High-frequency electrical connector with in interlocking segments

Information

  • Patent Grant
  • 11799230
  • Patent Number
    11,799,230
  • Date Filed
    Thursday, November 5, 2020
    4 years ago
  • Date Issued
    Tuesday, October 24, 2023
    a year ago
Abstract
An electrical connector including a compressible lossy member is provided. The electrical connector comprises an insulative member, a plurality of terminals supported by the insulative member and disposed in a row along a row direction, and a compressible lossy member disposed in a recess of the insulative member. The lossy member includes a body portion elongated in the row direction and a plurality of projections extending from the body portion. The projections of the lossy member project toward and make contact with contact surfaces of first terminals of the plurality of terminals. At least a part of the body portion is compressible and is in a state of compression when the projections are pressed against the first terminals.
Description
FIELD OF THE INVENTION

This disclosure relates generally to electrical interconnection systems and more specifically to electrical connectors able to carry high-frequency signals.


BACKGROUND

Electrical connectors are used in many electronic systems. In general, various electronic devices (e.g., smart phones, tablet computers, desktop computers, notebook computers, digital cameras, and the like) have been provided with assorted types of connectors whose primary purpose is to enable an electronic device to exchange data, commands, and/or other signals with one or more other electronic devices. Electrical connectors are basic components needed to make some electrical systems functional. Signal transmission to transfer information (e.g., data, commands, and/or other electrical signals) often utilize electrical connectors between electronic devices, between components of an electronic device, and between electrical systems that may include multiple electronic devices.


It is generally easier and more cost effective to manufacture an electrical system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be communicatively joined together with electrical connectors. In some scenarios, the PCBs to be joined may each have connectors mounted on them. The connectors may be mated together directly to interconnect the PCBs.


In other scenarios, the PCBs may be connected indirectly via a cable. Electrical connectors may nonetheless be used to make such connections. For example, the cable may be terminated at one or both ends with a plug type of electrical connector (“plug connector” herein). A PCB may be equipped with a receptacle type of electrical connector (“receptacle connector” herein) into which the plug connector may be inserted to connect the cable to the PCB. A similar arrangement may be used at the other end of the cable, to connect the cable to another PCB, so that signals may pass between the PCBs via the cable.


For electronic devices that require a high-density, high-speed connector, techniques may be used to reduce interference between conductive elements within the connectors, and to provide other desirable electrical properties. One such technique involves the use of shield members between or around adjacent signal conductive elements of a connector system. The shields may prevent signals carried on one conductive element from creating “crosstalk” on another conductive element. The shields may also have an impact on an impedance of the conductive elements, which may further contribute to desirable electrical properties of the connector system.


Another technique that may be used to control performance characteristics of a connector entails transmitting signals differentially. Differential signals result from signals carried on a pair of conducting paths, called a “differential pair.” The voltage difference between the conductive paths represents the differential signal. In general, a differential pair is designed with preferential coupling between the conducting paths of the pair. For example, the two conducting paths of a differential pair may be arranged to run closer to each other than to other adjacent signal paths in the connector.


Amphenol Corporation, which is the assignee of the present technology described herein, also pioneered the use of a “lossy” material in connectors to improve performance, particularly the performances of high-speed, high-density connectors.


SUMMARY

Some embodiments of the technology disclosed herein are directed to an electrical connector. The electrical connector comprises first and second insulative members structured to slidably interlock with each other and a plurality of terminals supported by the first and second insulative members and disposed in first and second rows parallel to a longitudinal direction.


Some embodiments of the technology disclosed herein are directed to an electrical connector. The electrical connector comprises a first plurality of terminals and a second plurality of terminals; a first terminal subassembly extending in a longitudinal direction and comprising a first insulative member molded around a segment of each of the first plurality of terminals; and a second terminal subassembly extending in a longitudinal direction and comprising a second insulative member molded around a segment of each of the second plurality of terminals. The first insulative member and the second insulative member comprise interlocking coupling members, and the interlocking coupling members are configured to slidably couple the first insulative member to the second insulative member.


Some embodiments of the technology disclosed herein are directed to a method of manufacturing an electrical connector. The method comprises forming an assembly by coupling a first insulative member and a second insulative member by sliding the first insulative member relative to the second insulative member so that first interlocking coupling members disposed on the first insulative member and second interlocking coupling members disposed on the second insulative member are slidably interlocked.


The features described herein in the various embodiments may be used, separately or together in any combination, in any of the embodiments discussed herein.





BRIEF DESCRIPTION OF DRAWINGS

Various aspects and embodiments of the present technology disclosed herein are described below with reference to the accompanying figures. It should be appreciated that the figures are not necessarily drawn to scale. Items appearing in multiple figures may be indicated by the same reference numeral. For the purposes of clarity, not every component may be labeled in every figure.



FIG. 1 is a top perspective view of a receptacle connector, according to some embodiments;



FIG. 2 is a top perspective view of the receptacle connector of FIG. 1 in a partially disassembled state, according to some embodiments;



FIG. 3A is a rear perspective view of the insulative housing of the receptacle connector of FIG. 1, according to some embodiments;



FIG. 3B is a front elevation view of the insulative housing of the receptacle connector of FIG. 1, according to some embodiments;



FIG. 3C is a bottom plan view of the insulative housing of the receptacle connector of FIG. 1, according to some embodiments;



FIG. 3D is a top plan view of the insulative housing of the receptacle connector of FIG. 1, according to some embodiments;



FIGS. 3E and 3F are elevation side views of the insulative housing of the receptacle connector of FIG. 1, according to some embodiments;



FIGS. 4A and 4B are perspective views of the front and rear of the receptacle shell of FIG. 1, according to some embodiments;



FIG. 5A is a top perspective view of the terminal assembly of FIG. 2, according to some embodiments;



FIGS. 5B and 5C are a top perspective view of the terminal assembly of FIG. 2 in a partially disassembled state, according to some embodiments;



FIGS. 5D and 5E are a front perspective view of the terminal assembly of FIG. 2 in a partially disassembled state, according to some embodiments;



FIG. 6A is a side elevation view of terminals of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 6B is a side elevation view of terminals housed in the insulative members of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 7A is a front elevation view of an example of a lossy member, according to some embodiments;



FIG. 7B is a perspective view of the lossy member of FIG. 7A, according to some embodiments;



FIGS. 8A and 8B are front and rear elevation views of an insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIGS. 8C and 8D are top and bottom plan views of an insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIGS. 8E and 8F are side elevation views of an insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 8G is a close-up, front perspective view of an insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 8H is a close-up, bottom perspective view of an insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIGS. 9A and 9B are front and rear elevation views of another insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIGS. 9C and 9D are top and bottom plan views of another insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIGS. 9E and 9F are side elevation views of another insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 9G is a front perspective view of another insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 9H is a rear perspective view of another insulative member of the terminal assembly of FIG. 2, according to some embodiments;



FIG. 10A is a front perspective view of the insulative members of FIGS. 8A-9H, coupled, according to some embodiments;



FIGS. 10B and 10C are front and rear elevation views of the insulative members of FIGS. 8A-9H, coupled, according to some embodiments;



FIGS. 10D and 10E are side elevation views of the insulative members of FIGS. 8A-9H, coupled, according to some embodiments;



FIG. 11A is a bottom plan view of an insulative member assembled with terminals, according to some embodiments



FIG. 11B is a top plan view of an insulative member assembled with terminals, according to some embodiments; and



FIG. 11C is a front elevation view of terminals, an insulative member, and a lossy member, according to some embodiments.





DETAILED DESCRIPTION

The inventors have recognized and appreciated techniques for manufacturing miniaturized electrical connectors that enable compact electronic system that processes high speed signals with good signal integrity. Such electrical connectors may have a low height, such as 5 mm or less, relative to a surface of a printed circuit board to which the connector system is mounted.


The inventors have further recognized and appreciated that the high-frequency performance of such a miniaturized electrical connector including a shorting member may be improved by configuring the connector so that compressive forces applied to the shorting member increase the electrical coupling between select ones of the conductive elements and the shorting member. The shorting member may be a lossy member, which may be formed of a lossy material, as described below. The select ones of the conductive members may be ground conductors. The improvement in electrical performance may be achieved in configurations in which the shorting bar has relatively small dimensions.


The shorting member may have surfaces configured for making contact to the select ones of the conductive members (“select conductive members” herein). The select conductive members may be supported by insulative members, which are configured to be coupled securely via interlocking members such that the shorting member is captured between the insulative members. By configuring the shorting member to be taller than the available space between the select conductive members and forming the shorting member to have compressible properties, it can be ensured that the shorting member makes reliable electrical contact to the select conductive members. The shorting member may be configured to have compressible properties by the choice of material used, the inclusion of through-holes in the shorting member structure, or a combination thereof. In some embodiments, the compressible material may be an elastic material (e.g., a material that springs back to its original or another shape when not under compressive stress).


A connector with the above-described configuration may function reliably despite variations in component sizes that may occur during manufacture of the components that are assembled to make the connector. Such variation, for example, may result in connectors in which the shorting member is manufactured separately from terminal subassemblies that carry the conductive members. The inventors have recognized and appreciate that, although the shorting member may be designed to contact the select conductive members, in some connectors, when assembled, manufacturing variations may prevent the shorting member from contacting some or all of the select conductive members. Compressing the shorting member between the insulative members so that the shorting member contacts and is urged against the select conductive members may increase electrical coupling between the shorting member and the select conductive members. If the select conductive members are already in contact with the shorting member before the insulative members are secured relative to each other, the additional compressive force may reduce the resistance of that contact, improving the performance of the shorting member. The compressive force on the shorting member may be increased by increasing the ratio of the height of the shorting member relative to the height of the space available for the shorting member between the insulative members. For example, the height of the shorting member when not compressed may be approximately 0.1 mm larger than the height of the space available for the shorting member. In some embodiments, when the shorting member is compressed, the height of the shorting member may be compressed by an amount in a range from 1% to 20% of the original, non-compressed height of the shorting member. In some embodiments, when the shorting member is compressed, the height of the shorting member may be compressed by an amount in a range from 2% to 10% of the original, non-compressed height of the shorting member. The inventors have further recognized and appreciate that forming the shorting member so that it may be compressed ensures that no damaging stress on the insulative members is caused by the compressive forces on the shorting member. Additionally, the inventors have recognized and appreciate that compressing the shorting member may ensure the components of the connector fit together in a repeatable manner, ensuring predictable connector performance despite manufacturing variations.


The select conductive members to which the shorting member is coupled may be ground conductors. In this regard, a shorting member included in the connector so as to electrically couple to the ground conductors may reduce resonances within the connector and therefore expand the operating frequency range of the connector. For example, when the connector is intended to operate at higher than typical frequencies (e.g., 25 GHz, 30 GHz, 35 GHz, 40 GHz, 45 GHz, etc.), the presence of the shorting member may reduce resonances that may occur at the higher frequencies, thereby enabling reliable operation at the higher frequencies and consequently increasing the operating range of the connector.


The presence of a shorting member may expand the frequency range over which the connector may operate, without increasing the distance between conductive elements. In some embodiments, conducting structures of a receptacle connector may support resonant modes at a fundamental frequency within a frequency range of interest for operation of the connector. In that scenario, the shorting member may alter the fundamental frequency of the resonant mode, such that it occurs outside the frequency range of interest. Without the fundamental frequency of the resonant mode in the frequency range of interest, one or more performance characteristics of the connector may be at an acceptable level over the frequency range of interest, whereas, in the absence of the shorting member, the performance characteristic(s) would be unacceptable.


