jan 2008 B2
7349741 Maltan et al. Mar 2008 B2
7354792 Mazur et al. Apr 2008 B2
7376563 Leysieffer et al. May 2008 B2
7390689 Mazur et al. Jun 2008 B2
7394909 Widmer et al. Jul 2008 B1
7421087 Perkins et al. Sep 2008 B2
7424122 Ryan Sep 2008 B2
7444877 Li et al. Nov 2008 B2
7547275 Cho et al. Jun 2009 B2
7630646 Anderson et al. Dec 2009 B2
7668325 Puria et al. Feb 2010 B2
7747295 Choi Jun 2010 B2
7826632 Von Buol Nov 2010 B2
7853033 Maltan et al. Dec 2010 B2
7867160 Pluvinage et al. Jan 2011 B2
7983435 Moses Jul 2011 B2
8090134 Takigawa et al. Jan 2012 B2
8128551 Jolly Mar 2012 B2
8157730 Leboeuf et al. Apr 2012 B2
8197461 Arenberg et al. Jun 2012 B1
8204786 Leboeuf et al. Jun 2012 B2
8233651 Haller Jul 2012 B1
8251903 Leboeuf et al. Aug 2012 B2
8295505 Weinans et al. Oct 2012 B2
8295523 Fay et al. Oct 2012 B2
8320601 Takigawa et al. Nov 2012 B2
8320982 Leboeuf et al. Nov 2012 B2
8340335 Shennib Dec 2012 B1
8391527 Feucht et al. Mar 2013 B2
8396239 Fay et al. Mar 2013 B2
8401212 Puria Mar 2013 B2
8506473 Puria Aug 2013 B2
8512242 Leboeuf et al. Aug 2013 B2
8526651 Van et al. Sep 2013 B2
8545383 Wenzel et al. Oct 2013 B2
8600089 Wenzel et al. Dec 2013 B2
8647270 Leboeuf et al. Feb 2014 B2
8652040 Leboeuf et al. Feb 2014 B2
8696054 Crum Apr 2014 B2
8696541 Pluvinage et al. Apr 2014 B2
8700111 Leboeuf et al. Apr 2014 B2
8702607 Leboeuf et al. Apr 2014 B2
8715152 Puria et al. May 2014 B2
8715153 Puria et al. May 2014 B2
8715154 Perkins et al. May 2014 B2
8761423 Wagner et al. Jun 2014 B2
8788002 Leboeuf et al. Jul 2014 B2
8824715 Fay et al. Sep 2014 B2
8855323 Kroman Oct 2014 B2
8858419 Puria et al. Oct 2014 B2
8885860 Djalilian et al. Nov 2014 B2
8886269 Leboeuf et al. Nov 2014 B2
8888701 Leboeuf et al. Nov 2014 B2
8923941 Leboeuf et al. Dec 2014 B2
8929965 Leboeuf et al. Jan 2015 B2
8929966 Leboeuf et al. Jan 2015 B2
8934952 Leboeuf et al. Jan 2015 B2
8942776 Leboeuf et al. Jan 2015 B2
8961415 Leboeuf et al. Feb 2015 B2
8989830 Leboeuf et al. Mar 2015 B2
9044180 Leboeuf et al. Jun 2015 B2
9049528 Fay et al. Jun 2015 B2
9131312 Leboeuf et al. Sep 2015 B2
9154891 Puria et al. Oct 2015 B2
9211069 Larsen et al. Dec 2015 B2
9226083 Puria et al. Dec 2015 B2
9289135 Leboeuf et al. Mar 2016 B2
9289175 Leboeuf et al. Mar 2016 B2
9301696 Leboeuf et al. Apr 2016 B2
9314167 Leboeuf et al. Apr 2016 B2
9392377 Olsen et al. Jul 2016 B2
9427191 Leboeuf et al. Aug 2016 B2
9521962 Leboeuf Dec 2016 B2
9538921 Leboeuf et al. Jan 2017 B2
9544700 Puria et al. Jan 2017 B2
9750462 Leboeuf et al. Sep 2017 B2
9788785 Leboeuf Oct 2017 B2
9788794 Leboeuf et al. Oct 2017 B2
9794653 Aumer et al. Oct 2017 B2
9801552 Romesburg et al. Oct 2017 B2
9808204 Leboeuf et al. Nov 2017 B2
20010003788 Ball et al. Jun 2001 A1
20010007050 Adelman Jul 2001 A1
20010024507 Boesen Sep 2001 A1
20010027342 Dormer Oct 2001 A1
20010043708 Brimhall Nov 2001 A1
20010053871 Zilberman et al. Dec 2001 A1
20020012438 Leysieffer et al. Jan 2002 A1
20020029070 Leysieffer et al. Mar 2002 A1
20020030871 Anderson et al. Mar 2002 A1
20020035309 Leysieffer Mar 2002 A1
20020085728 Shennib Jul 2002 A1
20020086715 Sahagen Jul 2002 A1
20020172350 Edwards et al. Nov 2002 A1
20020183587 Dormer Dec 2002 A1
20030021903 Shlenker et al. Jan 2003 A1
20030064746 Rader et al. Apr 2003 A1
20030081803 Petilli et al. May 2003 A1
20030097178 Roberson et al. May 2003 A1
20030125602 Sokolich et al. Jul 2003 A1
20030142841 Wiegand Jul 2003 A1
20030208099 Ball Nov 2003 A1
20030208888 Fearing et al. Nov 2003 A1
