This disclosure relates generally to electrical interconnection systems and more specifically to electrical connectors able to carry high-frequency signals.
Electrical connectors are used in many electronic systems. In general, various electronic devices (e.g., smart phones, tablet computers, desktop computers, notebook computers, digital cameras, and the like) have been provided with assorted types of connectors whose primary purpose is to enable an electronic device to exchange data, commands, and/or other signals with one or more other electronic devices. Electrical connectors are basic components needed to make some electrical systems functional. Signal transmission to transfer information (e.g., data, commands, and/or other electrical signals) often utilize electrical connectors between electronic devices, between components of an electronic device, and between electrical systems that may include multiple electronic devices.
It is generally easier and more cost effective to manufacture an electrical system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be communicatively joined together with electrical connectors. In some scenarios, the PCBs to be joined may each have connectors mounted on them. The connectors may be mated together directly to interconnect the PCBs.
In other scenarios, the PCBs may be connected indirectly via a cable. Electrical connectors may nonetheless be used to make such connections. For example, the cable may be terminated at one or both ends with a plug type of electrical connector (“plug connector” herein). A PCB may be equipped with a receptacle type of electrical connector (“receptacle connector” herein) into which the plug connector may be inserted to connect the cable to the PCB. A similar arrangement may be used at the other end of the cable, to connect the cable to another PCB, so that signals may pass between the PCBs via the cable.
For electronic devices that require a high-density, high-speed connector, techniques may be used to reduce interference between conductive elements within the connectors, and to provide other desirable electrical properties. One such technique involves the use of shield members between or around adjacent signal conductive elements of a connector system. The shields may prevent signals carried on one conductive element from creating “crosstalk” on another conductive element. The shields may also have an impact on an impedance of the conductive elements, which may further contribute to desirable electrical properties of the connector system.
Another technique that may be used to control performance characteristics of a connector entails transmitting signals differentially. Differential signals result from signals carried on a pair of conducting paths, called a “differential pair.” The voltage difference between the conductive paths represents the differential signal. In general, a differential pair is designed with preferential coupling between the conducting paths of the pair. For example, the two conducting paths of a differential pair may be arranged to run closer to each other than to other adjacent signal paths in the connector.
Amphenol Corporation, which is the assignee of the present technology described herein, also pioneered the use of a “lossy” material in connectors to improve performance, particularly the performances of high-speed, high-density connectors.
Some embodiments of the technology disclosed herein are directed to an electrical connector. The electrical connector comprises first and second insulative members structured to slidably interlock with each other and a plurality of terminals supported by the first and second insulative members and disposed in first and second rows parallel to a longitudinal direction.
Some embodiments of the technology disclosed herein are directed to an electrical connector. The electrical connector comprises a first plurality of terminals and a second plurality of terminals; a first terminal subassembly extending in a longitudinal direction and comprising a first insulative member molded around a segment of each of the first plurality of terminals; and a second terminal subassembly extending in a longitudinal direction and comprising a second insulative member molded around a segment of each of the second plurality of terminals. The first insulative member and the second insulative member comprise interlocking coupling members, and the interlocking coupling members are configured to slidably couple the first insulative member to the second insulative member.
Some embodiments of the technology disclosed herein are directed to a method of manufacturing an electrical connector. The method comprises forming an assembly by coupling a first insulative member and a second insulative member by sliding the first insulative member relative to the second insulative member so that first interlocking coupling members disposed on the first insulative member and second interlocking coupling members disposed on the second insulative member are slidably interlocked.
The features described herein in the various embodiments may be used, separately or together in any combination, in any of the embodiments discussed herein.
Various aspects and embodiments of the present technology disclosed herein are described below with reference to the accompanying figures. It should be appreciated that the figures are not necessarily drawn to scale. Items appearing in multiple figures may be indicated by the same reference numeral. For the purposes of clarity, not every component may be labeled in every figure.
The inventors have recognized and appreciated techniques for manufacturing miniaturized electrical connectors that enable compact electronic system that processes high speed signals with good signal integrity. Such electrical connectors may have a low height, such as 5 mm or less, relative to a surface of a printed circuit board to which the connector system is mounted.
The inventors have further recognized and appreciated that the high-frequency performance of such a miniaturized electrical connector including a shorting member may be improved by configuring the connector so that compressive forces applied to the shorting member increase the electrical coupling between select ones of the conductive elements and the shorting member. The shorting member may be a lossy member, which may be formed of a lossy material, as described below. The select ones of the conductive members may be ground conductors. The improvement in electrical performance may be achieved in configurations in which the shorting bar has relatively small dimensions.
The shorting member may have surfaces configured for making contact to the select ones of the conductive members (“select conductive members” herein). The select conductive members may be supported by insulative members, which are configured to be coupled securely via interlocking members such that the shorting member is captured between the insulative members. By configuring the shorting member to be taller than the available space between the select conductive members and forming the shorting member to have compressible properties, it can be ensured that the shorting member makes reliable electrical contact to the select conductive members. The shorting member may be configured to have compressible properties by the choice of material used, the inclusion of through-holes in the shorting member structure, or a combination thereof. In some embodiments, the compressible material may be an elastic material (e.g., a material that springs back to its original or another shape when not under compressive stress).
