The above stated patents are hereby incorporated herein by reference in their entirety.
[Not Applicable]
[Not Applicable]
With audio players of various types becoming more popular, consumer demand for earphones is higher than ever. With competitive earphone designs on the market, consumers are constantly looking for improved earphones. Some of the characteristics that consumers look for in earphones, generally, involve ease of operability and handling. For example, an earphone user prefers earphones that are easier to insert into and remove from the ear. While consumers generally prefer smaller earphones that are less visible and bulky, they also prefer earphones that do not require much force to put into the ears or remove from the ears. There can be a trade off sometimes between the size and ease of handling. Associated with that is the aesthetic aspect of the earphones offered to consumers. Some designs that can be easy to handle and operate, can sometimes involve shapes or designs that can be perceived as unattractive.
Another important characteristic that consumers look for in an earphone is the cost. While consumers desire high quality products, sometime it is not worth the price increase, and consumers end up settling for products with inferior performance in lieu of products at a higher price and more superior performance. Generally, the higher prices stem from high production prices and difficulty of assembly. Most earphones on the market nowadays either fall in the inferior performance/lower cost category or the superior performance/high cost category. Consumers generally end up choosing from one or the other, hence foregoing either performance for cost, or cost for performance.
Often, with more sophisticated earphone designs, the products can be complicated in design and hard to maintain. More specifically, certain parts within earphones that are pertinent to its functionality can certainly break down and require replacing. However, existing earphones are not very consumer-friendly in that respect, where consumers are often forced to discard earphones when certain parts stop performing their function such as, for example, dampers or filters. This problem ties back with the cost issue, where it can become costly for those who use earphones often when they have to frequently replace their earphones.
Another, and probably one of the most important characteristics that drive a consumer's choice of an earphone is the performance. While there is a plethora of earphones on the market nowadays, the vast majority are of low- to medium-audio quality or fidelity. In addition, many of the available earphones do not have as good noise-exclusion as needed for good listening on planes, trains, and other noisy places. This can be the root of many problems with earphones. Having poor noise-exclusion generally means that surrounding noise is often loud enough to suppress whatever the earphone user may be trying to listen to. As a result, the user will often turn the volume up, which creates numerous problems. First, the loud sounds can be very uncomfortable and bothersome for the consumers, and can be unhealthy for the hearing, and can cause hearing loss. Additionally, when a consumer turns the volume up, the quality of the audio she may be trying to listen to becomes very poor, especially the bass associated with the audio, which generally is not boosted correctly when the volume is increased to overcome the surrounding noise. Some products add a bass boost to try and cover up the surrounding noise, which generally has a low frequency emphasis, but that amount of bass boost is completely incorrect when excessive noise is not present because it alters the music or audio as intended by the artist or band performing the music, etc.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
A system and/or method is provided for earphone design, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
These and other features and advantages of the present invention may be appreciated from a review of the following detailed description of the present invention, along with the accompanying figures in which like reference numerals refer to like parts throughout.
a illustrates a cross sectional view of an exemplary earphone 300, in accordance with an embodiment of the present invention.
b illustrates a diagram of an exemplary damper assembly, in accordance with an embodiment of the present invention.
c illustrates an exemplary circuitry 330, in accordance with an embodiment of the present invention.
a illustrates a plot of a frequency response of a previous earphone.
b illustrates the frequency response, in accordance with an embodiment of the present invention.
This invention relates to earphones and especially to a high fidelity noise-excluding earphones with ergonomically designed construction.
Ensuring a good seal to the ear canal for a hearing aid may provide a good performance, because, for example, it may prevent unwanted audio feedback of sounds or outside noise seeping in, which may interfere with the sounds coming through the earphone 200 from an audio source to which it may be connected.
a illustrates a cross sectional view of an exemplary earphone 300, in accordance with an embodiment of the present invention. The earphone 300 may comprise a sound tube 305, a cap 310, and a grommet 315. The sound tube 305 may be inserted into different shaped ear tips that may be chosen by a user based on a desired comfort level. The ear tip may be, for example, an ear tip 206 of
The circuitry and hardware of the earphone of the present invention may be assembled and encased with the sound tube 305, cap 310, and grommet 315 of the earphone 300. Ease of assembly of the earphone 300 may provide for easier assembly and lower costs of production. In addition, the shape of the damper plug 320 and the damper filter 325 may make it easier to assemble the pieces together in only one way, which is the correct order of assembly. As a result minimizing errors in assembly.