20040019294 Stirnemann Jan 2004 A1
20040165742 Shennib Aug 2004 A1
20040166495 Greinwald, Jr. Aug 2004 A1
20040167377 Schafer et al. Aug 2004 A1
20040184732 Zhou et al. Sep 2004 A1
20040202339 O'Brien et al. Oct 2004 A1
20040202340 Armstrong et al. Oct 2004 A1
20040208333 Cheung et al. Oct 2004 A1
20040234089 Rembrand et al. Nov 2004 A1
20040234092 Wada Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040240691 Grafenberg Dec 2004 A1
20050018859 Buchholz Jan 2005 A1
20050020873 Berrang Jan 2005 A1
20050036639 Bachler et al. Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050088435 Geng Apr 2005 A1
20050101830 Easter et al. May 2005 A1
20050163333 Abel et al. Jul 2005 A1
20050226446 Luo et al. Oct 2005 A1
20050271870 Jackson Dec 2005 A1
20060015155 Charvin et al. Jan 2006 A1
20060023908 Perkins et al. Feb 2006 A1
20060058573 Neisz et al. Mar 2006 A1
20060062420 Araki Mar 2006 A1
20060074159 Lu et al. Apr 2006 A1
20060075175 Jensen et al. Apr 2006 A1
20060107744 Li et al. May 2006 A1
20060161255 Zarowski et al. Jul 2006 A1
20060177079 Baekgaard et al. Aug 2006 A1
20060183965 Kasic et al. Aug 2006 A1
20060189841 Pluvinage et al. Aug 2006 A1
20060231914 Carey Oct 2006 A1
20060233398 Husung Oct 2006 A1
20060237126 Guffrey et al. Oct 2006 A1
20060247735 Honert et al. Nov 2006 A1
20060251278 Puria et al. Nov 2006 A1
20060256989 Olsen et al. Nov 2006 A1
20060278245 Gan Dec 2006 A1
20070030990 Fischer Feb 2007 A1
20070036377 Stirnemann Feb 2007 A1
20070076913 Schanz Apr 2007 A1
20070083078 Easter et al. Apr 2007 A1
20070100197 Perkins et al. May 2007 A1
20070127748 Carlile et al. Jun 2007 A1
20070127752 Armstrong Jun 2007 A1
20070127766 Combest Jun 2007 A1
20070135870 Shanks et al. Jun 2007 A1
20070161848 Dalton et al. Jul 2007 A1
20070191673 Ball et al. Aug 2007 A1
20070206825 Thomasson Sep 2007 A1
20070225776 Fritsch et al. Sep 2007 A1
20070236704 Carr et al. Oct 2007 A1
20070250119 Tyler et al. Oct 2007 A1
20070251082 Milojevic et al. Nov 2007 A1
20070286429 Grafenberg et al. Dec 2007 A1
20080021518 Hochmair et al. Jan 2008 A1
20080051623 Schneider et al. Feb 2008 A1
20080054509 Berman et al. Mar 2008 A1
20080063228 Mejia et al. Mar 2008 A1
20080063231 Juneau Mar 2008 A1
20080064918 Jolly Mar 2008 A1
20080089292 Kitazoe et al. Apr 2008 A1
20080107292 Kornagel May 2008 A1
20080123866 Rule et al. May 2008 A1
20080188707 Bernard et al. Aug 2008 A1
20080298600 Poe et al. Dec 2008 A1
20080300703 Widmer Dec 2008 A1
20090023976 Cho et al. Jan 2009 A1
20090043149 Abel et al. Feb 2009 A1
20090076581 Gibson Mar 2009 A1
20090092271 Fay et al. Apr 2009 A1
20090097681 Puria Apr 2009 A1
20090141919 Spitaels et al. Jun 2009 A1
20090149697 Steinhardt et al. Jun 2009 A1
20090253951 Ball et al. Oct 2009 A1
20090262966 Vestergaard et al. Oct 2009 A1
20090281367 Cho et al. Nov 2009 A1
20090310805 Petroff Dec 2009 A1
20100034409 Fay et al. Feb 2010 A1
20100036488 De Juan, Jr. et al. Feb 2010 A1
20100048982 Puria et al. Feb 2010 A1
20100085176 Flick Apr 2010 A1
20100111315 Kroman May 2010 A1
20100152527 Puria Jun 2010 A1
20100177918 Keady Jul 2010 A1
20100202645 Puria et al. Aug 2010 A1
20100222639 Purcell et al. Sep 2010 A1
20100272299 Van Schuylenbergh Oct 2010 A1
20100290653 Wiggins et al. Nov 2010 A1
20100312040 Puria et al. Dec 2010 A1
20110069852 Arndt Mar 2011 A1
20110077453 Pluvinage et al. Mar 2011 A1
20110112462 Parker et al. May 2011 A1
20110116666 Dittberner et al. May 2011 A1
20110152602 Perkins et al. Jun 2011 A1
20110182453 Van Hal Jul 2011 A1