A connector with the above-described configuration may function reliably despite variations in component sizes that may occur during manufacture of the components that are assembled to make the connector. Such variation, for example, may result in connectors in which the shorting member is manufactured separately from terminal subassemblies that carry the conductive members. The inventors have recognized and appreciate that, although the shorting member may be designed to contact the select conductive members, in some connectors, when assembled, manufacturing variations may prevent the shorting member from contacting some or all of the select conductive members. Compressing the shorting member between the insulative members so that the shorting member contacts and is urged against the select conductive members may increase electrical coupling between the shorting member and the select conductive members. If the select conductive members are already in contact with the shorting member before the insulative members are secured relative to each other, the additional compressive force may reduce the resistance of that contact, improving the performance of the shorting member. The compressive force on the shorting member may be increased by increasing the ratio of the height of the shorting member relative to the height of the space available for the shorting member between the insulative members. For example, the height of the shorting member when not compressed may be approximately 0.1 mm larger than the height of the space available for the shorting member. In some embodiments, when the shorting member is compressed, the height of the shorting member may be compressed by an amount in a range from 1% to 20% of the original, non-compressed height of the shorting member. In some embodiments, when the shorting member is compressed, the height of the shorting member may be compressed by an amount in a range from 2% to 10% of the original, non-compressed height of the shorting member. The inventors have further recognized and appreciate that forming the shorting member so that it may be compressed ensures that no damaging stress on the insulative members is caused by the compressive forces on the shorting member. Additionally, the inventors have recognized and appreciate that compressing the shorting member may ensure the components of the connector fit together in a repeatable manner, ensuring predictable connector performance despite manufacturing variations.
The select conductive members to which the shorting member is coupled may be ground conductors. In this regard, a shorting member included in the connector so as to electrically couple to the ground conductors may reduce resonances within the connector and therefore expand the operating frequency range of the connector. For example, when the connector is intended to operate at higher than typical frequencies (e.g., 25 GHz, 30 GHz, 35 GHz, 40 GHz, 45 GHz, etc.), the presence of the shorting member may reduce resonances that may occur at the higher frequencies, thereby enabling reliable operation at the higher frequencies and consequently increasing the operating range of the connector.
The presence of a shorting member may expand the frequency range over which the connector may operate, without increasing the distance between conductive elements. In some embodiments, conducting structures of a receptacle connector may support resonant modes at a fundamental frequency within a frequency range of interest for operation of the connector. In that scenario, the shorting member may alter the fundamental frequency of the resonant mode, such that it occurs outside the frequency range of interest. Without the fundamental frequency of the resonant mode in the frequency range of interest, one or more performance characteristics of the connector may be at an acceptable level over the frequency range of interest, whereas, in the absence of the shorting member, the performance characteristic(s) would be unacceptable.
The frequency range of interest may depend on the operating parameters of the system in which such the connector is used, but may generally have an upper limit between about 15 GHz and 120 GHz, such as 25, 30, 40, or 56 GHz, although higher frequencies or lower frequencies may be of interest in some applications. Some connector designs may have frequency ranges of interest that span only a portion of this range, such as 1 GHz to 10 GHz, or 3 GHz to 15 GHz, or 5 GHz to 35 GHz.
The operating-frequency range for an interconnection system may be defined based on the range of frequencies that pass through the interconnection system with acceptable signal integrity. Signal integrity may be measured in terms of a number of criteria that depend on the application for which the interconnection system is designed. Some of these criteria may relate to the propagation of a signal along a single-ended signal path, a differential signal path, a hollow waveguide, or any other type of signal path. The criteria may be specified as a limit or range of values for performance characteristics. Two examples of such characteristics are the attenuation of a signal along a signal path, and the reflection of a signal from a signal path.
Other characteristics may relate to interaction of signals on multiple distinct signal paths. Such characteristics may include, for example, near-end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the same end of the interconnection system. Another such characteristic may be far-end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the other end of the interconnection system.
As specific examples of criteria, it could be required that: signal-path attenuation be no more than 3 dB of power loss, a reflected-power ratio be no greater than −20 dB, and individual signal-path to signal-path crosstalk contributions be no greater than −50 dB. Because these characteristics are frequency dependent, the operating range of an interconnection system may be defined as the range of frequencies over which the specified criteria are met.
Designs of an electrical connector are described herein that improve signal integrity for high-frequency signals, such as at frequencies in the GHz range, including up to about 56 GHz or up to about 120 GHz or higher, while maintaining a high density, such as with an edge to edge spacing between adjacent contacts (e.g., conductive elements) of approximately 0.25 mm, with a center-to-center spacing between adjacent contacts in a row of between 0.5 mm and 0.8 mm, for example. The contacts may have a width of between 0.3 mm and 0.5 mm.
The shorting member may be formed of a lossy material. Materials that conduct, but with some loss, or materials that by a non-conductive physical mechanism absorbs electromagnetic energy over the frequency range of interest may be referred to herein generally as “lossy” materials. Electrically lossy materials may be formed from lossy dielectric materials and/or poorly conductive materials and/or lossy magnetic materials.
Magnetically lossy materials may include, for example, materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is generally known to be the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest.
Electrically lossy materials may be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is generally known to be the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. For example, an electrically lossy material may be formed of a dielectric material in which is embedded a conductive web that results in an electric loss tangent greater than approximately 0.05 in the frequency range of interest.
Electrically lossy materials may be formed from materials that are generally thought of as conductors, but are relatively poor conductors over the frequency range of interest, or contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity, or are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor (e.g., copper) over the frequency range of interest.
