1. Field of the Invention
The present invention relates to a high frequency antenna module having two sets of internal antennas corresponding to the same frequency, which is used in a portable telephone or a wireless LAN. Hereinafter, “High frequency” is in a range from 100 MHz to 20 GHz.
2. Description of the Related Art
Some portable wireless communications apparatus for wireless LAN employ a plurality of antennas in a so-called diversity system. Space diversity, pattern diversity, polarization diversity, frequency diversity, and time diversity are examples of the diversity system.
Among others, the space diversity system uses two or more antennas for reception, which are physically separated from each other. Though there is no need for the plurality of antennas, if one antenna is able to transmit and receive electromagnetic wave in all directions, the plurality of antennas are practically mounted. As the antenna in the diversity system of this type, a chip antenna having the radiation electrodes formed on the surface or inside of a base substance is typically employed (refer to patent documents 1, 2 and 3). As the scheme for the dielectric chip antenna, a monopole, an inverted F, and a patch are known. Since the high frequency module built in the portable unit for wireless LAN is strongly required to be smaller, the antenna is also required to be miniaturized. Consequently, the dielectric chip antenna is mounted on a printed board. An antenna module in which a plurality of chip antennas is arranged on the mounting substrate has been known (refer to patent document 4).
The antenna modules using such chip antenna is satisfactory from a viewpoint of miniaturization for the portable or wireless uses, but does not necessarily meet the antenna characteristics such as the reflection coefficient and the radiation gain. The present inventors have made elaborate researches on the antenna characteristics, which greatly depend on the arrangement and positional relation of two antennas, when two antennas are mounted on one end face of the mounting substrate. Consequently the present inventors have found the optimal arrangement and positional relation of antennas to attain the excellent antenna characteristics.
It is an object of the invention to provide a high frequency antenna module having an internal antenna for the portable or wireless uses, which meets the requirement of miniaturization and is superior in the antenna characteristics such as the reflection coefficient and the radiation gain.
In order to achieve the above object, according to the first aspect of the invention, there is provided with a high frequency antenna module including a substrate, a feeding electrode and at least two dielectric chip antennas being mounted on said substrate, each of said two dielectric chip antennas having a base end connected to said feeding electrode and a floating end as an open end, wherein a distance between said open ends of said two dielectric chip antennas is shorter than a distance between said base ends of said two dielectric chip antennas.
According to the first aspect of the invention, each of the two dielectric chip antennas configured as one pair of radiation electrodes formed on a dielectric chip and having a pattern in which the base end of each of the dielectric chip antennas is connected to the feeding electrode, and the floating end of each of the dielectric chip antennas is the open end, one of each pair of radiation electrodes corresponding to one frequency, and the other radiation electrode of each pair corresponding to a different frequency from the one frequency, wherein the distance between the open ends of one of each pair of radiation electrodes is shorter than the distance between the base ends thereof.
According to second aspect of the invention, there is provided with the high frequency antenna module according to claim 1, wherein said two dielectric chip antennas are formed on a dielectric chip, wherein each of said two dielectric chip antennas is configured as a pair of radiation electrodes, wherein said radiation electrodes have such a pattern that said both base ends of said two dielectric ship antennas are connected to said feeding electrode, and that said both floating ends are open ends, wherein one of said radiation electrodes is corresponding to one frequency, wherein the other of said radiation electrodes is corresponding to a different frequency from said one frequency, and wherein a distance between said open ends of said radiation electrodes is shorter than a distance between said base ends of said radiation electrodes.
According to the second aspect of the invention, the two antennas formed on the substrate configured as one pair of radiation electrodes having a pattern in which the base end of each antenna is connected to the feeding electrode and the floating end of each antenna is the open end, one of each pair of radiation electrodes corresponding to one frequency, and the other radiation electrode of each pair corresponding to a different frequency from the one frequency, wherein the distance between the open ends of one of each pair of radiation electrodes is shorter than the distance between the base ends thereof.
In the first and second aspects of the invention, inventions, the pattern of radiation electrodes making up each antenna has a meandering shape.
The preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
Each of the dielectric chip antennas 4 and 5 employs a ./4 antenna favorable for miniaturization. The dielectric chip includes a radiation electrode, which is formed in meandering shape in order to miniaturize its size, while keeping a required line length. That is, the antenna was fabricated by forming a meandering line on a base substance 6 of alumina ceramic (dielectric constant 10) as shown in
The radiation electrode 7 and the feeding electrode 8 are formed on the surface of the base substrate 6 made of alumina ceramic by printing or depositing gold, silver, copper, or alloy of them as main components using the film forming method such as the screen printing, vapor deposition or plating.