20110221391 Won et al. Sep 2011 A1
20110258839 Probst Oct 2011 A1
20120008807 Gran Jan 2012 A1
20120014546 Puria et al. Jan 2012 A1
20120039493 Rucker et al. Feb 2012 A1
20120140967 Aubert et al. Jun 2012 A1
20120236524 Pugh et al. Sep 2012 A1
20130034258 Lin Feb 2013 A1
20130083938 Bakalos Apr 2013 A1
20130287239 Fay et al. Oct 2013 A1
20130308782 Dittberner et al. Nov 2013 A1
20130343584 Bennett et al. Dec 2013 A1
20130343585 Bennett et al. Dec 2013 A1
20140003640 Puria et al. Jan 2014 A1
20140056453 Olsen Feb 2014 A1
20140153761 Shennib Jun 2014 A1
20140169603 Sacha et al. Jun 2014 A1
20140254856 Blick et al. Sep 2014 A1
20140286514 Pluvinage et al. Sep 2014 A1
20140288356 Van Vlem Sep 2014 A1
20140296620 Puria Oct 2014 A1
20140321657 Stirnemann Oct 2014 A1
20140379874 Starr et al. Dec 2014 A1
20150010185 Puria et al. Jan 2015 A1
20150023540 Fay et al. Jan 2015 A1
20150031941 Perkins et al. Jan 2015 A1
20150201269 Dahl et al. Jul 2015 A1
20150222978 Murozaki et al. Aug 2015 A1
20150271609 Puria Sep 2015 A1
20160029132 Freed et al. Jan 2016 A1
20160064814 Jang et al. Mar 2016 A1
20160066101 Puria et al. Mar 2016 A1
20160302011 Olsen et al. Oct 2016 A1
20160309265 Pluvinage et al. Oct 2016 A1
20160309266 Olsen Oct 2016 A1
20170095202 Facteau et al. Apr 2017 A1
20170134866 Puria et al. May 2017 A1
20170150275 Puria et al. May 2017 A1
20170195801 Rucker et al. Jul 2017 A1
20170195804 Sandhu et al. Jul 2017 A1
20170195806 Atamaniuk et al. Jul 2017 A1
20170195809 Teran et al. Jul 2017 A1
20180007472 Puria et al. Jan 2018 A1
20180014128 Puria et al. Jan 2018 A1
20180020291 Puria et al. Jan 2018 A1
20180020296 Wenzel Jan 2018 A1
20180063652 Perkins et al. Mar 2018 A1
Foreign Referenced Citations (65)
Number Date Country
2004301961 Feb 2005 AU
2044870 Mar 1972 DE
3243850 May 1984 DE
3508830 Sep 1986 DE
0092822 Nov 1983 EP
0242038 Oct 1987 EP
0291325 Nov 1988 EP
0296092 Dec 1988 EP
0242038 May 1989 EP
0296092 Aug 1989 EP
0352954 Jan 1990 EP
0291325 Jun 1990 EP
0352954 Aug 1991 EP
1845919 Oct 2007 EP
1845919 Sep 2010 EP
2455820 Nov 1980 FR
S60154800 Aug 1985 JP
H09327098 Dec 1997 JP
2000504913 Apr 2000 JP
2004187953 Jul 2004 JP
100624445 Sep 2006 KR
WO-9209181 May 1992 WO
WO-9621334 Jul 1996 WO
WO-9736457 Oct 1997 WO
WO-9745074 Dec 1997 WO
WO-9806236 Feb 1998 WO
WO-9903146 Jan 1999 WO
WO-9915111 Apr 1999 WO
WO-0022875 Apr 2000 WO
WO-0022875 Jul 2000 WO
WO-0150815 Jul 2001 WO
WO-0158206 Aug 2001 WO
WO-0176059 Oct 2001 WO
WO-0158206 Feb 2002 WO
WO-0239874 May 2002 WO
WO-0239874 Feb 2003 WO
WO-03063542 Jul 2003 WO
WO-03063542 Jan 2004 WO
WO-2004010733 Jan 2004 WO
WO-2005015952 Feb 2005 WO
WO-2005107320 Nov 2005 WO
WO-2006014915 Feb 2006 WO
WO-2006037156 Apr 2006 WO
WO-2006042298 Apr 2006 WO
WO-2006075169 Jul 2006 WO
WO-2006075175 Jul 2006 WO
WO-2006118819 Nov 2006 WO
WO-2006042298 Dec 2006 WO
WO-2009046329 Apr 2009 WO
WO-2009047370 Apr 2009 WO
WO-2009049320 Apr 2009 WO
WO-2009056167 May 2009 WO
WO-2009047370 Jul 2009 WO
WO-2009145842 Dec 2009 WO
WO-2009146151 Dec 2009 WO
WO-2009155358 Dec 2009 WO
WO-2009155361 Dec 2009 WO
WO-2010033932 Mar 2010 WO
WO-2010033933 Mar 2010 WO
WO-2010077781 Jul 2010 WO
WO-2012088187 Jun 2012 WO
WO-2012149970 Nov 2012 WO
WO-2016011044 Jan 2016 WO
WO-2017116791 Jul 2017 WO
WO-2017116865 Jul 2017 WO
Non-Patent Literature Citations (143)
Entry
Carlile, et al. Frequency bandwidth and multi-talker environments. Audio Engineering Society Convention 120. Audio Engineering Society, May 20-23, 2006. Paris, France. 118:8 pages.