Electrically lossy materials typically have a bulk conductivity of about 1 siemens/meter to about 100,000 siemens/meter and preferably about 1 siemens/meter to about 10,000 siemens/meter. In some embodiments, material with a bulk conductivity of between about 10 siemens/meter and about 200 siemens/meter may be used. As a specific example, material with a conductivity of about 50 siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through electrical simulation using known simulation tools to determine a suitable conductivity that provides both a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.
Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1 Ω/square and 100,000 Ω/square. In some embodiments, the electrically lossy material may have a surface resistivity between 10 Ω/square and 1000 Ω/square. As a specific example, the electrically lossy material may have a surface resistivity of between about 20 Ω/square and 80 Ω/square.
In some embodiments, an electrically lossy material may be formed by adding to a binder a filler that contains conductive particles. In an embodiment, a lossy member may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a filler to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers, or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal-plated carbon particles may be used. Silver and nickel may be suitable metals for metal-plating fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flakes. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some embodiments, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connector. Examples of such thermoplastic materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials such as thermosetting resins or adhesives may be used as a binder.
Also, although the binder materials discussed above may be used to create an electrically lossy material by forming a matrix around conductive particle fillers, the present technology described herein is not so limited. For example, conductive particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” may encompass a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.
In some embodiments, the fillers may be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when metal fiber is used, the fiber may be present at about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.
Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation of Irving, Texas, USA, which can be filled with carbon fibers or stainless steel filaments.
A lossy member may be formed from a lossy conductive-carbon-filled adhesive preform, which may be obtained from Techfilm of Billerica, Massachusetts, US, may be used as a lossy material. This preform may include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder may surround carbon particles, which act as a reinforcement for the preform. Such a preform may be inserted in a connector lead frame subassembly to form all or part of the housing. In some embodiments, the preform may adhere through an adhesive in the preform, which may be cured in a heat treating process. In some embodiments, the adhesive may take the form of a separate conductive or non-conductive adhesive layer. In some embodiments, the adhesive in the preform alternatively or additionally may be used to secure one or more conductive elements, such as foil strips, to the lossy material.
Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated, may be used. For example, non-woven carbon fiber may be a suitable reinforcing fiber. As will be appreciated, other suitable reinforcing fibers may be used instead or in combination.
Alternatively, a lossy member may be formed in other ways. In some embodiments, a lossy member may be formed by interleaving layers of lossy and conductive material such as metal foil. These layers may be rigidly attached to one another, such as through the use of epoxy or another adhesive, or may be held together in any other suitable way. The layers may be of the desired shape before being secured to one another or may be stamped or otherwise shaped after they are held together. Alternatively or additionally, a lossy material may be formed by depositing or otherwise forming a diffuse layer of conductive material, such as metal, over an insulative substrate, such as plastic, to provide a composite part with lossy characteristics, as described above.
Turning now to the figures,
In some embodiments, the receptacle connector 1 may mate with a plug connector (not shown) from which a plurality of cables may extend. The cables may connect to or near an I/O connector mounted at the edge of the PCB. In this way, high-integrity signal paths between the I/O connector and the high-performance electronic component may be provided. In such embodiments, providing reliable high frequency performance of the connector in a small space, using techniques as described herein, may improve the performance of the electronic assembly.
In some embodiments, the terminal assembly 300 may be positioned within the insulative housing 100 to receive one or more plug contacts from a mating plug connector. The one or more plug contacts may be received between the first and second rows of terminals and through a face of the insulative housing 100. Accordingly, it may be appreciated that a mating plug connector may mate with the receptacle connector 1 by being moved along the directions indicated by the double-headed arrows. In some embodiments where the receptacle connector 1 is mounted to a PCB via the receptacle shell 200, it may be appreciated that a mating plug connector may mate with the receptacle connector 1 in a direction parallel to the surface of the PCB.
In some embodiments, the insulative housing 100 may include an upper wall 102a, side walls 102b, a front wall 102c, and a bottom wall 102d. The upper wall 102a, side walls 102b, front wall 102c, and bottom wall 102d define an interior cavity 104. When the receptacle connector 1 is assembled, the terminal assembly 300 may be disposed within the cavity 104.
In some embodiments, the front wall 102c may include an opening having alternating terminal cavities 106 and terminal barriers 107a. Terminals of the terminal assembly 300 may be disposed within the terminal cavities 106 when the terminal assembly 300 is disposed within cavity 104. The terminal barriers 107a may prevent individual terminals of the terminal assembly 300 from accidentally making physical and electrical contact with each other during and/or after manufacture of the receptacle connector 1.
The bottom wall 102d may be a partial wall, which may not extend the full length of side walls 102b, in some embodiments. When the terminal assembly 300 is disposed in the cavity 104, the opening in the bottom wall 102d may accommodate the mounting ends of the terminals of the terminal assembly 300. The bottom wall 102d may include additional terminal barriers 107b, as seen in
In some embodiments, one or more features of the insulative housing 100 may assist in proper coupling of the insulative housing 100 to other components of the receptacle connector 1. For example, the receptacle shell 200 may couple to the insulative housing 100 via receptacle-shell engagement features 112a and/or 112b. The receptacle-shell engagement features 112a and 112b may engage clips of the receptacle shell 200. Alternatively or additionally, receptacle-shell tab engagement features 113a and 113b may engage with and fit within receptacle-shell tabs (described below) to maintain the position of receptacle shell 200. Receptacle-shell stops 114 may also engage with the receptacle shell 200 to prevent the receptacle shell 200 from being bent during assembly.