The frequency range of interest may depend on the operating parameters of the system in which such the connector is used, but may generally have an upper limit between about 15 GHz and 120 GHz, such as 25, 30, 40, or 56 GHz, although higher frequencies or lower frequencies may be of interest in some applications. Some connector designs may have frequency ranges of interest that span only a portion of this range, such as 1 GHz to 10 GHz, or 3 GHz to 15 GHz, or 5 GHz to 35 GHz.


The operating-frequency range for an interconnection system may be defined based on the range of frequencies that pass through the interconnection system with acceptable signal integrity. Signal integrity may be measured in terms of a number of criteria that depend on the application for which the interconnection system is designed. Some of these criteria may relate to the propagation of a signal along a single-ended signal path, a differential signal path, a hollow waveguide, or any other type of signal path. The criteria may be specified as a limit or range of values for performance characteristics. Two examples of such characteristics are the attenuation of a signal along a signal path, and the reflection of a signal from a signal path.


Other characteristics may relate to interaction of signals on multiple distinct signal paths. Such characteristics may include, for example, near-end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the same end of the interconnection system. Another such characteristic may be far-end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the other end of the interconnection system.


As specific examples of criteria, it could be required that: signal-path attenuation be no more than 3 dB of power loss, a reflected-power ratio be no greater than −20 dB, and individual signal-path to signal-path crosstalk contributions be no greater than −50 dB. Because these characteristics are frequency dependent, the operating range of an interconnection system may be defined as the range of frequencies over which the specified criteria are met.


Designs of an electrical connector are described herein that improve signal integrity for high-frequency signals, such as at frequencies in the GHz range, including up to about 56 GHz or up to about 120 GHz or higher, while maintaining a high density, such as with an edge to edge spacing between adjacent contacts (e.g., conductive elements) of approximately 0.25 mm, with a center-to-center spacing between adjacent contacts in a row of between 0.5 mm and 0.8 mm, for example. The contacts may have a width of between 0.3 mm and 0.5 mm.


The shorting member may be formed of a lossy material. Materials that conduct, but with some loss, or materials that by a non-conductive physical mechanism absorbs electromagnetic energy over the frequency range of interest may be referred to herein generally as “lossy” materials. Electrically lossy materials may be formed from lossy dielectric materials and/or poorly conductive materials and/or lossy magnetic materials.


Magnetically lossy materials may include, for example, materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is generally known to be the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest.


Electrically lossy materials may be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is generally known to be the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. For example, an electrically lossy material may be formed of a dielectric material in which is embedded a conductive web that results in an electric loss tangent greater than approximately 0.05 in the frequency range of interest.


Electrically lossy materials may be formed from materials that are generally thought of as conductors, but are relatively poor conductors over the frequency range of interest, or contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity, or are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor (e.g., copper) over the frequency range of interest.


Electrically lossy materials typically have a bulk conductivity of about 1 siemens/meter to about 100,000 siemens/meter and preferably about 1 siemens/meter to about 10,000 siemens/meter. In some embodiments, material with a bulk conductivity of between about 10 siemens/meter and about 200 siemens/meter may be used. As a specific example, material with a conductivity of about 50 siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through electrical simulation using known simulation tools to determine a suitable conductivity that provides both a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.


Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1 Ω/square and 100,000 Ω/square. In some embodiments, the electrically lossy material may have a surface resistivity between 10 Ω/square and 1000 Ω/square. As a specific example, the electrically lossy material may have a surface resistivity of between about 20 Ω/square and 80 Ω/square.


In some embodiments, an electrically lossy material may be formed by adding to a binder a filler that contains conductive particles. In an embodiment, a lossy member may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a filler to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers, or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal-plated carbon particles may be used. Silver and nickel may be suitable metals for metal-plating fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flakes. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some embodiments, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connector. Examples of such thermoplastic materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials such as thermosetting resins or adhesives may be used as a binder.


Also, although the binder materials discussed above may be used to create an electrically lossy material by forming a matrix around conductive particle fillers, the present technology described herein is not so limited. For example, conductive particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” may encompass a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.


In some embodiments, the fillers may be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when metal fiber is used, the fiber may be present at about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.


Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation of Irving, Texas, USA, which can be filled with carbon fibers or stainless steel filaments.


A lossy member may be formed from a lossy conductive-carbon-filled adhesive preform, which may be obtained from Techfilm of Billerica, Massachusetts, US, may be used as a lossy material. This preform may include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder may surround carbon particles, which act as a reinforcement for the preform. Such a preform may be inserted in a connector lead frame subassembly to form all or part of the housing. In some embodiments, the preform may adhere through an adhesive in the preform, which may be cured in a heat treating process. In some embodiments, the adhesive may take the form of a separate conductive or non-conductive adhesive layer. In some embodiments, the adhesive in the preform alternatively or additionally may be used to secure one or more conductive elements, such as foil strips, to the lossy material.


Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated, may be used. For example, non-woven carbon fiber may be a suitable reinforcing fiber. As will be appreciated, other suitable reinforcing fibers may be used instead or in combination.


Alternatively, a lossy member may be formed in other ways. In some embodiments, a lossy member may be formed by interleaving layers of lossy and conductive material such as metal foil. These layers may be rigidly attached to one another, such as through the use of epoxy or another adhesive, or may be held together in any other suitable way. The layers may be of the desired shape before being secured to one another or may be stamped or otherwise shaped after they are held together. Alternatively or additionally, a lossy material may be formed by depositing or otherwise forming a diffuse layer of conductive material, such as metal, over an insulative substrate, such as plastic, to provide a composite part with lossy characteristics, as described above.


Turning now to the figures, FIG. 1 depicts an example of a receptacle electrical connector 1 that includes an insulative housing 100 coupled to a receptacle shell 200, according to some embodiments of the present technology. Such a receptacle electrical connector (“receptacle connector,” herein) may be used, for example, in an electronic assembly with a configuration in which a cable carries signal to or from a midboard location. The receptacle connector 1 may be mounted at an interior portion of a printed circuit board (PCB) next to a processor, switch, or other high-performance electronic component, such that high frequency signals passing through the cable may be coupled to that component with low attenuation. The connector 1 may have a low height to enable mounting to the PCB while enabling a compact electronic assembly to be formed.


In some embodiments, the receptacle connector 1 may mate with a plug connector (not shown) from which a plurality of cables may extend. The cables may connect to or near an I/O connector mounted at the edge of the PCB. In this way, high-integrity signal paths between the I/O connector and the high-performance electronic component may be provided. In such embodiments, providing reliable high frequency performance of the connector in a small space, using techniques as described herein, may improve the performance of the electronic assembly.



FIG. 2 depicts an example of the receptacle connector 1 in a partially disassembled state, in accordance with some embodiments described herein. The receptacle connector 1 includes the insulative housing 100 coupled to the receptacle shell 200 and a terminal assembly 300, in accordance with some embodiments described herein. The double-headed arrows show the directions along which the receptacle connector 1 has been partially disassembled in this example.


In some embodiments, the terminal assembly 300 may be positioned within the insulative housing 100 to receive one or more plug contacts from a mating plug connector. The one or more plug contacts may be received between the first and second rows of terminals and through a face of the insulative housing 100. Accordingly, it may be appreciated that a mating plug connector may mate with the receptacle connector 1 by being moved along the directions indicated by the double-headed arrows. In some embodiments where the receptacle connector 1 is mounted to a PCB via the receptacle shell 200, it may be appreciated that a mating plug connector may mate with the receptacle connector 1 in a direction parallel to the surface of the PCB.



FIG. 3A depicts an example of a rear perspective view of an interior of the insulative housing 100, in accordance with some embodiments described herein. FIG. 3B depicts an example of a front elevational view of the insulative housing 100. FIGS. 3C and 3D depict, respectively, examples of bottom and top plan views of the insulative housing 100. FIGS. 3E and 3F depict, respectively, examples of right-side and left-side elevational views of the insulative housing 100.


In some embodiments, the insulative housing 100 may include an upper wall 102a, side walls 102b, a front wall 102c, and a bottom wall 102d. The upper wall 102a, side walls 102b, front wall 102c, and bottom wall 102d define an interior cavity 104. When the receptacle connector 1 is assembled, the terminal assembly 300 may be disposed within the cavity 104.


In some embodiments, the front wall 102c may include an opening having alternating terminal cavities 106 and terminal barriers 107a. Terminals of the terminal assembly 300 may be disposed within the terminal cavities 106 when the terminal assembly 300 is disposed within cavity 104. The terminal barriers 107a may prevent individual terminals of the terminal assembly 300 from accidentally making physical and electrical contact with each other during and/or after manufacture of the receptacle connector 1.


The bottom wall 102d may be a partial wall, which may not extend the full length of side walls 102b, in some embodiments. When the terminal assembly 300 is disposed in the cavity 104, the opening in the bottom wall 102d may accommodate the mounting ends of the terminals of the terminal assembly 300. The bottom wall 102d may include additional terminal barriers 107b, as seen in FIG. 3C, to prevent accidental physical and electrical contact between individual terminals of the terminal assembly 300.


In some embodiments, one or more features of the insulative housing 100 may assist in proper coupling of the insulative housing 100 to other components of the receptacle connector 1. For example, the receptacle shell 200 may couple to the insulative housing 100 via receptacle-shell engagement features 112a and/or 112b. The receptacle-shell engagement features 112a and 112b may engage clips of the receptacle shell 200. Alternatively or additionally, receptacle-shell tab engagement features 113a and 113b may engage with and fit within receptacle-shell tabs (described below) to maintain the position of receptacle shell 200. Receptacle-shell stops 114 may also engage with the receptacle shell 200 to prevent the receptacle shell 200 from being bent during assembly.


In some embodiments, when the terminal assembly 300 is disposed in the cavity 104, parts of the terminal assembly 300 may engage with one or more of terminal-assembly engagement features 108, 116a, 116b, and/or 116c. For example, the terminal-assembly engagement features 108 may be recesses in the upper wall 102a such that projections of the terminal assembly 300 may slot into the terminal-assembly engagement features 108 when the receptacle connector is assembled. The terminal-assembly engagement features 116a may be projections from one or more side walls 102b such that the terminal assembly engagement features 116a engage with recesses and/or slots of the terminal assembly 300. The terminal-assembly engagement features 116b may be recesses in one or more of the side walls 102b such that projections of the terminal assembly 300 may slot into the terminal assembly engagement features 116b when the receptacle connector is assembled. The terminal-assembly engagement features 116c may be through holes in the upper wall 102a that connect with complementary engagement features (not shown) that extend outwards from the terminal assembly 300 to latch into the terminal assembly engagement features 116c.


In some embodiments, the insulative housing 100 may physically couple to a PCB. The insulative housing 100 may include one or more guide posts 118a and 118b extending from the bottom wall 102d. The guide posts 118a and 118b may have differently shaped cross sections to ensure that the receptacle connector 1 is mounted to the PCB in the correct orientation. In the examples of FIGS. 3A-3F, the guide posts 118a and 118b have circular and diamond-shaped cross sections, but it may be appreciated that any suitably shaped cross section may be used.



FIGS. 4A and 4B depict example perspective views of a receptacle shell 200, according to some embodiments described herein. The shell 200 of the receptacle connector 1 may be configured to surround an outer surface of the insulative housing 100. The receptacle shell 200 may include at least one conforming portion 212, which conforms with and is adjacent the upper wall 102a of the insulative housing 100. The receptacle shell 200 may include at least one spaced-apart portion 210, which is separated or spaced apart from the upper wall 102a of the insulative housing 100.