Co-pending U.S. Appl. No. 14/813,301, filed Jul. 30, 2015.
Co-pending U.S. Appl. No. 14/843,030, filed Sep. 2, 2015.
Co-pending U.S. Appl. No. 14/949,495, filed Nov. 23, 2015.
Killion, et al. The case of the missing dots: AI and SNR loss. The Hearing Journal, 1998. 51(5), 32-47.
Moore, et al. Perceived naturalness of spectrally distorted speech and music. J Acoust Soc Am. Jul. 2003;114(1):408-19.
O'Connor, et al. Middle ear Cavity and Ear Canal Pressure-Driven Stapes Velocity Responses in Human Cadaveric Temporal Bones. J Acoust Soc Am. Sep. 2006;120(3):1517-28.
Puria, et al. Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals. Hear Res. May 2010;263(1-2):183-90. doi: 10.1016/j.heares.2009.10.013. Epub Oct. 28, 2009.
Puria. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am. May 2003;113(5):2773-89.
Co-pending U.S. Appl. No. 14/988,304, filed Jan. 5, 2016.
Notice of allowance dated Mar. 16, 2016 for U.S. Appl. No. 13/919,079.
Jian, et al. A 0.6 V, 1.66 mW energy harvester and audio driver for tympanic membrane transducer with wirelessly optical signal and power transfer. InCircuits and Systems (ISCAS), 2014 IEEE International Symposium on Jun. 1, 2014. 874-7. IEEE.
Song, et al. The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane. Applied Acoustics. Dec. 31, 2013;74(12):1511-8.
Atasoy [Paper] Opto-acoustic Imaging. for BYM504E Biomedical Imaging Systems class at ITU, downloaded from the Internet www2.itu.edu.td-cilesiz/courses/BYM504- 2005-OA 504041413.pdf, 14 pages.
Athanassiou, et al. Laser controlled photomechanical actuation of photochromic polymers Microsystems. Rev. Adv. Mater. Sci. 2003; 5:245-251.
Ayatollahi, et al. Design and Modeling of Micromachined Condenser MEMS Loudspeaker using Permanent Magnet Neodymium-Iron-Boron (Nd—Fe—B). IEEE International Conference on Semiconductor Electronics, 2006. ICSE '06, Oct. 29, 2006-Dec. 1, 2006; 160-166.
Baer, et al. Effects of Low Pass Filtering on the Intelligibility of Speech in Noise for People With and Without Dead Regions at High Frequencies. J. Acost. Soc. Am 112(3), pt. 1, (Sep. 2002), pp. 1133-1144.
Best, et al. The influence of high frequencies on speech localization. Abstract 981 (Feb. 24, 2003) from www.aro.org/abstracts/abstracts.html.
Birch, et al. Microengineered systems for the hearing impaired. IEE Colloquium on Medical Applications of Microengineering, Jan. 31, 1996; pp. 2/1-2/5.
Burkhard, et al. Anthropometric Manikin for Acoustic Research. J. Acoust. Soc. Am., vol. 58, No. 1, (Jul. 1975), pp. 214-222.
Camacho-Lopez, et al. Fast Liquid Crystal Elastomer Swims Into the Dark, Electronic Liquid Crystal Communications. Nov. 26, 2003; 9 pages total.
Carlile, et al. Spatialisation of talkers and the segregation of concurrent speech. Abstract 1264 (Feb. 24, 2004) from www.aro.org/abstracts/abstracts.html.
Cheng, et al. A Silicon Microspeaker for Hearing Instruments. Journal of Micromechanics and Microengineering 2004; 14(7):859-866.
Co-pending U.S. Appl. No. 14/554,606, filed Nov. 26, 2014.