Two dielectric chip antennas 4 and 5 formed are mounted on the mounting substrate 1 in such a way that the feeding electrode 8 is connected to the floating end of two feeding lines 2 and 3, and the distance between the open ends of the two dielectric chip antennas 4 and 5 is shorter than the distance between the base ends, as shown in
The specific sizes of parts in the high frequency module shown in
The radiation gain is required to be −10 dBi as a standard. The angle . is preferably from 90 to 180. . Accordingly, it is optimal to select the angle . in a range from 90 to 150. to obtain the preferred results for both the reflection coefficient and the radiation gain.
In the embodiment as shown in
Two dielectric chip antennas 14 and 15 formed are mounted on the mounting substrate 11 in such a way that the feeding electrode 19 is connected to the floating ends of two feeding lines 12 and 13, and the distance between the open ends of one radiation electrodes 17 of each pair of radiation electrodes for the dielectric chip antennas 14 and 15 is shorter than the distance between the base ends, as shown in
The specific sizes of parts in the high frequency dual band antenna module shown in the figure as constituted in the above manner are as follows.
With the high frequency dual band antenna module according to the embodiment as shown in
In the embodiment as shown in
In the shown embodiment, the dielectric chips 4, 5 or 14, 15 are mounted on the mounting substrate 1 or 11, but antenna having the radiation electrode formed in meandering shape may be directly mounted on the mounting substrate. In this case, the antenna having the radiation electrode formed in meandering shape is formed on the surface of the mounting substrate 1 or 11 by printing or depositing using the film forming method such as the screen printing, vapor deposition or plating. Two antennas having the radiation electrode formed in meandering shape should be positioned such that the distance between the open ends of the antenna is naturally narrower than the distance between the feeding ends.
In this case, the size of the antenna portion is greater than when using the dielectric chip antenna.
As described above, according to the first invention, there is provided with a high frequency antenna module having a substrate, a feeding electrode and two dielectric chip antennas being mounted on said substrate, each of said two dielectric chip antennas having a base end connected to said feeding electrode and a floating end as an open end, wherein a distance between said open ends of said two dielectric chip antennas is shorter than a distance between said base ends of said two dielectric chip antennas. Therefore, the antenna module is miniaturized, and provides the preferable antenna characteristics in respect of both the reflection coefficient and the radiation gain.
According to the second invention, there is provided with the high frequency antenna module according to claim 1, wherein said two dielectric chip antennas are formed on a dielectric chip, wherein each of said two dielectric chip antennas is configured as a pair of radiation electrodes, wherein said radiation electrodes have such a pattern that said both base ends of said two dielectric ship antennas are connected to said feeding electrode, and that said both floating ends are open ends, wherein one of said radiation electrodes is corresponding to one frequency, wherein the other of said radiation electrodes is corresponding to a different frequency from said one frequency, and wherein a distance between said open ends of said radiation electrodes is shorter than a distance between said base ends of said radiation electrodes. Therefore, the antenna is miniaturized, and provides the preferable antenna characteristics in respect of both the reflection coefficient and the radiation gain.
Moreover, two dielectric chip antenna main bodies or two antennas formed on a substrate may consist of one pair of radiation electrodes having a pattern in which a base end of each antenna is connected to a feeding electrode, and a floating end of each antenna is an open end, one of each pair of radiation electrodes corresponding to one frequency, and the other radiation electrode of each pair corresponding to a different frequency from the one frequency, wherein the distance between the open ends of one of each pair of radiation electrodes is made shorter than the distance between the base ends thereof. In this case, a dual band is dealt with because the preferable antenna characteristics to cope with the dual band, and the requirement of miniaturization are satisfied.
Number | Date | Country | Kind |
---|---|---|---|
P2003-030915 | Feb 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6023251 | Koo et al. | Feb 2000 | A |
6075491 | Dakeya et al. | Jun 2000 | A |
6222489 | Tsuru et al. | Apr 2001 | B1 |
6433745 | Nagumo et al. | Aug 2002 | B1 |
6650303 | Kim et al. | Nov 2003 | B1 |
6680701 | Sung | Jan 2004 | B1 |
6825819 | Kim et al. | Nov 2004 | B1 |
20020149538 | Tomomatsu et al. | Oct 2002 | A1 |
20020163470 | Nagumo et al. | Nov 2002 | A1 |
20030107440 | Miki et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
0 863 571 | Sep 1998 | EP |
1 168 658 | Jan 2002 | EP |
58134512 | Aug 1983 | JP |
10-98322 | Apr 1989 | JP |
2-68513 | May 1990 | JP |
07-007321 | Jan 1995 | JP |
9-55618 | Mar 1997 | JP |
9-199939 | Jul 1997 | JP |
11-4117 | Jan 1999 | JP |
2000-031721 | Jan 2000 | JP |
2001024426 | Jan 2001 | JP |
2000-13126 | Jul 2001 | JP |
2001-298313 | Oct 2001 | JP |
2002-141732 | May 2002 | JP |
2002-330025 | Nov 2002 | JP |
2003-124729 | Apr 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20040183729 A1 | Sep 2004 | US |