In some embodiments, the receptacle shell 200 may be formed of metal. For example, the receptacle shell 200 may be made from a single sheet of metal, which has features stamped out of the sheet and then is bent and formed to the illustrated shapes. In other embodiments, the receptacle shell 200 may be formed of more than one component joined together.


In some embodiments, the receptacle shell 200 may be formed with front legs 202a and back legs 202b that conform around the side walls 102b of the insulative housing 100. The front legs 202a and the back legs 202b may be arranged such that each side wall 102b has a single front leg 202a and a single back leg 202b conformed with the side wall 102b. In some embodiments, such as the examples of FIGS. 4A and 4B, the front legs 202a and the back legs 202b may have different dimensions and/or shapes, though it is to be appreciated that in some embodiments the front legs 202a and the back legs 202b may be of the same form.


The front legs 202a and the back legs 202b may include PCB mounting members 204 extending from ends of the front legs 202a and the back legs 202b opposite from ends attached to the conforming portion 212 and the spaced-apart portion 210. The PCB mounting members 204 may be tabs that are configured to engaged with one or more features of a PCB. The PCB mounting members 204 may be configured to be solder mounted or otherwise fixedly mounted to a PCB to provide a permanent engagement of the receptacle connector 1 to the PCB.


Additionally, in some embodiments, the receptacle shell 200 may include one or more engagement features for affixing the receptacle shell 200 to the insulative housing 100. For example, receptacle-shell tabs 206a and 206b may engage with the receptacle-shell tab engagement features 113a and 113b of the insulative housing 100. Additionally or alternatively, receptacle-shell engagement holes 208 may receive therein and surround the receptacle-shell engagement features 112a of the insulative housing 100.


The space between the insulative housing 100 and the spaced-apart portion 210 of the receptacle shell 200 may be structured to receive protrusions of a mating plug connector. The spaced-apart portion 210 of the receptacle shell 200 may enable the mating plug connector to achieve a general alignment with the receptacle connector 1 during an initial part of the mating operation. Although FIG. 4B shows the receptacle shell 200 including one spaced-apart portion 210, it should be understood that in various other embodiments of the present technology the receptacle shell 200 may have more than one spaced-apart portions 210 or no spaced-apart portion 210.


The conforming portion 212 of the receptacle shell 200 may conform with the front wall 102a of the insulative housing 100 except at the spaced-apart portion 210, which may be disposed along the front wall 102a of the receptacle shell 200. Optionally, the spaced-apart portion 210 may be disposed along one or both of the side walls 102b of the receptacle shell 200, or along any combination of the front wall 102a and the side walls 102b.


In accordance with some embodiments described herein, the receptacle connector 100 may include a terminal assembly 300 on which first terminals 330a and second terminals 330b are arranged, as depicted in the example of FIG. 5A. FIG. 5B depicts a partially exploded view of the terminal assembly 300. FIG. 5C depicts a partially exploded view of the terminal assembly 300, with some of the first terminals 330a and some of the second terminals 330b hidden to reveal various structural aspects of the terminal assembly 300. FIGS. 5D and 5E depict another perspective view of the terminal assembly 300, partially disassembled to reveal various structural aspects of the terminal assembly 300. FIG. 5E is a three-dimensional rendering of the line drawings of FIG. 5D, to more clearly illustrate curvatures and other features that may not be easily seen in the line drawing.


In some embodiments, the terminal assembly 300 may include a first terminal subassembly 310a and a second terminal subassembly 310b. The first terminal subassembly 310a may include the first terminals 330a, a first insulative member 320a, and a third insulative member 320c. The second terminal subassembly 310b may include the second terminals 330b and a second insulative member 320b. Terminals of the first and second terminals 330a and 330b may include ground terminals and signal terminals.


In some embodiments, the first terminal subassembly 310a and the second terminal subassembly 310b may couple to each other such that a lossy member 340 may be disposed between the two subassemblies 310a, 310b. The lossy member 340 may be elongated in a row or longitudinal direction X (e.g., see FIG. 7A) of the terminal assembly 300. The first terminal subassembly 310a may include a group of first terminals 330a arranged in a first row and the second terminal subassembly 310b may include a group of second terminals 330b arranged in a second row parallel to the first row formed by the first terminals 330a. The row or longitudinal direction X may correspond to the direction of the first row of first terminals 330a and the second row of second terminals 330b.


In some embodiments, the first insulative member 320a, the second insulative member 320b, and the third insulative member 320c may be formed of an insulative material. The insulative members may be formed to stabilize the first and/or second terminals 330a, 330b and to prevent electrical shorting. For example, the first insulative member 320a, the second insulative member 320b, and the third insulative member 320c may be formed of a plastic material. The plastic material may be molded around the first terminals 330a or the second terminals 330b during formation of the first and second terminal subassemblies 310a and 310b. For example, as shown in FIG. 5B, the first terminals 330a may be embedded in and extend from the first insulative member 320a and the third insulative member 320c. However, other means for holding the first and/or second terminals 330a, 330b in a row may be used, such as pressing the first and/or second terminals 330a, 330b into slots in the insulative members or compressing the terminals between insulative components.


In some embodiments, the first terminal subassembly 310a and the second terminal subassembly 310b may couple to each other through coupling members present on the first insulative member 320a and the second insulative member 320b, as will be described herein. As shown in FIG. 5C, the first insulative member 320a may include a first recess 321a, which is elongated along the row direction X. When the first and second terminal subassemblies 310a and 310b are coupled, the lossy member 340 may be disposed within the first recess 321a.


In some embodiments, when the first terminal subassembly 310a and the second terminal subassembly 310b are coupled together, a cross-sectional area of the first recess 321a, perpendicular to the row direction X, may be less than a cross-sectional area of the lossy member 340 when the lossy member 340 is not compressed between the first and second terminal subassemblies 310a and 310b. In this way, the lossy member 340 may be compressed such that projections of the lossy member 340 are pushed against and in contact with terminals of the first and second terminal subassemblies 310a and 310b when the assemblies are coupled together. Projections of the lossy member 340 may be coupled to the ground terminals but not the signal terminals of the first and second terminals 330a and 330b. As shown in the example of FIGS. 5D and 5E, where the terminal assembly 340 has been depicted as partially disassembled, projections of the lossy member 340 may be coupled with terminals (e.g., ground terminals) that are separated by two other terminals (e.g., signal terminals). It may be appreciated that in some embodiments only one terminal or more than two terminals may separate the terminals coupled to the lossy member 340.


In some embodiments, a second recess 321b may be disposed on the longitudinal ends of the second insulative member 320b. The second recess 321b may engage with the engagement feature 116a of the insulative housing 100 by fitting around engagement feature 116a when the terminal assembly 300 is inserted into the insulative housing 100. The second recess 321b and the engagement feature 116a may prevent the terminal assembly 300 from shifting in a direction Z, perpendicular to the row direction X.



FIG. 6A shows a side elevational view of one of the first terminals 330a, one of the second terminals 330b, and the lossy member 340, with the insulative members 320a, 320b, and 320c removed, in accordance with some embodiments described herein. Each terminal of the first and second terminals 330a and 330b may be formed of a conductive material such as a metal. The first and second terminals 330a and 330b may include a free distal end 334a, 334b, an intermediate portion 336a, 336b, and a mounting end 338a, 338b opposite the free distal end 334a, 334b.


In some embodiments, the free distal end 334a, 334b may be hooked relative to the intermediate portion 336a, 336b. A contact surface 335a, 335b may be disposed near the free distal end 334a, 334b of the first and second terminals 330a and 330b. The first and second terminals 330a and 330b may be bent at the free distal ends 334a, 334b, and the contact surfaces 335a, 335b may be arranged such that a complementary mating terminal (not pictured) may be accepted between the first and second terminals 330a and 330b and in contact with the contact surfaces 335a, 335b.


The contact surfaces 335a, 335b may be fully or partially plated with a noble metal, such as gold, or another suitable metal or alloy that resists oxidation and provides a low-resistance contact with a complementary terminal of a mating connector. In some embodiments, both ground terminals and signal terminals of the first and second terminals 330a and 330b may be plated in order to promote low-resistance contacts with the complementary terminals of a mating connector. Alternatively, a selection of ground terminals and signal terminals (e.g., only the ground terminals, only the signal terminals, and/or a subset of both the ground and signal terminals) of the first and second terminals 330a and 330b may be plated with on their contact surfaces 335a, 335b. The intermediate portions 336a, 336b of at least the ground terminals of the first and second terminals 330a and 330b may also be plated to provide additional contact surfaces for making electrical contact to the lossy member 340.


In accordance with some embodiments described herein, the mounting ends 338a, 338b may be configured to be fixedly mounted to a substrate (e.g., a PCB). As shown in the example of FIG. 6A, the intermediate portions 336a, 336b may be bent to provide a right-angle configuration for the terminal assembly. Accordingly, the mounting ends 338a, 338b may be hooked to provide a flat surface for bonding (e.g., solder-mounting) the terminals of the first and second terminals 330a and 330b to a substrate. It may be appreciated that the configurations shown in FIG. 6A are merely examples, and the first and second terminals 330a and 330b may have other configurations than those shown. For example, the first and second terminals 330a and 330b may have mounting ends 338a, 338b configured as press-fits for insertion into holes in a substrate, or may be shaped for terminating at a cable or a wire, in embodiments in which the receptacle connector 1 is configured for use in a cable assembly.


As mentioned above, the mounting ends 338a, 338b may be considered a fixable end of the first and second terminals 330a and 330b, because the mounting ends 335a, 335b may be fixable to a PCB (not shown). In contrast, the free distal ends 334a, 334b may be configured to bend or move in response to a force, including a force applied by terminals of a mating connector (e.g., a plug-type connector).



FIG. 6B shows a side elevational view of one of the first terminals 330a, one of the second terminals 330b, the lossy member 340, and the insulative members 320a, 320b, and 320c, in accordance with some embodiments described herein. The first insulative member 320a may be disposed around a first segment 339a of the intermediate portion 336a of first terminal 330a. The third insulative member 320c may be disposed around a second segment 339c of the intermediate portion 336a of first terminal 330a, where the second segment 339c may be separated from the first segment 339a by a right angle bend in terminal 330a. The third insulative member 320c may be configured to support the mounting ends 338a of the first terminals 330a and to prevent the first terminals 330a from bending prior to the receptacle connector 1 being mounted to a substrate (e.g., a PCB).


In some embodiments, the second insulative member 320a may be disposed around a segment 339b of the intermediate portion 336b of second terminal 330b. The location of the segment 339b in a direction Y perpendicular to the row direction X may overlap partly or entirely with the location in a direction parallel to the direction Y of the first segment 339a of the first terminal 330a. The segment 339b may be shorter in length than first segment 339a so that the first and second insulative members 320a and 320b may be coupled while the lossy member 340 is supported between the first and second insulative members 320a and 320b, as shown in the example of FIG. 6B.



FIGS. 7A and 7B show a front elevational view and a perspective view, respectively, of an example of the lossy member 340, in accordance with some embodiments described herein. The lossy member 340 may include a body portion 342, which extends in the longitudinal row direction X. One or more projections 344 may extend from the body portion 342 in the direction Z perpendicular to the longitudinal row direction X. The projections 344 may be positioned to contact ground terminals of the first and second terminals 330a and 330b, as described herein, when the lossy member 340 is incorporated into the terminal assembly 300.