Datskos, et al. Photoinduced and thermal stress in silicon microcantilevers. Applied Physics Letters. Oct. 19, 1998; 73(16):2319-2321.
Decraemer, et al. A method for determining three-dimensional vibration in the ear. Hearing Res., 77:19-37 (1994).
Ear. Retrieved from the Internet: http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/thesaurus/Se/ear.html. Accessed Jun. 17, 2008.
European search report and opinion dated Jun. 12, 2009 for EP 06758467.2.
Fay, et al. Cat eardrum response mechanics. Mechanics and Computation Division. Department of Mechanical Engineering. Standford University. 2002; 10 pages total.
Fletcher. Effects of Distortion on the Individual Speech Sounds. Chapter 18, ASA Edition of Speech and Hearing in Communication, Acoust Soc.of Am. (republished in 1995) pp. 415-423.
Freyman, et al. Spatial Release from Informational Masking in Speech Recognition. J. Acost. Soc. Am., vol. 109, No. 5, pt. 1, (May 2001); 2112-2122.
Freyman, et al. The Role of Perceived Spatial Separation in the Unmasking of Speech. J. Acoust. Soc. Am., vol. 106, No. 6, (Dec. 1999); 3578-3588.
Gennum, GA3280 Preliminary Data Sheet: Voyageur TD Open Platform DSP System for Ultra Low Audio Processing, downloaded from the Internet: <<http://www.sounddesigntechnologies.com/products/pdf/37601DOC.pdf>>, Oct. 2006; 17 pages.
Gobin, et al. Comments on the physical basis of the active materials concept. Proc. SPIE 2003; 4512:84-92.
Hato, et al. Three-dimensional stapes footplate motion in human temporal bones. Audiol. Neurootol., 8:140-152 (Jan. 30, 2003).
Headphones. Wikipedia Entry, downloaded from the Internet : en.wikipedia.org/wiki/Headphones. 9 pages total.
Hofman, et al. Relearning Sound Localization With New Ears. Nature Neuroscience, vol. 1, No. 5, (Sep. 1998); 417-421.
International search report and written opinion dated Aug. 7, 2009 for PCT/US2009/047682.
International search report and written opinion dated Sep. 20, 2006 for PCT/US2005/036756.
International search report and written opinion dated Oct. 17, 2007 for PCT/US2006/015087.
International search report and written opinion dated Nov. 23, 2009 for PCT/US2009/047685.
International search report and written opinion dated Dec. 8, 2008 for PCT/US2008/078793.
International search report and written opinion dated Dec. 24, 2008 for PCT/US2008/079868.
Jin, et al. Speech Localization. J. Audio Eng. Soc. convention paper, presented at the AES 112th Convention, Munich, Germany, May 10-13, 2002, 13 pages total.
Killion. Myths About Hearing Noise and Directional Microphones. The Hearing Review. Feb. 2004; 11(2):14, 16, 18, 19, 72 & 73.
Killion. SNR loss: I can hear what people say but I can't understand them. The Hearing Review, 1997; 4(12):8-14.
Lee, et al. A Novel Opto-Electromagnetic Actuator Coupled to the tympanic Membrane. J Biomech. Dec. 5, 2008;41(16):3515-8. Epub Nov. 7, 2008.
Lee, et al. The optimal magnetic force for a novel actuator coupled to the tympanic membrane: a finite element analysis. Biomedical engineering: applications, basis and communications. 2007; 19(3):171-177.
Lezal. Chalcogenide glasses—survey and progress. Journal of Optoelectronics and Advanced Materials. Mar. 2003; 5(1):23-34.
Martin, et al. Utility of Monaural Spectral Cues is Enhanced in the Presence of Cues to Sound-Source Lateral Angle. JARO. 2004; 5:80-89.
Moore. Loudness perception and intensity resolution. Cochlear Hearing Loss, Chapter 4, pp. 90-115, Whurr Publishers Ltd., London (1998).
Murugasu, et al. Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: temporal bone pressure gain measurements and clinical audiological data. Otol Neurotol. Jul. 2005; 2694):572-582.
Musicant, et al. Direction-Dependent Spectral Properties of Cat External Ear: New Data and Cross-Species Comparisons. J. Acostic. Soc. Am, May 10-13, 2002, vol. 87, No. 2, (Feb. 1990), pp. 757-781.
National Semiconductor, LM4673 Boomer: Filterless, 2.65W, Mono, Class D Audio Power Amplifier, [Data Sheet] downloaded from the Internet: <<http://www.national.com/ds/LM/LM4673.pdf>>; Nov. 1, 2007; 24 pages.
Poosanaas, et al. Influence of sample thickness on the performance of photostrictive ceramics, J. App. Phys. Aug. 1, 1998; 84(3):1508-1512.
Puria et al. A gear in the middle ear. ARO Denver CO, 2007b.