In some embodiments, when the terminal assembly 300 is disposed in the cavity 104, parts of the terminal assembly 300 may engage with one or more of terminal-assembly engagement features 108, 116a, 116b, and/or 116c. For example, the terminal-assembly engagement features 108 may be recesses in the upper wall 102a such that projections of the terminal assembly 300 may slot into the terminal-assembly engagement features 108 when the receptacle connector is assembled. The terminal-assembly engagement features 116a may be projections from one or more side walls 102b such that the terminal assembly engagement features 116a engage with recesses and/or slots of the terminal assembly 300. The terminal-assembly engagement features 116b may be recesses in one or more of the side walls 102b such that projections of the terminal assembly 300 may slot into the terminal assembly engagement features 116b when the receptacle connector is assembled. The terminal-assembly engagement features 116c may be through holes in the upper wall 102a that connect with complementary engagement features (not shown) that extend outwards from the terminal assembly 300 to latch into the terminal assembly engagement features 116c.
In some embodiments, the insulative housing 100 may physically couple to a PCB. The insulative housing 100 may include one or more guide posts 118a and 118b extending from the bottom wall 102d. The guide posts 118a and 118b may have differently shaped cross sections to ensure that the receptacle connector 1 is mounted to the PCB in the correct orientation. In the examples of
In some embodiments, the receptacle shell 200 may be formed of metal. For example, the receptacle shell 200 may be made from a single sheet of metal, which has features stamped out of the sheet and then is bent and formed to the illustrated shapes. In other embodiments, the receptacle shell 200 may be formed of more than one component joined together.
In some embodiments, the receptacle shell 200 may be formed with front legs 202a and back legs 202b that conform around the side walls 102b of the insulative housing 100. The front legs 202a and the back legs 202b may be arranged such that each side wall 102b has a single front leg 202a and a single back leg 202b conformed with the side wall 102b. In some embodiments, such as the examples of
The front legs 202a and the back legs 202b may include PCB mounting members 204 extending from ends of the front legs 202a and the back legs 202b opposite from ends attached to the conforming portion 212 and the spaced-apart portion 210. The PCB mounting members 204 may be tabs that are configured to engaged with one or more features of a PCB. The PCB mounting members 204 may be configured to be solder mounted or otherwise fixedly mounted to a PCB to provide a permanent engagement of the receptacle connector 1 to the PCB.
Additionally, in some embodiments, the receptacle shell 200 may include one or more engagement features for affixing the receptacle shell 200 to the insulative housing 100. For example, receptacle-shell tabs 206a and 206b may engage with the receptacle-shell tab engagement features 113a and 113b of the insulative housing 100. Additionally or alternatively, receptacle-shell engagement holes 208 may receive therein and surround the receptacle-shell engagement features 112a of the insulative housing 100.
The space between the insulative housing 100 and the spaced-apart portion 210 of the receptacle shell 200 may be structured to receive protrusions of a mating plug connector. The spaced-apart portion 210 of the receptacle shell 200 may enable the mating plug connector to achieve a general alignment with the receptacle connector 1 during an initial part of the mating operation. Although
The conforming portion 212 of the receptacle shell 200 may conform with the front wall 102a of the insulative housing 100 except at the spaced-apart portion 210, which may be disposed along the front wall 102a of the receptacle shell 200. Optionally, the spaced-apart portion 210 may be disposed along one or both of the side walls 102b of the receptacle shell 200, or along any combination of the front wall 102a and the side walls 102b.
In accordance with some embodiments described herein, the receptacle connector 100 may include a terminal assembly 300 on which first terminals 330a and second terminals 330b are arranged, as depicted in the example of
In some embodiments, the terminal assembly 300 may include a first terminal subassembly 310a and a second terminal subassembly 310b. The first terminal subassembly 310a may include the first terminals 330a, a first insulative member 320a, and a third insulative member 320c. The second terminal subassembly 310b may include the second terminals 330b and a second insulative member 320b. Terminals of the first and second terminals 330a and 330b may include ground terminals and signal terminals.
In some embodiments, the first terminal subassembly 310a and the second terminal subassembly 310b may couple to each other such that a lossy member 340 may be disposed between the two subassemblies 310a, 310b. The lossy member 340 may be elongated in a row or longitudinal direction X (e.g., see
In some embodiments, the first insulative member 320a, the second insulative member 320b, and the third insulative member 320c may be formed of an insulative material. The insulative members may be formed to stabilize the first and/or second terminals 330a, 330b and to prevent electrical shorting. For example, the first insulative member 320a, the second insulative member 320b, and the third insulative member 320c may be formed of a plastic material. The plastic material may be molded around the first terminals 330a or the second terminals 330b during formation of the first and second terminal subassemblies 310a and 310b. For example, as shown in
In some embodiments, the first terminal subassembly 310a and the second terminal subassembly 310b may couple to each other through coupling members present on the first insulative member 320a and the second insulative member 320b, as will be described herein. As shown in
In some embodiments, when the first terminal subassembly 310a and the second terminal subassembly 310b are coupled together, a cross-sectional area of the first recess 321a, perpendicular to the row direction X, may be less than a cross-sectional area of the lossy member 340 when the lossy member 340 is not compressed between the first and second terminal subassemblies 310a and 310b. In this way, the lossy member 340 may be compressed such that projections of the lossy member 340 are pushed against and in contact with terminals of the first and second terminal subassemblies 310a and 310b when the assemblies are coupled together. Projections of the lossy member 340 may be coupled to the ground terminals but not the signal terminals of the first and second terminals 330a and 330b. As shown in the example of
In some embodiments, a second recess 321b may be disposed on the longitudinal ends of the second insulative member 320b. The second recess 321b may engage with the engagement feature 116a of the insulative housing 100 by fitting around engagement feature 116a when the terminal assembly 300 is inserted into the insulative housing 100. The second recess 321b and the engagement feature 116a may prevent the terminal assembly 300 from shifting in a direction Z, perpendicular to the row direction X.