In some embodiments, the projections 344 may be uniformly spaced at the same distance or non-uniformly spaced at various different distances along the body portion 342. For example, in the example of FIG. 7A, the projections 344 may be grouped such that the projections within the groups are a distance D1 apart from each other, and end projections of adjacent groups are a distance D2 apart, where D2 is greater than D1. It may be appreciated that the example of FIG. 7A is non-limiting, and any number of projections may be disposed within a group, not only the 3 or 5 projections 344 shown in the example of FIG. 7A. It may also be appreciated that while the examples of FIGS. 7A and 7B show a symmetric arrangement of projections on the top and bottom sides of the body portion 342, the projections 344 on the top and bottom sides of the body portion 342 need not be mirror images of each other.


In some embodiments, one or more through-holes 346 may pass through the body portion 342 from a first side 348a to a second side 348b opposite first side 348a along the direction Y perpendicular to the longitudinal row direction X. The through-holes 346 may be of a same length or may be of different lengths. In the embodiment shown in FIGS. 7A and 7B, the through-holes 346 may be elongated slots through the body portion 342. The presence of the one or more through-holes 346 may make the lossy member 340 more flexible and/or compressible, improving electrical contact between the projections 344 and the ground terminals of the first and second terminals 330a and 330b. In some embodiments, the through-holes 346 may comprise a total length that sums up to greater than or equal to 80% of a length L of the body portion 342 (i.e., the through-holes may extend over a combined length of greater than or equal to 80% of L). In some embodiments, the through-holes 346 may comprise a total length that sums up to greater than or equal to 90% of the length L of the body portion 342.


In some embodiments, the one or more through-holes 346 may extend along the row direction such that one or both ends of the body portion 342 are split, as depicted in FIGS. 7A and 7B. Such a configuration may provide further flexibility and/or compressibility to the lossy member 340. However, it may be appreciated that the through-hole(s) 346 may not extend such that one or both ends of the body portion 342 are split.


In accordance with some embodiments described herein, the through-hole(s) 346 may be separated by one or more bridges 349 extending between the top and bottom sides of the body portion 342. It may be appreciated that any number of bridge(s) 349 and through-hole(s) 346 may be used in combination, not only the two bridges 349 and three through-holes 346 of the example of FIGS. 7A and 7B.


In some embodiments, a height H of lossy member 340 may be greater than a distance A between the terminals 336a and the terminals 336b (as shown in FIG. 6A). For example, the height H of lossy member 340 (as shown in FIGS. 7A-7B) may be within a range of 0.8 mm and 2.5 mm, or may be in a range between 1.0 mm and 2.3 mm, or may be in a range between 1.6 mm and 2.0 mm. The distance A between the terminals 336a and the terminals 336b may be, for example, between 5% and 50% larger than the height H of the lossy member 340. The maximum dimension of the recess 321a may be, for example, between 10% and 30% larger than the height H of lossy member 340.


In some embodiments, a width W of the lossy member 340 may be less than the height H of lossy member 340. For example, the width W of lossy member 340 may be within a range of 0.5 mm and 1.5 mm, or may be within a range of 0.7 mm and 1.1 mm.


It should be understood that a lossy member according to the present technology described herein is not limited to the arrangements of FIGS. 7A-7B. A lossy member according to the present technology may be positioned differently and structured differently than what is shown, as long as the lossy member performs the functions discussed herein.


As mentioned above and in accordance with some embodiments described herein, the terminal assembly 300 may include the first insulative member 320a. FIGS. 8A and 8B show front and rear elevational views, respectively of the first insulative member 320a. FIGS. 8C and 8D show top and bottom plan views, respectively, of first insulative member 320a. FIGS. 8E and 8F show side elevational views of the first insulative member 320a. FIG. 8G shows a front perspective close-up view of the first insulative member 320a, and FIG. 8H shows a bottom perspective close-up view of the first insulative member 320a.


The first insulative member 320a may comprise one or more engagement features to secure the terminal assembly 300 to the insulative housing 100, in accordance with some embodiments. For example, engagement features (e.g., protrusions) 316a formed on a backstop 323 of the first insulative member 320a may engage with the engagement features 116a of the insulative housing 100 (see e.g., FIG. 3A). Alternatively or additionally, engagement features 317 formed on a top surface of the first insulative member 320a may engage with the engagement features 108 of the insulative housing 100 (see e.g., FIG. 3A). It may be appreciated that engagement features 316a and 317 of the examples of FIGS. 8A-8H may be implemented in any suitable way to secure the terminal assembly 300 within the insulative housing 100.


In some embodiments, the first insulative member 320a may be formed around the first terminals 330a (instances of reference numeral 324a represent sections of the first terminals 330a). The projections 344 of the lossy member 340 may contact the ground terminals of the first terminals 330a through terminal channel openings 322a, as shown in the examples of FIGS. 8D and 8H. It may be appreciated that the number and arrangement of the terminal channel openings 322a may depend on the number and arrangement of the ground terminals of the first terminals 330a.


The first insulative member 320a may further include interlocking members 325a and interlocking end members 326a to interlockingly couple the first insulative member 320a with the second insulative member 320b, in accordance with some embodiments described herein. Adjacent interlocking members 325a may be separated by interlocking recesses 327a. It may be appreciated that the interlocking recesses 327a may be of a uniform longitudinal width in the row direction, as shown in the examples of FIGS. 8A-8H, or may be of differing longitudinal widths. Additionally, it may be appreciated that the interlocking members 325a may be of a uniform longitudinal width in the row direction, as shown in the examples of FIGS. 8A-8H, or may be of differing longitudinal widths.


In some embodiments, the interlocking members 325a, 325b and the interlocking recesses 327a, 327b may be interlockingly coupled by sliding the first and second insulative members 320a and 320b towards each other along the direction Y perpendicular to the row direction X. The interlocking members 325a of the first insulative member 320a may couple with corresponding interlocking recesses 327b of the second insulative member 320b. The interlocking recesses 327a of the first insulative member 320a may receive the interlocking members 325b of the second insulative member 320b. To prevent accidental decoupling along the direction Z perpendicular to both directions X and Y of the first and second insulative members 320a and 320b, arms 328a may be disposed on the interlocking members 325a, so that the first and second insulative members 320a and 320b form T-shaped members. The arms 328a may extend along the longitudinal row direction X and may engage with corresponding arms 328b of the interlocking members 325b of the second insulative member 320b. The arms 328a and corresponding arms 328b may prevent the first and second insulative members 320a and 320b from being pulled apart in the direction Z perpendicular to the direction Y.


In some embodiments, to ensure secure coupling, ribs 329a may be disposed such that one or more ribs project into the interlocking recesses 327a. The ribs 329a may be disposed on sidewalls of the interlocking members 325a and/or on upper surfaces of the interlocking recesses 327a. The ribs 329a may press against corresponding ones of the interlocking members 325b of the second insulative member 320b so that the first and second insulative members 320a and 320b do not easily slide apart once coupled. In some embodiments, the interlocking members 325b may be smaller than the corresponding recesses 327a. In such embodiments, the ribs 329a may hold the interlocking members 325b securely in the recesses 327a. Additionally or alternatively, the ribs 329a may deform or cut into the interlocking members 325b to further secure the interlocking members 325b in the recesses 327a. This function may assist in securing the first and second insulative members 320a and 320b together in the case that one or more components do not meet manufacturing tolerances.


In some embodiments, the backstop 323 may be provided to prevent the first and second insulative members 320a and 320b from being slid too far along the direction Y perpendicular to the row direction X when being coupled. By ensuring that the first and second insulative members 320a and 320b are positioned properly, the backstop 323 may further ensure that the lossy member 340 may fit in the recess 321a defined by the backstop 323, the interlocking members 325a, and end interlocking members 326a of the first insulative member 320a.


In accordance with some embodiments described herein, the terminal assembly 300 may include the second insulative member 320b as depicted in FIGS. 9A and 9B, which show front and rear elevational views, respectively of the second insulative member 320b. FIGS. 9C and 9D show top and bottom plan views, respectively, of the second insulative member 320b. FIGS. 9E and 9F show side elevational views of the second insulative member 320b. FIG. 9G shows a front perspective view of the second insulative member 320b, and FIG. 9H shows a bottom perspective close-up view of the second insulative member 320b.


In some embodiments, the second insulative member 320b may be formed around the second terminals 330b (instances of reference numeral 324b represent sections of the second terminals 330b). The projections 344 of the lossy member 340 may contact the ground terminals of the second terminals 330b through openings 322b, as shown in the examples of FIGS. 9D and 9H. It may be appreciated that the number and arrangement of the openings 322b may depend on the number and arrangement of the ground terminals of the second terminals 330b.


The second insulative member 320b may include one or more of the interlocking members 325b configured to couple with the interlocking recesses 327a of the first insulative member 320a, in accordance with some embodiments described herein. The interlocking members 325b may be separated by the interlocking recesses 327b, and the interlocking recesses 327b may be configured to accept corresponding interlocking members 325a of the first insulative member 320a when the first and second insulative members 320a and 320b are interlockingly coupled or interlocked. As will be appreciated, when the first and second insulative members 320a and 320b are interlocked, they may not be pulled apart without significant and possibly damaging force, i.e., decoupling of the members 320a and 320b may be difficult once interlocked.


In some embodiments, the end interlocking members 326b may be configured to couple with corresponding ones of the interlocking member 325a of the first insulative member 320a such that only one longitudinal side of the end interlocking members 326b engages with the corresponding interlocking member 325a. It may be appreciated that any suitable number of the interlocking members 325b and the interlocking recesses 327b may be disposed between the end interlocking members 326b; the three interlocking members 325b and the four interlocking recesses 327b of FIGS. 9A-9H are merely examples.


In some embodiments, the interlocking members 325b may include one or more arms 328b extending in the longitudinal row direction X. The arms 325b may be configured to prevent decoupling of first and second insulative members 320a and 320b in the direction Z perpendicular to the longitudinal row direction X by engaging with corresponding ones of the arms 328a of the interlocking members 325a. It may be appreciated that the arms 325b may be of any suitable length and/or configuration, not only as depicted in the examples of FIGS. 9A-9H, as long as they are configured to engage correspondingly with the arms 328a of the first insulative member 320a.


In some embodiments, such as the examples of FIGS. 9A-9H, there may be no ribs (e.g., the ribs 329b) projecting into the interlocking recesses 327b. It may be appreciated that in some embodiments, there may be one or more corresponding rib(s) 329b projecting into the interlocking recesses 327b. It may also be appreciated that in some embodiments there may be one or more rib(s) 329b projecting into the interlocking recesses 327b, but no rib(s) 329a projecting into the interlocking recesses 327a of the first insulative member.


In accordance with some embodiments described herein, the first and second insulative members 320a and 320b may couple to each other when assembling the terminal assembly 300. FIG. 10A shows a front perspective view of the first and second insulative members 320a and 320b coupled together without first and second terminals 330a and 330b being shown, for the sake of clarity. FIGS. 10B and 10C show front and rear elevational views, respectively, of the first and second insulative members 320a and 320b coupled together without the first and second terminals 330a and 330b shown, for the sake of clarity. FIGS. 10D and 10E show side elevational views of the first and second insulative members 320a and 320b coupled together without the first and second terminals 330a and 330b being shown, for the sake of clarity.


As shown in FIGS. 10A and 10B, the interlocking members 325a and 325b may alternate along the longitudinal row direction X when the first and second insulative members 320a and 320b are coupled. The arms 328a and 328b of the interlocking members 325a and 325b may hookedly engage with each other, similar to engagement of puzzle pieces, when the first and second insulative members 320a and 320b are slidingly coupled along the direction Y perpendicular to the longitudinal direction X. The arms 328a and 328b may further hookedly engage like puzzle pieces so that the first and second insulative members 320a and 320b may not be easily decoupled in the direction Z perpendicular to the longitudinal row direction X.