Puria, et al. Malleus-to-footplate ossicular reconstruction prosthesis positioning: cochleovestibular pressure optimization. Otol Nerotol. May 2005; 2693):368-379.
Puria, et al. Measurements and model of the cat middle ear: Evidence of tympanic membrane acoustic delay. J. Acoust. Soc. Am., 104(6):3463-3481 (Dec. 1998).
Puria, et al. Middle Ear Morphometry From Cadaveric Temporal Bone MicroCT Imaging. Proceedings of the 4th International Symposium, Zurich, Switzerland, Jul. 27-30, 2006, Middle Ear Mechanics in Research and Otology, pp. 259-268.
Puria, et al. Sound-Pressure Measurements in the Cochlear Vestibule of Human-Cadaver Ears. Journal of the Acoustical Society of America. 1997; 101 (5-1): 2754-2770.
Sekaric, et al. Nanomechanical resonant structures as tunable passive modulators. App. Phys. Lett. Nov. 2003; 80(19):3617-3619.
Shaw. Transformation of Sound Pressure Level From the Free Field to the Eardrum in the Horizontal Plane. J. Acoust. Soc. Am., vol. 56, No. 6, (Dec. 1974), 1848-1861.
Shih. Shape and displacement control of beams with various boundary conditions via photostrictive optical actuators. Proc. IMECE. Nov. 2003; 1-10.
Sound Design Technologies,—Voyager TDTM Open Platform DSP System for Ultra Low Power Audio Processing—GA3280 Data Sheet. Oct. 2007; retrieved from the Internet: <<http://www.sounddes.com/pdf/37601DOC.pdf>>, 15 page total.
Stuchlik, et al. Micro-Nano Actuators Driven by Polarized Light. IEEE Proc. Sci. Meas. Techn. Mar. 2004; 151(2):131-136.
Suski, et al. Optically activated ZnO/Si02/Si cantilever beams. Sensors and Actuators A (Physical), 0 (nr: 24). 2003; 221-225.
Takagi, et al. Mechanochemical Synthesis of Piezoelectric PLZT Powder. KONA. 2003; 51(21):234-241.
Thakoor, et al. Optical microactuation in piezoceramics. Proc. SPIE. Jul. 1998; 3328:376-391.
Thompson. Tutorial on microphone technologies for directional hearing aids. Hearing Journal. Nov. 2003; 56(11):14-16,18, 20-21.
Tzou, et al. Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems. Mechanics of Advanced Materials and Structures. 2004; 11:367-393.
Uchino, et al. Photostricitve actuators. Ferroelectrics. 2001; 258:147-158.
U.S. Appl. No. 61/073,271, filed Jun. 17, 2008.
U.S. Appl. No. 61/073,281, filed Jun. 17, 2008.
Vickers, et al. Effects of Low-Pass Filtering on the Intelligibility of Speech in Quiet for People With and Without Dead Regions at High Frequencies. J. Acoust. Soc. Am. Aug. 2001; 110(2):1164-1175.
Wang, et al. Preliminary Assessment of Remote Photoelectric Excitation of an Actuator for a Hearing Implant. Proceeding of the 2005 IEEE, Engineering in Medicine and Biology 27th nnual Conference, Shanghai, China. Sep. 1-4, 2005; 6233-6234.
Wiener, et al. On the Sound Pressure Transformation by the Head and Auditory Meatus of the Cat. Acta Otolaryngol. Mar. 1966; 61(3):255-269.
Wightman, et al. Monaural Sound Localization Revisited. J Acoust Soc Am. Feb. 1997;101(2):1050-1063.
Yi, et al. Piezoelectric Microspeaker with Compressive Nitride Diaphragm. The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002; 260-263.
Yu, et al. Photomechanics: Directed bending of a polymer film by light. Nature. Sep. 2003; 425:145.
Fay, et al. Preliminary evaluation of a light-based contact hearing device for the hearing impaired. Otol Neurotol. Jul. 2013;34(5):912-21. doi: 10.1097/MAO.0b013e31827de4b1.
Asbeck, et al. Scaling Hard Vertical Surfaces with Compliant Microspine Arrays, The International Journal of Robotics Research 2006; 25; 1165-79.
Autumn, et al. Dynamics of geckos running vertically, The Journal of Experimental Biology 209, 260-272, (2006).
Autumn, et al., Evidence for van der Waals adhesion in gecko setae, www.pnas.orgycgiydoiy10.1073ypnas.192252799 (2002).
Boedts. Tympanic epithelial migration, Clinical Otolaryngology 1978, 3, 249-253.
Cheng; et al. A silicon microspeaker for hearing instruments. Journal of Micromechanics and Microengineering 14, No. 7 (2004): 859-866.
Co-pending U.S. Appl. No. 15/042,595, filed Feb. 12, 2016.
Fay. Cat eardrum mechanics. Ph.D. thesis. Disseration submitted to Department of Aeronautics and Astronautics. Standford University. May 2001; 210 pages total.