In some embodiments, the free distal end 334a, 334b may be hooked relative to the intermediate portion 336a, 336b. A contact surface 335a, 335b may be disposed near the free distal end 334a, 334b of the first and second terminals 330a and 330b. The first and second terminals 330a and 330b may be bent at the free distal ends 334a, 334b, and the contact surfaces 335a, 335b may be arranged such that a complementary mating terminal (not pictured) may be accepted between the first and second terminals 330a and 330b and in contact with the contact surfaces 335a, 335b.
The contact surfaces 335a, 335b may be fully or partially plated with a noble metal, such as gold, or another suitable metal or alloy that resists oxidation and provides a low-resistance contact with a complementary terminal of a mating connector. In some embodiments, both ground terminals and signal terminals of the first and second terminals 330a and 330b may be plated in order to promote low-resistance contacts with the complementary terminals of a mating connector. Alternatively, a selection of ground terminals and signal terminals (e.g., only the ground terminals, only the signal terminals, and/or a subset of both the ground and signal terminals) of the first and second terminals 330a and 330b may be plated with on their contact surfaces 335a, 335b. The intermediate portions 336a, 336b of at least the ground terminals of the first and second terminals 330a and 330b may also be plated to provide additional contact surfaces for making electrical contact to the lossy member 340.
In accordance with some embodiments described herein, the mounting ends 338a, 338b may be configured to be fixedly mounted to a substrate (e.g., a PCB). As shown in the example of
As mentioned above, the mounting ends 338a, 338b may be considered a fixable end of the first and second terminals 330a and 330b, because the mounting ends 335a, 335b may be fixable to a PCB (not shown). In contrast, the free distal ends 334a, 334b may be configured to bend or move in response to a force, including a force applied by terminals of a mating connector (e.g., a plug-type connector).
In some embodiments, the second insulative member 320a may be disposed around a segment 339b of the intermediate portion 336b of second terminal 330b. The location of the segment 339b in a direction Y perpendicular to the row direction X may overlap partly or entirely with the location in a direction parallel to the direction Y of the first segment 339a of the first terminal 330a. The segment 339b may be shorter in length than first segment 339a so that the first and second insulative members 320a and 320b may be coupled while the lossy member 340 is supported between the first and second insulative members 320a and 320b, as shown in the example of
In some embodiments, the projections 344 may be uniformly spaced at the same distance or non-uniformly spaced at various different distances along the body portion 342. For example, in the example of
In some embodiments, one or more through-holes 346 may pass through the body portion 342 from a first side 348a to a second side 348b opposite first side 348a along the direction Y perpendicular to the longitudinal row direction X. The through-holes 346 may be of a same length or may be of different lengths. In the embodiment shown in
In some embodiments, the one or more through-holes 346 may extend along the row direction such that one or both ends of the body portion 342 are split, as depicted in
In accordance with some embodiments described herein, the through-hole(s) 346 may be separated by one or more bridges 349 extending between the top and bottom sides of the body portion 342. It may be appreciated that any number of bridge(s) 349 and through-hole(s) 346 may be used in combination, not only the two bridges 349 and three through-holes 346 of the example of
In some embodiments, a height H of lossy member 340 may be greater than a distance A between the terminals 336a and the terminals 336b (as shown in
In some embodiments, a width W of the lossy member 340 may be less than the height H of lossy member 340. For example, the width W of lossy member 340 may be within a range of 0.5 mm and 1.5 mm, or may be within a range of 0.7 mm and 1.1 mm.
It should be understood that a lossy member according to the present technology described herein is not limited to the arrangements of
As mentioned above and in accordance with some embodiments described herein, the terminal assembly 300 may include the first insulative member 320a.