In an embodiment of the present invention, the damper filter 325 may be easily replaceable, where the whole earphone 300 may not have to be taken apart to replace the filter 325. The damper filter 325 may be easily removed by the user and replaced with a new one without having to dispose of the whole earphone unit 300, hence saving the user the cost of buying a whole new earphone unit 300.
b illustrates a diagram of an exemplary damper assembly, in accordance with an embodiment of the present invention. The damper assembly may comprise a damper plug 320, which may have a small protruding ring 323 corresponding to grooves in the sound tube 305, such that the damper plug 320 may only fit within the sound tube 305 in one orientation, hence eliminating the possibility of inserting the damper plug 320 in an incorrect orientation. Additionally, the small protruding rings 323 may ensure securing the damper plug 320 firmly in place within the sound tube 305. The damper filter 325 may be affixed to the damper plug 320 using a layer of adhesive substance 340. When the performance of the damper plug 320 deteriorates, the damper plug 320 may be easily replaced by removing and replacing with a new damper plug 320. Replacing the damper plug 320 may be far more financially sound and cost effective than replacing the entire earphone.
c illustrates an exemplary circuitry 330, in accordance with an embodiment of the present invention. The circuitry 330 may comprise a transducer receiver 360 connected in parallel with a capacitor 355, and in series with a resistor 355. The values of the circuitry are explored hereinafter.
One embodiment of the variable output controller 510 may function as a “bass boost/sensitivity” control module. The switch 516 may be used to select between a low sensitivity “flat response” mode and a high sensitivity “bass boost” mode. In this embodiment the volume control 517 may change the overall loudness of the earphone. When in an environment without too much background noise, bass boost may not be needed. When not needed, the switch on the bass boost unit 510 may be turned to the “off” position. In other environments where there may be a lot of constant background noise that may harder to minimize such as, for example, in an airplane, the bass boost may be needed and the switch on the bass boost unit 510 may be turned to the “on” position.
In an embodiment of the present invention, the design of the earphones in conjunction with the ear tip used for insertion into a user's ear may ensure a comfortable and complete seal to the ear canal. As a result, surrounding noises may be eliminated and the level of noise may be greatly reduced. In some noise situations such as, for example, an airplane environment where the noise level may be typically around 80 dBA, an embodiment of the present invention, may reduce the noise level to 40-45 dBA, which may be equivalent to the noise level in a typical quiet living room environment.
In an embodiment of the present invention, the earphones may provide sounds without exaggerated bass and without high frequency sounds or feedback noise, and without muffled high frequency noises, hence providing sounds close to a live performance, for example, in a situation where a user may be listening to a performing artist.
In an embodiment of the present invention, the earphones may provide a 25-band accuracy score of 94% or higher, which is at least 2-4% higher than any previous accuracy scores known. In the past capacitors have been used in parallel with the resistor in series with the receiver to increase the high frequency response. To achieve the accuracy score of 94%, a resistor (82 Ohms) is placed in series with the receiver, and the capacitor (1 uF) placed in parallel with the receiver. As a result, the frequency response may be decreased in the frequency region above 10 kHz and increased in the 8 kHz region. This method may run contrary to the previous teachings of system designers, but may effectively increase the accuracy score. Accuracy score may be calculated based on the deviation from the frequency response. In comparison, some of the marketed earphones that are widely used have accuracy scores such as: 55%, 68%, 64%, 50%, 80%, and 41%.
In an embodiment of the present invention, the earphones may provide noise isolation, which may effectively be used in reducing background noise. When background is present it may be just as important to isolate noise, as it is to have response frequency. The earphones of the present invention may isolate background noise for removal of noise to provide maximum response accuracy. The earphones may provide about 40-45 dB noise reduction.
a illustrates a plot of a frequency response of an earphone. This plot illustrates the high accuracy scores of previous earphones as shown by U.S. Pat. No. 5,887,070, filed Dec. 19, 1996, which is hereby incorporated herein by reference in its entirety.
In an embodiment of the present invention, the seal the earphones may provide to the ear canal may be stable, and may not be affected by any shifting and movement by the user. The ear tip may be, for example, a three-flange ear tip such as the ear tip 206 of
Earphones of the present invention may be used with any device that plays audio such as, for example, a MP3 players, laptops, personal computers, CD players, airplane audio panels, etc. The earphones' performance may be similar regardless of the device and the type of music played.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.
This patent application makes reference to, claims priority to and claims benefit from U.S. Provisional Patent Application Ser. No. 60/692,508, entitled “High Fidelity Noise-Excluding Earphones With Ergonomically Designed Construction,” filed on Jun. 20, 2005, the complete subject matter of which is hereby incorporated herein by reference, in its entirety. This application makes reference to: U.S. Pat. No. 4,852,683, filed Jan. 27, 1988; U.S. Pat. No. 5,113,967, filed May 7, 1990; and U.S. Pat. No. 5,887,070, filed Dec. 19, 1996.
Number | Date | Country | |
---|---|---|---|
60692508 | Jun 2005 | US |