Fay, et al. The discordant eardrum, PNAS, Dec. 26, 2006, vol. 103, No. 52, p. 19743-19748.
Gantz, et al. Light-Driven Contact Hearing Aid for Broad-Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology. Copyright 2016. 7 pages.
Ge, et al., Carbon nanotube-based synthetic gecko tapes, p. 10792-10795, PNAS, Jun. 26, 2007, vol. 104, No. 26.
Gorb, et al. Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects, Integr. Comp_Biol., 42:1127-1139 (2002).
Izzo, et al. Laser Stimulation of Auditory Neurons: Effect of Shorter Pulse Duration and Penetration Depth. Biophys J. Apr. 15, 2008;94(8):3159-3166.
Izzo, et al. Laser Stimulation of the Auditory Nerve. Lasers Surg Med. Sep. 2006;38(8):745-753.
Izzo, et al. Selectivity of Neural Stimulation in the Auditory System: A Comparison of Optic and Electric Stimuli. J Biomed Opt. Mar.-Apr. 2007;12(2):021008.
Makino, et al. Epithelial migration in the healing process of tympanic membrane perforations. Eur Arch Otorhinolaryngol. 1990; 247: 352-355.
Makino, et al., Epithelial migration on the tympanic membrane and external canal, Arch Otorhinolaryngol (1986) 243:39-42.
Markoff. Intuition + Money: An Aha Moment. New York Times Oct. 11, 2008, p. BU4, 3 pages total.
Michaels, et al., Auditory Epithelial Migration on the Human Tympanic Membrane: II. The Existence of Two Discrete Migratory Pathways and Their Embryologic Correlates, The American Journal of Anatomy 189:189-200 (1990).
Murphy M, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhesion Sci Technol, vol. 21, No. 12-13, p. 1281-1296, 2007.
Nishihara, et al. Effect of changes in mass on middle ear function. Otolaryngol Head Neck Surg. Nov. 1993;109(5):889-910.
Puria, et al., Mechano-Acoustical Transformations in A. Basbaum et al., eds., The Senses: A Comprehensive Reference, v3, p. 165-202, Academic Press (2008).
Qu, et al. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Oct. 10, 2008 vol. 322 Science. 238-242.
Roush. SiOnyx Brings “Black Silicon” into the Light; Material Could Upend Solar, Imaging Industries. Xconomy, Oct. 12, 2008, retrieved from the Internet: www.xconomy.com/boston/2008/10/12/sionyx-brings-black-silicon-into-the-light¬material-could-upend-solar-imaging-industries> 4 pages total.
R.P. Jackson, C. Chlebicki, T.B. Krasieva, R. Zalpuri, W.J. Triffo, S. Puria, “Multiphoton and Transmission Electron Microscopy of Collagen in Ex Vivo Tympanic Membranes,” Biomedcal Computation at STandford, Oct. 2008.
Rubinstein. How Cochlear Implants Encode Speech, Curr Opin Otolaryngol Head Neck Surg. Oct. 2004;12(5):444-8; retrieved from the Internet: www.ohsu.edu/nod/documents/week3/Rubenstein.pdf.
Spolenak, et al. Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A. 2005; 461:305-319.
Stenfelt, et al. Bone-Conducted Sound: Physiological and Clinical Aspects. Otology & Neurotology, Nov. 2005; 26 (6):1245-1261.
The Scientist and Engineers Guide to Digital Signal Processing, copyright 01997-1998 by Steven W. Smith, available online at www.DSPguide.com.
Vinikman-Pinhasi, et al. Piezoelectric and Piezooptic Effects in Porous Silicon. Applied Physics Letters, Mar. 2006; 88(11): 11905-111906.
Yao, et al. Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations, J. R. Soc. Interface (2008) 5, 723-733 doi:10.1098/rsif.2007.1225 Published online Oct. 30, 2007.
Yao, et al. Maximum strength for intermolecular adhesion of nanospheres at an optimal size. J. R. Soc. Interface doi:10.10981rsif.2008.0066 Published online 2008.
Co-pending U.S. Appl. No. 15/282,570, filed Sep. 30, 2016.
Fritsch, et al. EarLens transducer behavior in high-field strength MRI scanners. Otolaryngol Head Neck Surg. Mar. 2009;140(3):426-8. doi: 10.1016/j.otohns.2008.10.016.
Gantz, et al. Broad Spectrum Amplification with a Light Driven Hearing System. Combined Otolaryngology Spring Meetings, 2016 (Chicago).
Gantz, et al. Light Driven Hearing Aid: A Multi-Center Clinical Study. Association for Research in Otolaryngology Annual Meeting, 2016 (San Diego).
Gantz, et al. Light-Driven Contact Hearing Aid for Broad Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology Journal, 2016 (in review).
Khaleghi, et al. Characterization of Ear-Canal Feedback Pressure due to Umbo-Drive Forces: Finite-Element vs. Circuit Models. ARO Midwinter Meeting 2016, (San Diego).