The first insulative member 320a may comprise one or more engagement features to secure the terminal assembly 300 to the insulative housing 100, in accordance with some embodiments. For example, engagement features (e.g., protrusions) 316a formed on a backstop 323 of the first insulative member 320a may engage with the engagement features 116a of the insulative housing 100 (see e.g.,
In some embodiments, the first insulative member 320a may be formed around the first terminals 330a (instances of reference numeral 324a represent sections of the first terminals 330a). The projections 344 of the lossy member 340 may contact the ground terminals of the first terminals 330a through terminal channel openings 322a, as shown in the examples of
The first insulative member 320a may further include interlocking members 325a and interlocking end members 326a to interlockingly couple the first insulative member 320a with the second insulative member 320b, in accordance with some embodiments described herein. Adjacent interlocking members 325a may be separated by interlocking recesses 327a. It may be appreciated that the interlocking recesses 327a may be of a uniform longitudinal width in the row direction, as shown in the examples of
In some embodiments, the interlocking members 325a, 325b and the interlocking recesses 327a, 327b may be interlockingly coupled by sliding the first and second insulative members 320a and 320b towards each other along the direction Y perpendicular to the row direction X. The interlocking members 325a of the first insulative member 320a may couple with corresponding interlocking recesses 327b of the second insulative member 320b. The interlocking recesses 327a of the first insulative member 320a may receive the interlocking members 325b of the second insulative member 320b. To prevent accidental decoupling along the direction Z perpendicular to both directions X and Y of the first and second insulative members 320a and 320b, arms 328a may be disposed on the interlocking members 325a, so that the first and second insulative members 320a and 320b form T-shaped members. The arms 328a may extend along the longitudinal row direction X and may engage with corresponding arms 328b of the interlocking members 325b of the second insulative member 320b. The arms 328a and corresponding arms 328b may prevent the first and second insulative members 320a and 320b from being pulled apart in the direction Z perpendicular to the direction Y.
In some embodiments, to ensure secure coupling, ribs 329a may be disposed such that one or more ribs project into the interlocking recesses 327a. The ribs 329a may be disposed on sidewalls of the interlocking members 325a and/or on upper surfaces of the interlocking recesses 327a. The ribs 329a may press against corresponding ones of the interlocking members 325b of the second insulative member 320b so that the first and second insulative members 320a and 320b do not easily slide apart once coupled. In some embodiments, the interlocking members 325b may be smaller than the corresponding recesses 327a. In such embodiments, the ribs 329a may hold the interlocking members 325b securely in the recesses 327a. Additionally or alternatively, the ribs 329a may deform or cut into the interlocking members 325b to further secure the interlocking members 325b in the recesses 327a. This function may assist in securing the first and second insulative members 320a and 320b together in the case that one or more components do not meet manufacturing tolerances.
In some embodiments, the backstop 323 may be provided to prevent the first and second insulative members 320a and 320b from being slid too far along the direction Y perpendicular to the row direction X when being coupled. By ensuring that the first and second insulative members 320a and 320b are positioned properly, the backstop 323 may further ensure that the lossy member 340 may fit in the recess 321a defined by the backstop 323, the interlocking members 325a, and end interlocking members 326a of the first insulative member 320a.
In accordance with some embodiments described herein, the terminal assembly 300 may include the second insulative member 320b as depicted in
In some embodiments, the second insulative member 320b may be formed around the second terminals 330b (instances of reference numeral 324b represent sections of the second terminals 330b). The projections 344 of the lossy member 340 may contact the ground terminals of the second terminals 330b through openings 322b, as shown in the examples of
The second insulative member 320b may include one or more of the interlocking members 325b configured to couple with the interlocking recesses 327a of the first insulative member 320a, in accordance with some embodiments described herein. The interlocking members 325b may be separated by the interlocking recesses 327b, and the interlocking recesses 327b may be configured to accept corresponding interlocking members 325a of the first insulative member 320a when the first and second insulative members 320a and 320b are interlockingly coupled or interlocked. As will be appreciated, when the first and second insulative members 320a and 320b are interlocked, they may not be pulled apart without significant and possibly damaging force, i.e., decoupling of the members 320a and 320b may be difficult once interlocked.
In some embodiments, the end interlocking members 326b may be configured to couple with corresponding ones of the interlocking member 325a of the first insulative member 320a such that only one longitudinal side of the end interlocking members 326b engages with the corresponding interlocking member 325a. It may be appreciated that any suitable number of the interlocking members 325b and the interlocking recesses 327b may be disposed between the end interlocking members 326b; the three interlocking members 325b and the four interlocking recesses 327b of
In some embodiments, the interlocking members 325b may include one or more arms 328b extending in the longitudinal row direction X. The arms 325b may be configured to prevent decoupling of first and second insulative members 320a and 320b in the direction Z perpendicular to the longitudinal row direction X by engaging with corresponding ones of the arms 328a of the interlocking members 325a. It may be appreciated that the arms 325b may be of any suitable length and/or configuration, not only as depicted in the examples of
In some embodiments, such as the examples of
In accordance with some embodiments described herein, the first and second insulative members 320a and 320b may couple to each other when assembling the terminal assembly 300.
As shown in
As described in connection with
As shown in
In some embodiments, the lossy member 340 may be disposed in the recess 321a prior to coupling of the first and second insulative members 320a and 320b. The lossy member 340 may have a width and/or a height that are greater than a width and/or a height of the recess 321a such that the lossy member 340 may be compressed in one or more directions when the first and second insulative members 320a and 320b are coupled. For example, the lossy member 340 may have a height between 0.8 mm and 2.5 mm when not compressed by the first and second insulative members 320a and 320b, but the lossy member 340 may have a height between 0.4 mm and 1.3 mm when compressed between the first and second insulative members 320a and 320b. Substantially compressing the lossy member 340 within the recess 321a may improve electrical contact between the lossy member 340 and one or more ground terminals of the first and second terminals 330a and 330b.
In accordance with some embodiments described herein, the first and second insulative members 320a and 320b may be formed around a plurality of first and second terminals 330a and 330b, respectively, as shown in bottom and top plan views of
In the example of
It should be understood that various alterations, modifications, and improvements may be made to the structures, configurations, and methods discussed above, and are intended to be within the spirit and scope of the invention disclosed herein.