As described in connection with FIGS. 8A-8H, the first insulative member 320a may be provided with the backstop 323, in accordance with some embodiments described herein. The backstop 323 may be structured to ensure proper coupling of the interlocking members 325a and 325b along the direction Y perpendicular to the row direction X. When the first and second insulative members 320a and 320b are slidingly engaged along the direction Y, the backstop 323 may engage with a rear surface of second insulative member 320b when interlocking members 325a and 325b are properly aligned and hookedly engaged. In these embodiments, the first and second insulative members 320a and 320b may be decoupled only in one (reverse) direction, i.e., by reverse sliding relative to each other in the direction Y.


As shown in FIGS. 10D and 10E, when the first and second insulative members 320a and 320b are coupled, the recess 321a may be formed between them. In the examples of FIGS. 10D and 10E, the recess 321a may be formed between the interlocking members 325a, 325b and the backstop 323 of the first insulative member 320a. The recess 321a may extend along the longitudinal row direction X.


In some embodiments, the lossy member 340 may be disposed in the recess 321a prior to coupling of the first and second insulative members 320a and 320b. The lossy member 340 may have a width and/or a height that are greater than a width and/or a height of the recess 321a such that the lossy member 340 may be compressed in one or more directions when the first and second insulative members 320a and 320b are coupled. For example, the lossy member 340 may have a height between 0.8 mm and 2.5 mm when not compressed by the first and second insulative members 320a and 320b, but the lossy member 340 may have a height between 0.4 mm and 1.3 mm when compressed between the first and second insulative members 320a and 320b. Substantially compressing the lossy member 340 within the recess 321a may improve electrical contact between the lossy member 340 and one or more ground terminals of the first and second terminals 330a and 330b.


In accordance with some embodiments described herein, the first and second insulative members 320a and 320b may be formed around a plurality of first and second terminals 330a and 330b, respectively, as shown in bottom and top plan views of FIGS. 11A and 11B. The first and second insulative members 320a and 320b may include the terminal channel openings 322a, 322b, which expose the contact surfaces 332a, 332b of some or all of the first and/or the second terminals 330a and 330b. The projections 344 of the lossy member 340 may make electrical contact with the contact surfaces 332a, 332b of the first and second terminals 330a and 330b.


In the example of FIG. 11A, the terminal channel openings 322a, 322b may be provided for ground terminals 331a, 33b of the first and second terminals 330a, 330b, in some embodiments. The ground terminals 331a, 331b may be separated by one or more signal terminals 333a, 333b. It may be appreciated that any suitable number of the signal terminals 333a, 333b may separate the ground terminals 331a, 331b, not only the two signal terminals 333a, 333b of the examples of FIGS. 11A and 11B. The signal terminals 333a, 333b may be fully enclosed in the first and second insulative members 320a and 320b such that the signal terminals 333a, 333b do not have their contact surfaces 332a, 332b exposed through the terminal channel openings 322a, 322b and/or are not in electrical contact with projections 344 of lossy member 340.



FIG. 11C shows, in accordance with some embodiments described herein, a partially disassembled portion of the terminal assembly 330b with the projections 344 of lossy member 340 in contact with the ground terminals 331b of the second terminals 330b. The first insulative member 320a and the first terminals 330a are not shown in the example of FIG. 11C for the sake of clarity. The projections 344 extend into the terminal channel openings 322b such that the projections 344 may make electrical contact with the contact surfaces 332b of the ground terminals 331b. The signal terminals 333b may be, alternatively, fully enclosed within the second insulative member 320b. As may be appreciated from FIG. 11C, when the first and second insulative members 320a and 320b (not shown) are coupled together, the projections 344 may be urged against the ground terminals 331a (not shown) and 331b, ensuring good electrical contact with the ground terminals 331a, 331b. This is especially advantageous for high frequency applications (e.g., 25 GHz, 30 GHz, 35 GHz, 40 GHz, 45 GHz, etc.) where it is desired to reduce resonances within the connector to enable reliable operation at higher frequencies and consequently increase the operating range of the connector.


It should be understood that various alterations, modifications, and improvements may be made to the structures, configurations, and methods discussed above, and are intended to be within the spirit and scope of the invention disclosed herein.


For example, a thin lossy member, making reliable connections to ground terminals in a compact electrical connector was illustrated used in a right angle, board mount connector. Structures as described herein may be used in connectors of other styles. For example, a lossy member may be incorporated into a vertical board mount connector using some or all of the techniques described herein.


Further, although advantages of the present invention are indicated, it should be appreciated that not every embodiment of the invention will include every described advantage. Some embodiments may not implement any features described as advantageous herein. Accordingly, the foregoing description and attached drawings are by way of example only.


It should be understood that some aspects of the present technology may be embodied as one or more methods, and acts performed as part of a method of the present technology may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than shown and/or described, which may include performing some acts simultaneously, even though shown and/or described as sequential acts in various embodiments.


Various aspects of the present invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.


Further, terms denoting direction have been used, such as “left”, “right”, “top” or “bottom.” These terms are relative to the illustrated embodiments, as depicted in the drawings, for ease of understanding. It should be understood that the components as described herein may be used in any suitable orientation.


Use of ordinal terms such as “first,” “second,” “third,” etc., in the description and the claims to modify an element does not by itself connote any priority, precedence, or order of one element over another, or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element or act having a certain name from another element or act having a same name (but for use of the ordinal term) to distinguish the elements or acts.


Definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.


As used herein in the specification and in the claims, the phrase “equal” or “the same” in reference to two values (e.g., distances, widths, etc.) means that two values are the same within manufacturing tolerances. Thus, two values being equal, or the same, may mean that the two values are different from one another by ±5%.


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Use of terms such as “including,” “comprising,” “comprised of,” “having,” “containing,” and “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


The terms “approximately” and “about” if used herein may be construed to mean within ±20% of a target value in some embodiments, within ±10% of a target value in some embodiments, within ±5% of a target value in some embodiments, and within ±2% of a target value in some embodiments. The terms “approximately” and “about” may equal the target value.


The term “substantially” if used herein may be construed to mean within 95% of a target value in some embodiments, within 98% of a target value in some embodiments, within 99% of a target value in some embodiments, and within 99.5% of a target value in some embodiments. In some embodiments, the term “substantially” may equal 100% of the target value.

Claims
  • 1. An electrical connector, comprising: first and second insulative members structured to slidably interlock with each other, wherein the first and second insulative members slidably interlock via projections from both the first and second insulative members; anda plurality of terminals supported by the first and second insulative members and disposed in first and second rows parallel to a longitudinal direction.
  • 2. The electrical connector of claim 1, wherein: the first and second insulative members comprise T-shaped projections and complementary-shaped recesses, the projections and recesses disposed along the longitudinal direction; andthe first and second insulative members slidably interlock when the T-shaped projections slide into respective ones of the complementary-shaped recesses along a lateral direction perpendicular to the longitudinal direction.
  • 3. The electrical connector of claim 2, wherein: the T-shaped projections comprise a member having a first dimension and a second dimension;respective complementary-shaped recesses are bounded by walls having a plurality of ribs extending therefrom; andopposing walls of the complementary-shaped recesses are separated by dimensions greater than the first dimension and the second dimension.
  • 4. The electrical connector of claim 3, wherein: ribs on the opposing walls of the complementary-shaped recesses are separated by dimensions less than or equal to the first dimension and the second dimension.
  • 5. A method of manufacturing an electrical connector, the method comprising: forming an assembly by coupling a first insulative member and a second insulative member,wherein the coupling of the first insulative member and the second insulative member comprises sliding the first insulative member relative to the second insulative member, wherein the first and second insulative members are structured to slide together in a sliding direction that is at a non-zero angle different from a longitudinal direction of the first insulative member and the second insulative member, so that first interlocking coupling members disposed on the first insulative member and second interlocking coupling members disposed on the second insulative member are slidably interlocked.
  • 6. The electrical connector of claim 2, further comprising a backstop disposed on one of the first and second insulative members, the backstop making contact with another one of the first and second insulative members when the first and second insulative members are slidably interlocked.
  • 7. The electrical connector of claim 1, further comprising: a lossy member disposed between the first and second insulative members, the lossy member comprising a body portion elongated in the longitudinal direction and a plurality of projections extending from the body portion in a third direction perpendicular to both the longitudinal direction and a lateral direction perpendicular to the longitudinal direction.
  • 8. The electrical connector of claim 7, wherein the lossy member is compressed between the first and second insulative members when the first insulative member is coupled to the second insulative member.
  • 9. The electrical connector of claim 8, wherein: the plurality of first terminals comprise signal terminals and ground terminals;the ground terminals are arranged along the longitudinal direction such that at least one of the ground terminals is separated from a next one of the ground terminals by at least one signal terminal; andprojections of the plurality of projections align with the ground terminals.
  • 10. The electrical connector of claim 9, wherein: each terminal of the plurality of terminals comprises a mounting end, an intermediate portion, and a free distal end;the intermediate portions are disposed between the mounting ends and the free distal ends;the mounting ends are structured to be fixedly mounted to a circuit board;the free distal ends are movable relative to the mounting ends;the first insulative member is molded around a segment of the intermediate portions of a first subset of the plurality of terminals; andthe second insulative member is molded around a segment of the intermediate portions of a second subset of the plurality of terminals.
  • 11. The electrical connector of claim 10, wherein: the first and second insulative members are structured to slide together in a sliding direction that is at a non-zero angle different from the longitudinal direction;the sliding direction is perpendicular to the longitudinal direction; andat least one of the first and second insulative members comprises grooves, extending in the sliding direction and aligned with a plurality of the ground terminals, wherein the grooves slidably receive the projections of the lossy member.
  • 12. An electrical connector, comprising: a first plurality of terminals and a second plurality of terminals, wherein a first subset of the first plurality of terminals and the second plurality of terminals comprise ground terminals, and a second subset of the first plurality of terminals and the second plurality of terminals comprise signal terminals, wherein the ground terminals are arranged along a longitudinal direction such that at least one of the ground terminals is separated from a next one of the ground terminals by a pair of the signal terminals;a first terminal subassembly extending in a longitudinal direction and comprising a first insulative member molded around a segment of each of the first plurality of terminals; anda second terminal subassembly extending in the longitudinal direction and comprising a second insulative member molded around a segment of each of the second plurality of terminals, wherein: the first insulative member and the second insulative member comprise interlocking coupling members, andthe interlocking coupling members are configured to slidably couple the first insulative member to the second insulative member.
  • 13. The electrical connector of claim 12, wherein the interlocking coupling members comprise: at least one recess; andat least one projection structured to slot into the at least one recess of an opposing one of the first and second insulating members.
  • 14. The electrical connector of claim 13, wherein each of the at least one recesses comprises a first surface that is parallel to the longitudinal direction and a second surface and a third surface that each are perpendicular to the longitudinal direction.
  • 15. The electrical connector of claim 14, wherein each of the at least one recess further comprises at least one rib disposed on any combination of the first, second, and/or third surfaces.
  • 16. The electrical connector of claim 12, wherein: the first insulative member comprises at least one first stopping projection;the second insulative member comprises at least one second stopping projection; andthe at least one first stopping projection is configured to contact the at least one second stopping projection when the first insulative member and the second insulative member are slidably coupled.
  • 17. The electrical connector of claim 12, further comprising: a lossy member disposed between the first insulative member and the second insulative member, wherein the lossy member comprises a body portion and a plurality of projections extending from the body portion.
  • 18. The method of claim 5, wherein the sliding direction is perpendicular to the longitudinal direction.
  • 19. The method of manufacturing an electrical connector of claim 5, wherein: the first insulative member and the second insulative member are elongated in a longitudinal direction; andthe sliding of the first insulative member relative to the second insulative member is performed in a direction perpendicular to the longitudinal direction.
  • 20. The method of manufacturing an electrical connector of claim 5, wherein the sliding of the first insulative member relative to the second insulative member stops when stopping projections disposed on the first insulative member contact stopping projections disposed on the second insulative member.
  • 21. The method of manufacturing an electrical connector of claim 5, the method further comprising deforming ribs disposed on the interlocking coupling members of one of the first and second insulative members with surfaces of the interlocking coupling members of a remaining one of the first and second insulative members such that the deformed ribs cause a tight fit between the interlocking coupling members of the first and second insulative members.
  • 22. The method of manufacturing an electrical connector of claim 5, the method further comprising: placing a lossy member in a recess of the first insulative member; andcompressing the lossy member between the first insulative member and the second insulative member when sliding the first insulative member relative to the second insulative member.
  • 23. The method of manufacturing an electrical connector of claim 22, the method further comprising: pressing projections of the lossy member against ground terminals of the electrical connector.
  • 24. An electrical connector, comprising: a first plurality of terminals and a second plurality of terminals;a first terminal subassembly extending in a longitudinal direction and comprising a first insulative member molded around a segment of each of the first plurality of terminals; anda second terminal subassembly extending in the longitudinal direction and comprising a second insulative member molded around a segment of each of the second plurality of terminals, wherein: the first insulative member and the second insulative member both comprise T-shaped interlocking coupling members, andthe interlocking coupling members are configured to slidably couple the first insulative member to the second insulative member.
RELATED APPLICATIONS

