A typical molten metal facility includes a furnace with a pump for moving molten metal. This invention provides a centrifugal impeller pump that will move more molten metal with a minimum of submergence while retaining a very high overall efficiency. This goal is achieved by accelerating flow into the impeller pump by utilizing the full available pressure head of metal above the pump.
An optimum head is acquired by making my pump very shallow and locating it on the bottom of the well.
A problem with a conventional pump having an excessive height is a tendency to suck dross into the pump, which is undesirable. To compensate, the pump inlet speed is reduced. Reducing the available inlet velocity reduces the pump flow capacity.
In my design, the impeller that moves the metal has a top plate with a radial inlet opening that serves as an inducer. The molten metal passes through the impeller inducer top plate to a horizontal impeller inducer outlet and then into the collector volute in the pump base. The impeller pump achieves three times the molten metal flow rate, without increasing the motor size three times. The reason is that a dual inducer generates higher outlet impeller tip velocity, thus generating higher pressures and flows, consequentially increasing both the mechanical and volumetric efficiencies of the pump.
The top plate of the pump has several inlet inducer openings, typically five to seven, which scoop the molten metal into the rotating pump. Each impeller top plate inlet passage has a chamfered entrance or inducer facing the approaching metal. The chamfered leading edge sucks the molten metal axially down, and the chamfered trailing edge further accelerates the metal downwardly increasing the metal flow velocity.
The reason for the high efficiency of these special, chamfered inducers is that metal flow is a function of both the available inlet head velocity, and the inlet inducer shape. The impeller inlet of my pump has a trapezoidal shape that maximizes the inlet area within the pump impeller available area. The inlet inducer angle matches the rotational velocity and flow axial velocity.
The high recirculation and gas injection efficiency of the metal flow is achieved by making the pump exit velocity as high as necessary to efficiently discharge the metal so as to penetrate the metal pool outside the pump.
The impeller contains an exit inducer as well. Using two inducers is also novel. The impeller exit inducer controls the metal flow exit angle, from the impeller, and the metal flow speed, allowing the designer to vary the pump flow versus pressure characteristics (See
The preferred embodiment of the invention will pump at 300 rpm, 2500 gallons per minute of molten metal out of a pump having a seven and a half-inch tall base. It is so effective that when the pump operates at least 300 rpm, the molten metal shows a charge well penetration of up to 18 feet with overall efficiencies well over 60% with a pump flow capacity of 2400 to 2800 gpm in a pump base of 30″×36″×7.5″ in height.
A dual suction impeller pump is also disclosed for delivering 4800/5000 gallons per minute at 300 rpm with a pump base foot print of 30″×36″ and only 10.5″ in height.
Prior art related to this technology is disclosed in U.S. Pat. No. 3,244,109 issued Apr. 5, 1966 to U. M. W. Barske for “Centrifugal Pumps” and U.S. Pat. No. 4,786,230 issued Nov. 22, 1988 to Bruno H. Thut for “Dual Volute Molten Metal Pump and Selective Outlet Discriminating Means”.
Still further objects and advantages of the invention will become readily apparent to those skilled in the art to which the invention pertains upon reference to the following detailed description.
The description refers to the accompanying drawings in which like reference characters refer to like parts throughout the several views, and in which:
A preferred centrifugal pump 10, illustrated in
Supporting structure 14 and motor 12 are mounted on the upper ends of three vertical posts 22, 24 and 26. The three posts have their lower ends attached to base 20. The impeller is inserted in the base and jointly becomes the pump. Shaft 16 connects the motor to impeller 18. The motor and supporting structure are chosen according to the pumping requirements. The supporting structure also accommodates the furnace (well) which holds the molten metal.
Pump base 20 is mounted 1.0″ to 2.0″ above furnace bottom 28 of a well 30 which contains a quantity of molten metal having a top surface 32. The location of the base is near the bottom of the well to provide a pressure head above the pump intake, permitting the use of a more compact pumping unit and a maximum inlet suction head capacity.