For example, a thin lossy member, making reliable connections to ground terminals in a compact electrical connector was illustrated used in a right angle, board mount connector. Structures as described herein may be used in connectors of other styles. For example, a lossy member may be incorporated into a vertical board mount connector using some or all of the techniques described herein.
Further, although advantages of the present invention are indicated, it should be appreciated that not every embodiment of the invention will include every described advantage. Some embodiments may not implement any features described as advantageous herein. Accordingly, the foregoing description and attached drawings are by way of example only.
It should be understood that some aspects of the present technology may be embodied as one or more methods, and acts performed as part of a method of the present technology may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than shown and/or described, which may include performing some acts simultaneously, even though shown and/or described as sequential acts in various embodiments.
Various aspects of the present invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Further, terms denoting direction have been used, such as “left”, “right”, “top” or “bottom.” These terms are relative to the illustrated embodiments, as depicted in the drawings, for ease of understanding. It should be understood that the components as described herein may be used in any suitable orientation.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the description and the claims to modify an element does not by itself connote any priority, precedence, or order of one element over another, or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element or act having a certain name from another element or act having a same name (but for use of the ordinal term) to distinguish the elements or acts.
Definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
As used herein in the specification and in the claims, the phrase “equal” or “the same” in reference to two values (e.g., distances, widths, etc.) means that two values are the same within manufacturing tolerances. Thus, two values being equal, or the same, may mean that the two values are different from one another by ±5%.
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Use of terms such as “including,” “comprising,” “comprised of,” “having,” “containing,” and “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
The terms “approximately” and “about” if used herein may be construed to mean within ±20% of a target value in some embodiments, within ±10% of a target value in some embodiments, within ±5% of a target value in some embodiments, and within ±2% of a target value in some embodiments. The terms “approximately” and “about” may equal the target value.
The term “substantially” if used herein may be construed to mean within 95% of a target value in some embodiments, within 98% of a target value in some embodiments, within 99% of a target value in some embodiments, and within 99.5% of a target value in some embodiments. In some embodiments, the term “substantially” may equal 100% of the target value.
This application claims priority to and the benefit under 35 U.S.C. § 119(e) of U.S. Application Ser. No. 62/931,317, filed Nov. 6, 2019, entitled “HIGH-FREQUENCY ELECTRICAL CONNECTOR WITH INTERLOCKING SEGMENTS”, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2996710 | Pratt | Aug 1961 | A |
3002162 | Garstang | Sep 1961 | A |
3134950 | Cook | May 1964 | A |
3322885 | May et al. | May 1967 | A |
3530422 | Goodman | Sep 1970 | A |
3631381 | Pittman | Dec 1971 | A |
3786372 | Epis et al. | Jan 1974 | A |
3825874 | Peverill | Jul 1974 | A |
3863181 | Glance et al. | Jan 1975 | A |
3977757 | Yurtin | Aug 1976 | A |
4155613 | Brandeau | May 1979 | A |
4195272 | Boutros | Mar 1980 | A |
4276523 | Boutros et al. | Jun 1981 | A |
4286837 | Yasutake et al. | Sep 1981 | A |
4371742 | Manly | Feb 1983 | A |
4408255 | Adkins | Oct 1983 | A |
4447105 | Ruehl | May 1984 | A |
4471015 | Ebneth et al. | Sep 1984 | A |
4484159 | Whitley | Nov 1984 | A |
4490283 | Kleiner | Dec 1984 | A |
4518651 | Wolfe, Jr. | May 1985 | A |
4519664 | Tillotson | May 1985 | A |
4519665 | Althouse et al. | May 1985 | A |
4632476 | Schell | Dec 1986 | A |
4636752 | Saito | Jan 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4687267 | Header | Aug 1987 | A |
4728762 | Roth et al. | Mar 1988 | A |
4751479 | Parr | Jun 1988 | A |
4761147 | Gauthier | Aug 1988 | A |
4787548 | Abbagnaro et al. | Nov 1988 | A |
4806107 | Arnold et al. | Feb 1989 | A |