This application claims priority to and the benefit under 35 U.S.C. § 119(e) of U.S. Application Ser. No. 62/931,317, filed Nov. 6, 2019, entitled “HIGH-FREQUENCY ELECTRICAL CONNECTOR WITH INTERLOCKING SEGMENTS”, which is hereby incorporated by reference in its entirety.

US Referenced Citations (461)
Number Name Date Kind
2996710 Pratt Aug 1961 A
3002162 Garstang Sep 1961 A
3134950 Cook May 1964 A
3322885 May et al. May 1967 A
3530422 Goodman Sep 1970 A
3631381 Pittman Dec 1971 A
3786372 Epis et al. Jan 1974 A
3825874 Peverill Jul 1974 A
3863181 Glance et al. Jan 1975 A
3977757 Yurtin Aug 1976 A
4155613 Brandeau May 1979 A
4195272 Boutros Mar 1980 A
4276523 Boutros et al. Jun 1981 A
4286837 Yasutake et al. Sep 1981 A
4371742 Manly Feb 1983 A
4408255 Adkins Oct 1983 A
4447105 Ruehl May 1984 A
4471015 Ebneth et al. Sep 1984 A
4484159 Whitley Nov 1984 A
4490283 Kleiner Dec 1984 A
4518651 Wolfe, Jr. May 1985 A
4519664 Tillotson May 1985 A
4519665 Althouse et al. May 1985 A
4632476 Schell Dec 1986 A
4636752 Saito Jan 1987 A
4682129 Bakermans et al. Jul 1987 A
4687267 Header Aug 1987 A
4728762 Roth et al. Mar 1988 A
4751479 Parr Jun 1988 A
4761147 Gauthier Aug 1988 A
4787548 Abbagnaro et al. Nov 1988 A
4806107 Arnold et al. Feb 1989 A
4846724 Sasaki et al. Jul 1989 A
4846727 Glover et al. Jul 1989 A
4871316 Herrell et al. Oct 1989 A
4878155 Conley Oct 1989 A
4948922 Varadan et al. Aug 1990 A
4970354 Iwasa et al. Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4992060 Meyer Feb 1991 A
5000700 Masubuchi et al. Mar 1991 A
5066236 Broeksteeg Nov 1991 A
5141454 Garrett et al. Aug 1992 A
5150086 Ito Sep 1992 A
5166527 Solymar Nov 1992 A
5168252 Naito Dec 1992 A
5168432 Murphy et al. Dec 1992 A
5171161 Kachlic Dec 1992 A
5176538 Hansell, III et al. Jan 1993 A
5266055 Naito et al. Nov 1993 A
5280257 Cravens et al. Jan 1994 A
5287076 Johnescu et al. Feb 1994 A
5334050 Andrews Aug 1994 A
5340334 Nguyen Aug 1994 A
5346410 Moore, Jr. Sep 1994 A
5429520 Morlion et al. Jul 1995 A
5429521 Morlion et al. Jul 1995 A
5433617 Morlion et al. Jul 1995 A
5433618 Morlion et al. Jul 1995 A
5456619 Belopolsky et al. Oct 1995 A
5461392 Mott et al. Oct 1995 A
5474472 Niwa et al. Dec 1995 A
5484310 McNamara et al. Jan 1996 A
5496183 Soes et al. Mar 1996 A
5499935 Powell Mar 1996 A
5551893 Johnson Sep 1996 A
5562497 Yagi et al. Oct 1996 A
5597328 Mouissie Jan 1997 A
5651702 Hanning et al. Jul 1997 A
5669789 Law Sep 1997 A
5796323 Uchikoba et al. Aug 1998 A
5831491 Buer et al. Nov 1998 A
5885088 Brennan et al. Mar 1999 A
5924899 Paagman Jul 1999 A
5981869 Kroger Nov 1999 A
5982253 Perrin et al. Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
6019616 Yagi et al. Feb 2000 A
6152747 McNamara Nov 2000 A
6168469 Lu Jan 2001 B1
6174202 Mitra Jan 2001 B1
6174203 Asao Jan 2001 B1
6174944 Chiba et al. Jan 2001 B1
6217372 Reed Apr 2001 B1
6293827 Stokoe Sep 2001 B1
6296491 Pickles Oct 2001 B1
6296496 Trammel Oct 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299483 Cohen et al. Oct 2001 B1
6315615 Raistrick Nov 2001 B1
6322395 Nishio et al. Nov 2001 B1
6328601 Yip et al. Dec 2001 B1
6347962 Kline Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6361363 Hwang Mar 2002 B1
6364711 Berg et al. Apr 2002 B1
6375510 Asao Apr 2002 B2
6379188 Cohen et al. Apr 2002 B1
6394842 Sakurai et al. May 2002 B1
6398588 Bickford Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6447170 Takahashi et al. Sep 2002 B1
6482017 Van Doorn Nov 2002 B1
6503103 Cohen et al. Jan 2003 B1
6506076 Cohen et al. Jan 2003 B2
6517360 Cohen Feb 2003 B1
6530790 McNamara et al. Mar 2003 B1
6537087 McNamara et al. Mar 2003 B2
6540559 Kemmick et al. Apr 2003 B1
6551140 Billman et al. Apr 2003 B2
6554647 Cohen et al. Apr 2003 B1
6565387 Cohen May 2003 B2
6565390 Wu May 2003 B2
6579116 Brennan et al. Jun 2003 B2
6582244 Fogg et al. Jun 2003 B2
6592381 Cohen et al. Jul 2003 B2
6595801 Leonard et al. Jul 2003 B1
6595802 Watanabe et al. Jul 2003 B1
6602095 Astbury, Jr. et al. Aug 2003 B2
6607402 Cohen et al. Aug 2003 B2
6609922 Torii Aug 2003 B2
6616864 Jiang et al. Sep 2003 B1
6652318 Winings et al. Nov 2003 B1
6652319 Billman Nov 2003 B1
6655966 Rothermel et al. Dec 2003 B2
6709294 Cohen et al. Mar 2004 B1
6713672 Stickney Mar 2004 B1
6726492 Yu Apr 2004 B1
6743057 Davis et al. Jun 2004 B2
6776659 Stokoe et al. Aug 2004 B1
6786771 Gailus Sep 2004 B2
6808420 Whiteman, Jr. et al. Oct 2004 B2
6814619 Stokoe et al. Nov 2004 B1
6830489 Aoyama Dec 2004 B2
6872085 Cohen et al. Mar 2005 B1
6875031 Korsunsky et al. Apr 2005 B1
6932649 Rothermel et al. Aug 2005 B1
6979202 Benham et al. Dec 2005 B2
6979226 Otsu et al. Dec 2005 B2
7044794 Consoli et al. May 2006 B2
7057570 Irion, II et al. Jun 2006 B2
7074086 Cohen et al. Jul 2006 B2
7086872 Myer et al. Aug 2006 B2
7094102 Cohen et al. Aug 2006 B2
7104842 Huang et al. Sep 2006 B1
7108556 Cohen et al. Sep 2006 B2
7156672 Fromm et al. Jan 2007 B2
7163421 Cohen et al. Jan 2007 B1
7232344 Gillespie et al. Jun 2007 B1
7285018 Kenny et al. Oct 2007 B2
7316585 Smith et al. Jan 2008 B2
7318740 Henry et al. Jan 2008 B1
7320614 Toda et al. Jan 2008 B2
7322845 Regnier et al. Jan 2008 B2
7331822 Chen Feb 2008 B2
7335063 Cohen et al. Feb 2008 B2
7364464 Iino et al. Apr 2008 B2
7371117 Gailus May 2008 B2
7407413 Minich Aug 2008 B2
7467977 Yi et al. Dec 2008 B1
7473124 Briant et al. Jan 2009 B1
7494383 Cohen et al. Feb 2009 B2
7540781 Kenny et al. Jun 2009 B2
7581990 Kirk et al. Sep 2009 B2
7588464 Kim Sep 2009 B2
7604502 Pan Oct 2009 B2
7645165 Wu et al. Jan 2010 B2
7690946 Knaub et al. Apr 2010 B2
7699644 Szczesny et al. Apr 2010 B2
7722401 Kirk et al. May 2010 B2
7727027 Chiang et al. Jun 2010 B2
7727028 Zhang et al. Jun 2010 B1
7731537 Amleshi et al. Jun 2010 B2
7753731 Cohen et al. Jul 2010 B2
7771233 Gailus Aug 2010 B2
7789676 Morgan et al. Sep 2010 B2
7794240 Cohen et al. Sep 2010 B2
7794278 Cohen et al. Sep 2010 B2
7806729 Nguyen et al. Oct 2010 B2
7824192 Lin et al. Nov 2010 B2
7871296 Fowler et al. Jan 2011 B2
7874873 Do et al. Jan 2011 B2
7883369 Sun et al. Feb 2011 B1
7887371 Kenny et al. Feb 2011 B2
7887379 Kirk Feb 2011 B2
7906730 Atkinson et al. Mar 2011 B2
7914304 Cartier et al. Mar 2011 B2
7946889 Mizumura May 2011 B2
7985097 Gulla Jul 2011 B2
7993147 Cole et al. Aug 2011 B2
8018733 Jia Sep 2011 B2
8083553 Manter et al. Dec 2011 B2
8123544 Kobayashi Feb 2012 B2
8182289 Stokoe et al. May 2012 B2
8215968 Cartier et al. Jul 2012 B2
8216001 Kirk Jul 2012 B2
8262411 Kondo Sep 2012 B2
8272877 Stokoe et al. Sep 2012 B2
8337247 Zhu Dec 2012 B2
8348701 Lan et al. Jan 2013 B1
8371875 Gailus Feb 2013 B2
8382524 Khilchenko et al. Feb 2013 B2
8440637 Elmen May 2013 B2
8480432 Wu Jul 2013 B2
8506319 Ritter et al. Aug 2013 B2
8506331 Wu Aug 2013 B2
8545253 Amidon et al. Oct 2013 B2
8550861 Cohen et al. Oct 2013 B2
8597051 Yang et al. Dec 2013 B2
8657627 McNamara et al. Feb 2014 B2
8715003 Buck et al. May 2014 B2
8715005 Pan May 2014 B2
8740637 Wang et al. Jun 2014 B2
8764492 Chiang Jul 2014 B2
8771016 Atkinson et al. Jul 2014 B2
8864506 Little et al. Oct 2014 B2
8864521 Atkinson et al. Oct 2014 B2
8905777 Zhu et al. Dec 2014 B2
8926377 Kirk et al. Jan 2015 B2
8944831 Stoner et al. Feb 2015 B2
8968034 Hsu Mar 2015 B2
8998642 Manter et al. Apr 2015 B2
9004942 Paniagua Apr 2015 B2
9011177 Lloyd et al. Apr 2015 B2
9022806 Cartier, Jr. et al. May 2015 B2
9028281 Kirk et al. May 2015 B2
9065230 Milbrand, Jr. Jun 2015 B2
9124009 Atkinson et al. Sep 2015 B2
9219335 Atkinson et al. Dec 2015 B2
9225085 Cartier, Jr. et al. Dec 2015 B2
9257794 Wanha et al. Feb 2016 B2
9263835 Guo Feb 2016 B2
9281590 Liu et al. Mar 2016 B1
9287668 Chen et al. Mar 2016 B2
9300074 Gailus Mar 2016 B2
9337585 Yang May 2016 B1
9350095 Arichika et al. May 2016 B2
9450344 Cartier, Jr. et al. Sep 2016 B2
9484674 Cartier, Jr. et al. Nov 2016 B2
9509101 Cartier, Jr. et al. Nov 2016 B2
9520686 Hu et al. Dec 2016 B2
9520689 Cartier, Jr. et al. Dec 2016 B2
9531130 Phillips Dec 2016 B1
9537250 Kao et al. Jan 2017 B2
9640915 Phillips et al. May 2017 B2
9692183 Phillips et al. Jun 2017 B2
9742132 Hsueh Aug 2017 B1
9843135 Guetig et al. Dec 2017 B2
9935385 Phillips et al. Apr 2018 B2