Referring to
The volute inlet at cutwater 38 has a substantial area to permit large solids carried in the metal to pass through the pump without damaging the pump. The clearance as well as the volute shape are established by the well-known design procedures outlined in pump design books such as Centrifugal Pumps Design & Application by Val S. Labanoff and Robert R. Ross or Centrifugal and Axial Flow Pumps by A J. Stepanoff, 2nd Edition 1957.
Centrifugal impeller 18 includes a body 44, and an inducer top plate 46 attached to the body so that the two components rotate as a unit.
Referring to
Referring to
The liquid metal passes downwardly and axially through the seven top plate openings 48 and then radially outwardly into the base volute passage 37, as shown in
The shape of the exit opening of each elbow-shaped passage 56 depends upon the design specifications of the pump. Note in
The angle of the flat surfaces of each exit opening with respect to the spiral wall of the volute defines the direction of metal flow into the volute passage.
The idea is to control the direction of the exit flow from the impeller, and to optimize its exit velocity by controlling the outlet inducer area. You can then control the characteristics of the pump by defining the direction and velocity of the exiting fluid metal. The direction of the exit flow and its velocity can be changed by changing the angle of surface 62, or by modifying the leading surface 60 of the outlet opening to form a convergent inducer with surfaces 62a and 64a at the impeller outlet, as shown in
The height of the pump, in this case, is about seven inches. The height of the base is made as low as possible to prevent sucking undesirable dross into the pump. The lower the pump inlet in the pool of metal, the greater the pressure head of the molten metal. See
The design of the pump suits the particular application. For example, the pump may be used to eliminate temperature stratification of the molten metal in the metal furnace. Normally molten metal is cooler at the bottom and warmer adjacent top surface 32. I have improved the efficiency of the process by making the temperature consistent throughout the well by recirculating the metal with a pump whose exit velocity can be modified and optimized for the particular application.
Another application is for moving a large volume of metal at a slow velocity. In this case, the area and the angle of the exit opening are modified to accommodate this flow rate versus pressure performance requirements.
Molten metals, especially aluminum, contain numerous large size contaminants, like refractory, iron, alloy drosses, etc. Another advantage of my invention is that the top inducer plate, besides forcing the liquid downwards in a close guided passage, prevents solid contamination from acquiring significant kinematic centrifugal energy, thus preventing the contaminates from lodging between the rotating impeller blades and the stationary pump housing and bearings.
The base is supported in a raised position by feet 114, only two shown, mounted on floor 116 of a well 118, as illustrated in
The top inducer plate has an annular series of inlet openings 122, which have the same configuration as the inlet openings of the top plate of the embodiment of
Referring to
Referring to
Similarly, the bottom plate has seven slots 130a aligned with seven slots 132 in the underside of the body for receiving driving wafers 134a. Thus, as the shaft is rotated, the impeller body rotates with the shaft and both the upper and lower inducer plates as a unit.
Referring to
Referring to
This embodiment of the invention is expected to have a flow rate of about 1600 gpm to 1800 gpm with a 7.5″ diameter at 600 rpm, with a base foot print of 23″×23″×6″ high, about eight to nine times greater than a standard pump of a comparable size. Alternatively, 4800 to 5000 gpm on a 30″×36″×10.5″ high base at 300 rpm with a 14″ diameter impeller approximately four times a standard pump.
The shaft carries a ceramic sleeve 148 which is seated on the upper surface of the upper plate. The upper and lower plates are of a ceramic material and the impeller body is of a graphite material. Preferably, the impeller is dynamically balanced up to 1000 rpm.
The advantage of such an arrangement is that a single pump can act simultaneously as a recirculation and a metal transferring pump. Recirculation does not have to be stopped as the furnace is emptied thus increasing production. Also, two different flow outlet directions could be provided to increase the area of coverage in the furnace charge well and to accelerate temperature equalization.
This application claims domestic priority of Provisional Patent Application filed Apr. 28, 2005, Ser. No. 60,675,828 for HIGH FLOW/DUAL INDUCER/HIGH EFFICIENCY IMPELLER FOR LIQUID APPLICATIONS INCLUDING MOLTEN METAL.
Number | Date | Country | |
---|---|---|---|
60675828 | Apr 2005 | US |