Levy, et al. Characterization of the available feedback gain margin at two device microphone locations, in the fossa triangularis and Behind the Ear, for the light-based contact hearing device. Acoustical Society of America (ASA) meeting, 2013 (San Francisco).
Levy, et al. Extended High-Frequency Bandwidth Improves Speech Reception in the Presence of Spatially Separated Masking Speech. Ear Hear. Sep.-Oct. 2015;36(5):e214-24. doi: 10.1097/Aud.0000000000000161.
Moore, et al. Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss. Ear Hear. Dec. 2008;29(6):907-22. doi: 10.1097/AUD.0b013e31818246f6.
Perkins, et al. Light-based Contact Hearing Device: Characterization of available Feedback Gain Margin at two device microphone locations. Presented at AAO-HNSF Annual Meeting, 2013 (Vancouver).
Perkins, et al. The EarLens Photonic Transducer: Extended bandwidth. Presented at AAO-HNSF Annual Meeting, 2011 (San Francisco).
Perkins, et al. The EarLens System: New sound transduction methods. Hear Res. Feb. 2, 2010; 10 pages total.
Perkins, R. Earlens tympanic contact transducer: a new method of sound transduction to the human ear. Otolaryngol Head Neck Surg. Jun. 1996;114(6):720-8.
Puria, et al. Cues above 4 kilohertz can improve spatially separated speech recognition. The Journal of the Acoustical Society of America, 2011, 129, 2384.
Puria, et al. Extending bandwidth above 4 kHz improves speech understanding in the presence of masking speech. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego).
Puria, et al. Extending bandwidth provides the brain what it needs to improve hearing in noise. First international conference on cognitive hearing science for communication, 2011 (Linkoping, Sweden).
Puria, et al. Hearing Restoration: Improved Multi-talker Speech Understanding. 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO), Jun. 2009 (Stanford University).
Puria, et al. Imaging, Physiology and Biomechanics of the middle ear: Towards understating the functional consequences of anatomy. Stanford Mechanics and Computation Symposium, 2005, ed Fong J.
Puria, et al. Temporal-Bone Measurements of the Maximum Equivalent Pressure Output and Maximum Stable Gain of a Light-Driven Hearing System That Mechanically Stimulates the Umbo. Otol Neurotol. Feb. 2016;37(2):160-6. doi: 10.1097/MAO.0000000000000941.
Puria, et al. The EarLens Photonic Hearing Aid. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego).
Puria, et al. The Effects of bandwidth and microphone location on understanding of masked speech by normal-hearing and hearing-impaired listeners. International Conference for Hearing Aid Research (IHCON) meeting, 2012 (Tahoe City).
Puria, S. Middle Ear Hearing Devices. Chapter 10. Part of the series Springer Handbook of Auditory Research pp. 273-308. Date: Feb. 9, 2013.
Khaleghi, et al. Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am. Mar. 2017;141(3):1683.
Struck, et al. Comparison of Real-world Bandwidth in Hearing Aids vs Earlens Light-driven Hearing Aid System. The Hearing Review. TechTopic: EarLens. Hearingreview.com. Mar. 14, 2017. pp. 24-28.
Dundas et al. The Earlens Light-Driven Hearing Aid: Top 10 questions and answers. Hearing Review. 2018;25(2):36-39.
Khaleghi et al. Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am. Mar. 2017;141(3):1683.
Khaleghi et al. Attenuating the feedback pressure of a light-activated hearing device to allows microphone placement at the ear canal entrance. IHCON 2016, International Hearing Aid Research Conference, Tahoe City, CA, Aug. 2016.
Khaleghi et al. Mechano-Electro-Magnetic Finite Element Model of a Balanced Armature Transducer for a Contact Hearing Aid. Proc. MoH 2017, Mechanics of Hearing workshop, Brock University, Jun. 2017.
Khaleghi et al. Multiphysics Finite Element Model of a Balanced Armature Transducer used in a Contact Hearing Device. ARO 2017, 40th ARO MidWinter Meeting, Baltimore, MD, Feb. 2017.
Levy et al. Light-driven contact hearing aid: a removable direct-drive hearing device option for mild to severe sensorineural hearing impairment. Conference on Implantable Auditory Prostheses, Tahoe City, CA, Jul. 2017. 1 page.
McElveen et al. Overcoming High-Frequency Limitations of Air Conduction Hearing Devices Using a Light-Driven Contact Hearing Aid. Poster presentation at the Triological Society, 120th Annual Meeting at COSM, Apr. 28, 2017; San Diego, CA.
Park, et al. Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid. J. Micromech. Microeng. vol. 12 (2002), pp. 505-511.
Related Publications (1)
Number Date Country
20150271609 A1 Sep 2015 US
Provisional Applications (1)
Number Date Country
61955016 Mar 2014 US