9972945 Huang et al. May 2018 B1
9997871 Zhong et al. Jun 2018 B2
10050369 Yang Aug 2018 B1
10122129 Milbrand, Jr. et al. Nov 2018 B2
10135197 Little et al. Nov 2018 B2
10211577 Milbrand, Jr. et al. Feb 2019 B2
10243304 Kirk et al. Mar 2019 B2
10270191 Li et al. Apr 2019 B1
10276995 Little Apr 2019 B2
10283910 Chen et al. May 2019 B1
10320102 Phillips et al. Jun 2019 B2
10348040 Cartier, Jr. et al. Jul 2019 B2
10381767 Milbrand, Jr. et al. Aug 2019 B1
10431936 Horning et al. Oct 2019 B2
10439311 Phillips et al. Oct 2019 B2
10511128 Kirk et al. Dec 2019 B2
10541482 Sasame et al. Jan 2020 B2
10601181 Lu et al. Mar 2020 B2
10777921 Lu et al. Sep 2020 B2
10797446 Liu et al. Oct 2020 B2
10826214 Phillips et al. Nov 2020 B2
10833437 Huang et al. Nov 2020 B2
10840622 Sasame et al. Nov 2020 B2
10950961 Lai Mar 2021 B2
10965064 Hsu et al. Mar 2021 B2
11146025 Lu et al. Oct 2021 B2
11189971 Lu Nov 2021 B2
11264755 Te Mar 2022 B2
20010012730 Ramey et al. Aug 2001 A1
20010042632 Manov et al. Nov 2001 A1
20010046810 Cohen et al. Nov 2001 A1
20020042223 Belopolsky et al. Apr 2002 A1
20020061671 Torii May 2002 A1
20020089464 Joshi Jul 2002 A1
20020098738 Astbury et al. Jul 2002 A1
20020111068 Cohen et al. Aug 2002 A1
20020111069 Astbury et al. Aug 2002 A1
20020123266 Ramey et al. Sep 2002 A1
20020132518 Kobayashi Sep 2002 A1
20020146926 Fogg et al. Oct 2002 A1
20030119360 Jiang et al. Jun 2003 A1
20030220018 Winings et al. Nov 2003 A1
20040005815 Mizumura et al. Jan 2004 A1
20040020674 McFadden et al. Feb 2004 A1
20040058572 Fromm et al. Mar 2004 A1
20040115968 Cohen Jun 2004 A1
20040121652 Gailus Jun 2004 A1
20040171305 McGowan et al. Sep 2004 A1
20040196112 Welbon et al. Oct 2004 A1
20040235352 Takemasa Nov 2004 A1
20040259419 Payne et al. Dec 2004 A1
20050048818 Pan Mar 2005 A1
20050048838 Korsunsky et al. Mar 2005 A1
20050048842 Benham et al. Mar 2005 A1
20050070160 Cohen et al. Mar 2005 A1
20050133245 Katsuyama et al. Jun 2005 A1
20050176835 Kobayashi et al. Aug 2005 A1
20050233610 Tutt et al. Oct 2005 A1
20050283974 Richard et al. Dec 2005 A1
20050287869 Kenny et al. Dec 2005 A1
20060019525 Lloyd et al. Jan 2006 A1
20060068640 Gailus Mar 2006 A1
20060166560 Shuey et al. Jul 2006 A1
20060255876 Kushta et al. Nov 2006 A1
20060276082 Hung et al. Dec 2006 A1
20060292932 Benham et al. Dec 2006 A1
20070004282 Cohen et al. Jan 2007 A1
20070004828 Khabbaz Jan 2007 A1
20070021000 Laurx Jan 2007 A1
20070021001 Laurx et al. Jan 2007 A1
20070021002 Laurx et al. Jan 2007 A1
20070021003 Laurx et al. Jan 2007 A1
20070021004 Laurx et al. Jan 2007 A1
20070037419 Sparrowhawk Feb 2007 A1
20070042639 Manter et al. Feb 2007 A1
20070054554 Do et al. Mar 2007 A1
20070059961 Cartier et al. Mar 2007 A1
20070155241 Lappohn Jul 2007 A1
20070197063 Ngo et al. Aug 2007 A1
20070218765 Cohen et al. Sep 2007 A1
20070243764 Liu et al. Oct 2007 A1
20070293084 Ngo Dec 2007 A1
20080020640 Zhang et al. Jan 2008 A1
20080194146 Gailus Aug 2008 A1
20080246555 Kirk et al. Oct 2008 A1
20080248658 Cohen et al. Oct 2008 A1
20080248659 Cohen et al. Oct 2008 A1
20080248660 Kirk et al. Oct 2008 A1
20090011641 Cohen et al. Jan 2009 A1
20090011645 Laurx et al. Jan 2009 A1
20090035955 McNamara Feb 2009 A1
20090061661 Shuey et al. Mar 2009 A1
20090117386 Vacanti et al. May 2009 A1
20090203259 Nguyen et al. Aug 2009 A1
20090239395 Cohen et al. Sep 2009 A1
20090258516 Hiew et al. Oct 2009 A1
20090291593 Atkinson et al. Nov 2009 A1
20090305530 Ito et al. Dec 2009 A1
20090305533 Feldman et al. Dec 2009 A1
20090305553 Thomas et al. Dec 2009 A1
20100048058 Morgan et al. Feb 2010 A1
20100068934 Li et al. Mar 2010 A1
20100075538 Ohshida Mar 2010 A1
20100081302 Atkinson et al. Apr 2010 A1
20100112846 Kotaka May 2010 A1
20100124851 Xiong et al. May 2010 A1
20100144167 Fedder et al. Jun 2010 A1
20100203772 Mao et al. Aug 2010 A1
20100291806 Minich et al. Nov 2010 A1
20100294530 Atkinson et al. Nov 2010 A1
20110003509 Gailus Jan 2011 A1
20110067237 Cohen et al. Mar 2011 A1
20110104948 Girard, Jr. et al. May 2011 A1
20110130038 Cohen et al. Jun 2011 A1
20110143605 Pepe Jun 2011 A1
20110212649 Stokoe et al. Sep 2011 A1
20110212650 Amleshi et al. Sep 2011 A1
20110230095 Atkinson et al. Sep 2011 A1
20110230096 Atkinson et al. Sep 2011 A1
20110256739 Toshiyuki et al. Oct 2011 A1
20110287663 Gailus et al. Nov 2011 A1
20120094536 Khilchenko et al. Apr 2012 A1
20120156929 Manter et al. Jun 2012 A1
20120184145 Zeng Jul 2012 A1
20120184154 Frank et al. Jul 2012 A1
20120202363 McNamara et al. Aug 2012 A1
20120202386 McNamara et al. Aug 2012 A1
20120214344 Cohen et al. Aug 2012 A1
20130012038 Kirk et al. Jan 2013 A1
20130017733 Kirk et al. Jan 2013 A1
20130065454 Milbrand, Jr. Mar 2013 A1
20130078870 Milbrand, Jr. Mar 2013 A1
20130078871 Milbrand, Jr. Mar 2013 A1
20130090001 Kagotani Apr 2013 A1
20130109232 Paniaqua May 2013 A1
20130143442 Cohen et al. Jun 2013 A1
20130196553 Gailus Aug 2013 A1
20130217263 Pan Aug 2013 A1
20130225006 Khilchenko et al. Aug 2013 A1
20130237100 Affeltranger Sep 2013 A1
20130316590 Hon Nov 2013 A1
20140004724 Cartier, Jr. et al. Jan 2014 A1
20140004726 Cartier, Jr. et al. Jan 2014 A1
20140004746 Cartier, Jr. et al. Jan 2014 A1
20140024263 Dong et al. Jan 2014 A1
20140057498 Cohen Feb 2014 A1
20140113487 Chen et al. Apr 2014 A1
20140273557 Cartier, Jr. et al. Sep 2014 A1
20140273627 Cartier, Jr. et al. Sep 2014 A1
20140370729 Wang Dec 2014 A1
20140377992 Chang et al. Dec 2014 A1
20150056856 Atkinson et al. Feb 2015 A1
20150072546 Li Mar 2015 A1
20150099408 Myer et al. Apr 2015 A1
20150111401 Guo Apr 2015 A1
20150111427 Foxconn Apr 2015 A1
20150126068 Fang May 2015 A1
20150140866 Tsai et al. May 2015 A1
20150214673 Gao et al. Jul 2015 A1
20150236451 Cartier, Jr. et al. Aug 2015 A1
20150236452 Cartier, Jr. et al. Aug 2015 A1
20150255904 Ito Sep 2015 A1
20150255926 Paniagua Sep 2015 A1
20150340798 Kao et al. Nov 2015 A1
20160149343 Atkinson et al. May 2016 A1
20160268744 Little et al. Sep 2016 A1
20170077654 Yao et al. Mar 2017 A1
20170352970 Liang et al. Dec 2017 A1
20180062323 Kirk et al. Mar 2018 A1
20180076555 Scholeno et al. Mar 2018 A1
20180145438 Cohen May 2018 A1
20180198220 Sasame et al. Jul 2018 A1
20180205177 Zhou et al. Jul 2018 A1
20180212376 Wang et al. Jul 2018 A1
20180212385 Little Jul 2018 A1
20180219331 Cartier, Jr. et al. Aug 2018 A1
20180241156 Huang et al. Aug 2018 A1
20180269607 Wu et al. Sep 2018 A1
20180331444 Ono Nov 2018 A1
20190006778 Fan et al. Jan 2019 A1
20190044284 Dunham Feb 2019 A1
20190052019 Huang et al. Feb 2019 A1
20190067854 Ju et al. Feb 2019 A1
20190173209 Lu et al. Jun 2019 A1
20190173232 Lu et al. Jun 2019 A1
20190214755 Manickam Jul 2019 A1
20190334292 Cartier, Jr. et al. Oct 2019 A1
20200021052 Milbrand, Jr. et al. Jan 2020 A1
20200076135 Tang et al. Mar 2020 A1
20200153134 Sasame et al. May 2020 A1
20200161811 Lu May 2020 A1
20200203865 Wu et al. Jun 2020 A1
20200203867 Lu Jun 2020 A1
20200203886 Wu et al. Jun 2020 A1
20200235529 Kirk et al. Jul 2020 A1
20200259294 Lu Aug 2020 A1
20200266584 Lu Aug 2020 A1
20200328541 Lai Oct 2020 A1
20200335914 Hsu et al. Oct 2020 A1
20200358226 Lu et al. Nov 2020 A1
20200395698 Hou et al. Dec 2020 A1
20200403350 Hsu Dec 2020 A1
20210036452 Phillips et al. Feb 2021 A1
20210050683 Sasame et al. Feb 2021 A1
20210135403 Yang et al. May 2021 A1
20210135404 Jiang May 2021 A1
20210203104 Chen Jul 2021 A1
20210218195 Hsu et al. Jul 2021 A1
20210313726 Huang Oct 2021 A1
20210399449 Guo et al. Dec 2021 A1
20220059954 Yue Feb 2022 A1
20220069496 Yi et al. Mar 2022 A1
Foreign Referenced Citations (119)
Number Date Country
1175101 Mar 1998 CN
1192068 Sep 1998 CN
1275825 Dec 2000 CN
2519434 Oct 2002 CN
1179448 Dec 2004 CN
1650479 Aug 2005 CN
1799290 Jul 2006 CN
2896615 May 2007 CN
1996678 Jul 2007 CN
2930006 Aug 2007 CN
101019277 Aug 2007 CN
101176389 May 2008 CN
101208837 Jun 2008 CN
101312275 Nov 2008 CN
201323275 Oct 2009 CN
101600293 Dec 2009 CN
201374434 Dec 2009 CN
101752700 Jun 2010 CN
101790818 Jul 2010 CN
101120490 Nov 2010 CN
101926055 Dec 2010 CN
201846527 May 2011 CN
102106041 Jun 2011 CN
201868621 Jun 2011 CN
102195173 Sep 2011 CN
102224640 Oct 2011 CN
102232259 Nov 2011 CN
102239605 Nov 2011 CN
102292881 Dec 2011 CN
101600293 May 2012 CN
102456990 May 2012 CN
102487166 Jun 2012 CN
102593661 Jul 2012 CN
102598430 Jul 2012 CN
202395248 Aug 2012 CN
102694318 Sep 2012 CN
102738621 Oct 2012 CN
102859805 Jan 2013 CN
202695788 Jan 2013 CN
202695861 Jan 2013 CN
203445304 Feb 2014 CN
103840285 Jun 2014 CN
203690614 Jul 2014 CN
204030057 Dec 2014 CN
204167554 Feb 2015 CN
104409906 Mar 2015 CN
104577577 Apr 2015 CN
104659573 May 2015 CN
204349140 May 2015 CN
204577746 Aug 2015 CN
204696287 Oct 2015 CN
105633660 Jun 2016 CN
105703103 Jun 2016 CN
106099546 Nov 2016 CN
107069281 Aug 2017 CN
304240766 Aug 2017 CN
304245430 Aug 2017 CN
206712072 Dec 2017 CN
206712089 Dec 2017 CN
107706632 Feb 2018 CN
207677189 Jul 2018 CN
208078300 Nov 2018 CN
208209042 Dec 2018 CN
208797273 Apr 2019 CN
210326355 Apr 2020 CN
112072400 Dec 2020 CN
107706675 Apr 2021 CN
212874843 Apr 2021 CN
113517619 Oct 2021 CN
60216728 Nov 2007 DE
0 560 551 Sep 1993 EP
0820124 Jan 1998 EP
1 018 784 Jul 2000 EP
1 779 472 May 2007 EP
2 169 770 Mar 2010 EP
2 405 537 Jan 2012 EP
1049435 Nov 1966 GB
1272347 Apr 1972 GB
H3-156761 Jul 1991 JP
H07-302649 Nov 1995 JP
2001-510627 Jul 2001 JP
2002-151190 May 2002 JP
2006-344524 Dec 2006 JP
2010-129173 Jun 2010 JP
9907324 Aug 2000 MX
200835073 Aug 2008 TW
M357771 May 2009 TW
M474278 Mar 2014 TW
I535129 May 2016 TW
M534922 Jan 2017 TW
I596840 Aug 2017 TW
M558481 Apr 2018 TW
M558482 Apr 2018 TW
M558483 Apr 2018 TW
M559006 Apr 2018 TW
M559007 Apr 2018 TW
M560138 May 2018 TW
M562507 Jun 2018 TW
M565894 Aug 2018 TW
M565895 Aug 2018 TW
M565899 Aug 2018 TW
M565900 Aug 2018 TW
M565901 Aug 2018 TW
M605564 Dec 2020 TW
WO 8805218 Jul 1988 WO
WO 9835409 Aug 1998 WO
WO 2004059794 Jul 2004 WO
WO 2004059801 Jul 2004 WO
WO 2006039277 Apr 2006 WO
WO 2007005597 Jan 2007 WO
WO 2007005599 Jan 2007 WO
WO 2008124052 Oct 2008 WO
WO 2008124054 Oct 2008 WO
WO 2008124057 Oct 2008 WO
WO 2008124101 Oct 2008 WO
WO 2010030622 Mar 2010 WO
WO 2010039188 Apr 2010 WO
WO 2011100740 Aug 2011 WO
WO 2017007429 Jan 2017 WO
Non-Patent Literature Citations (78)
Entry
Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020.
Chinese Office Action dated Jan. 18, 2021 in connection with Chinese Application No. 202010031395.7.
Chinese Office Action for Application No. 201680051491.X dated Apr. 30, 2019.
Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019.
Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020.
Chinese Office Action for Chinese Application No. 201780097919.9, dated Mar. 10, 2021.
Extended European Search Report dated May 19, 2021 in connection with European Application No. 17930428.2.
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012.
International Preliminary Report on Patentability Chapter II for International Application No. PCT/CN2017/108344 dated Mar. 6, 2020.
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012.
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012.
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013.
International Preliminary Report on Patentability for International Application No. PCT/SG2016/050317 dated Jan. 18, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017.
International Search Report and Written Opinion for International Application No. PCT/CN2017/108344 dated Aug. 1, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006.
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011.
International Search Report and Written Opinion for International Application No. PCT/SG2016/050317 dated Oct. 18, 2016.
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007.
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013.
[No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 2008. 1-40 pages.
[No Author Listed], Military Fibre Channel High Speed Cable Assembly. www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.--fibre . . . Last archive date Apr. 6, 2008.
[No Author Listed], SFF-TA-1016 Specification for Internal Unshielded High Speed Connector System. Rev 0.0.1. SNIA SFF TWG Technology Affiliate. Nov. 15, 2019. 40 pages.
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7.
Hsu et al., SMT Receptacle Connector With Side Latching, U.S. Appl. No. 17/216,463, filed Mar. 29, 2021.
Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91.
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56.
U.S. Appl. No. 16/998,845, filed Aug. 20, 2020, Yue.
U.S. Appl. No. 17/283,511, filed Apr. 7, 2021, Guo et al.
U.S. Appl. No. 17/402,255, filed Aug. 13, 2021, Yi et al.
CN 201780097919.9, Dec. 3, 2021, Chinese Office Action.
PCT/CN2018/118798, Jul. 18, 2019, International Search Report and Written Opinion.
PCT/CN2021/114671, Nov. 29, 2021, International Search Report and Written Opinion.
U.S. Appl. No. 16/556,728, filed Aug. 30, 2019, Lu.
U.S. Appl. No. 16/556,778, filed Aug. 30, 2019, Lu.
U.S. Appl. No. 16/684,755, filed Nov. 15, 2019, Lu.
U.S. Appl. No. 16/721,594, filed Dec. 19, 2019, Lu.
U.S. Appl. No. 16/760,400, filed Apr. 29, 2020, Hou et al.
U.S. Appl. No. 16/827,328, filed Mar. 23, 2020, Lu et al.
U.S. Appl. No. 16/905,593, filed Jun. 18, 2020, Hsu.
U.S. Appl. No. 17/085,342, filed Oct. 30, 2020, Sasame et al.
U.S. Appl. No. 17/089,934, filed Nov. 5, 2020, Jiang.
U.S. Appl. No. 17/216,463, filed Mar. 29, 2021, Hsu et al.
CN 201580014851.4, Sep. 4, 2019, Chinese Office Action.
CN 201580014851.4, Jun. 1, 2020, Chinese Communication.
CN 201680051491.X, Apr. 30, 2019, Chinese Office Action.
CN 201780064531.9, Jan. 2, 2020, Chinese Office Action.
CN 201780097919.9, Mar. 10, 2021, Chinese Office Action.
CN 202010031395.7, Jan. 18, 2021, Chinese Office Action.
EP 11166820.8, Jan. 24, 2012, Extended European Search Report.
EP 17930428.2, May 19, 2021, Extended European Search Report.
PCT/CN2017/108344, Aug. 1, 2018, International Search Report and Written Opinion.
PCT/CN2017/108344, Mar. 6, 2020, International Preliminary Report on Patentability Chapter II.
PCT/SG2016/050317, Oct. 18, 2016, International Search Report and Written Opinion.
PCT/SG2016/050317, Jan. 18, 2018, International Preliminary Report on Patentability.
PCT/US2005/034605, Jan. 26, 2006, International Search Report and Written Opinion.
PCT/US2006/025562, Oct. 31, 2007, International Search Report with Written Opinion.
PCT/US2010/056482, May 24, 2012, International Preliminary Report on Patentability.
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion.
PCT/US2011/026139, Sep. 7, 2012, International Preliminary Report on Patentability.
PCT/US2011/026139, Nov. 22, 2011, International Search Report and Written Opinion.
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion.
PCT/US2012/023689, Aug. 15, 2013, International Preliminary Report on Patentability.
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion.
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion.
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion.
PCT/US2017/047905, Dec. 4, 2017, International Search Report and Written Opinion.
Chinese Office Action for Chinese Application No. 201780097919.9, dated Dec. 3, 2021.
International Search Report and Written Opinion dated Nov. 29, 2021 for International Application No. PCT/CN2021/114671.
International Search Report and Written Opinion dated Jul. 18, 2019 for International Application No. PCT/CN2018/118798.
[No Author Listed], Mini Cool Edge IO—The Ideal Solution to Transmit Next Generation High-Speed Signal to Designated Area in Your System. Jul. 25, 2018. 2 pages. URL:https://www.amphenol-icc.com/connect/mini-cool-edge-io-the-ideal-solution-to-transmit-next-generation-high-speedsignal.html [retrieved on Apr. 11, 2022].
[No Author Listed], Mini Cool Edge IO Connector. Commercial IO. Amphenol ICC. 5 pages. URL:https://cdn.amphenol-icc.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_mini_cool_edge_io.pdf [retrieved on Apr. 11, 2022].
[No Author Listed], MCIO 124pos 85ohm. Amphenol Assembletech. 1 page. URL:http://www.amphenol-ast.com/v3/en/overview.aspx?classId=234 [retrieved on Apr. 11, 2022].
Related Publications (1)
Number Date Country
20210135389 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62931317 Nov 2019 US