4846724 | Sasaki et al. | Jul 1989 | A |
4846727 | Glover et al. | Jul 1989 | A |
4871316 | Herrell et al. | Oct 1989 | A |
4878155 | Conley | Oct 1989 | A |
4948922 | Varadan et al. | Aug 1990 | A |
4970354 | Iwasa et al. | Nov 1990 | A |
4975084 | Fedder et al. | Dec 1990 | A |
4992060 | Meyer | Feb 1991 | A |
5000700 | Masubuchi et al. | Mar 1991 | A |
5066236 | Broeksteeg | Nov 1991 | A |
5141454 | Garrett et al. | Aug 1992 | A |
5150086 | Ito | Sep 1992 | A |
5166527 | Solymar | Nov 1992 | A |
5168252 | Naito | Dec 1992 | A |
5168432 | Murphy et al. | Dec 1992 | A |
5171161 | Kachlic | Dec 1992 | A |
5176538 | Hansell, III et al. | Jan 1993 | A |
5266055 | Naito et al. | Nov 1993 | A |
5280257 | Cravens et al. | Jan 1994 | A |
5287076 | Johnescu et al. | Feb 1994 | A |
5334050 | Andrews | Aug 1994 | A |
5340334 | Nguyen | Aug 1994 | A |
5346410 | Moore, Jr. | Sep 1994 | A |
5429520 | Morlion et al. | Jul 1995 | A |
5429521 | Morlion et al. | Jul 1995 | A |
5433617 | Morlion et al. | Jul 1995 | A |
5433618 | Morlion et al. | Jul 1995 | A |
5456619 | Belopolsky et al. | Oct 1995 | A |
5461392 | Mott et al. | Oct 1995 | A |
5474472 | Niwa et al. | Dec 1995 | A |
5484310 | McNamara et al. | Jan 1996 | A |
5496183 | Soes et al. | Mar 1996 | A |
5499935 | Powell | Mar 1996 | A |
5551893 | Johnson | Sep 1996 | A |
5562497 | Yagi et al. | Oct 1996 | A |
5597328 | Mouissie | Jan 1997 | A |
5651702 | Hanning et al. | Jul 1997 | A |
5669789 | Law | Sep 1997 | A |
5796323 | Uchikoba et al. | Aug 1998 | A |
5831491 | Buer et al. | Nov 1998 | A |
5885088 | Brennan et al. | Mar 1999 | A |
5924899 | Paagman | Jul 1999 | A |
5981869 | Kroger | Nov 1999 | A |
5982253 | Perrin et al. | Nov 1999 | A |
5993259 | Stokoe et al. | Nov 1999 | A |
6019616 | Yagi et al. | Feb 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6168469 | Lu | Jan 2001 | B1 |
6174202 | Mitra | Jan 2001 | B1 |
6174203 | Asao | Jan 2001 | B1 |
6174944 | Chiba et al. | Jan 2001 | B1 |
6217372 | Reed | Apr 2001 | B1 |
6293827 | Stokoe | Sep 2001 | B1 |
6296491 | Pickles | Oct 2001 | B1 |
6296496 | Trammel | Oct 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6315615 | Raistrick | Nov 2001 | B1 |
6322395 | Nishio et al. | Nov 2001 | B1 |
6328601 | Yip et al. | Dec 2001 | B1 |
6347962 | Kline | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6361363 | Hwang | Mar 2002 | B1 |
6364711 | Berg et al. | Apr 2002 | B1 |
6375510 | Asao | Apr 2002 | B2 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6394842 | Sakurai et al. | May 2002 | B1 |
6398588 | Bickford | Jun 2002 | B1 |
6409543 | Astbury, Jr. et al. | Jun 2002 | B1 |
6447170 | Takahashi et al. | Sep 2002 | B1 |
6482017 | Van Doorn | Nov 2002 | B1 |
6503103 | Cohen et al. | Jan 2003 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6517360 | Cohen | Feb 2003 | B1 |
6530790 | McNamara et al. | Mar 2003 | B1 |
6537087 | McNamara et al. | Mar 2003 | B2 |
6540559 | Kemmick et al. | Apr 2003 | B1 |
6551140 | Billman et al. | Apr 2003 | B2 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6565387 | Cohen | May 2003 | B2 |
6565390 | Wu | May 2003 | B2 |
6579116 | Brennan et al. | Jun 2003 | B2 |
6582244 | Fogg et al. | Jun 2003 | B2 |
6592381 | Cohen et al. | Jul 2003 | B2 |
6595801 | Leonard et al. | Jul 2003 | B1 |
6595802 | Watanabe et al. | Jul 2003 | B1 |
6602095 | Astbury, Jr. et al. | Aug 2003 | B2 |
6607402 | Cohen et al. | Aug 2003 | B2 |
6609922 | Torii | Aug 2003 | B2 |
6616864 | Jiang et al. | Sep 2003 | B1 |
6652318 | Winings et al. | Nov 2003 | B1 |
6652319 | Billman | Nov 2003 | B1 |
6655966 | Rothermel et al. | Dec 2003 | B2 |
6709294 | Cohen et al. | Mar 2004 | B1 |
6713672 | Stickney | Mar 2004 | B1 |
6726492 | Yu | Apr 2004 | B1 |
6743057 | Davis et al. | Jun 2004 | B2 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6786771 | Gailus | Sep 2004 | B2 |
6808420 | Whiteman, Jr. et al. | Oct 2004 | B2 |
6814619 | Stokoe et al. | Nov 2004 | B1 |
6830489 | Aoyama | Dec 2004 | B2 |
6872085 | Cohen et al. | Mar 2005 | B1 |
6875031 | Korsunsky et al. | Apr 2005 | B1 |
6932649 | Rothermel et al. | Aug 2005 | B1 |
6979202 | Benham et al. | Dec 2005 | B2 |
6979226 | Otsu et al. | Dec 2005 | B2 |
7044794 | Consoli et al. | May 2006 | B2 |
7057570 | Irion, II et al. | Jun 2006 | B2 |
7074086 | Cohen et al. | Jul 2006 | B2 |
7086872 | Myer et al. | Aug 2006 | B2 |
7094102 | Cohen et al. | Aug 2006 | B2 |
7104842 | Huang et al. | Sep 2006 | B1 |
7108556 | Cohen et al. | Sep 2006 | B2 |
7156672 | Fromm et al. | Jan 2007 | B2 |
7163421 | Cohen et al. | Jan 2007 | B1 |
7232344 | Gillespie et al. | Jun 2007 | B1 |
7285018 | Kenny et al. | Oct 2007 | B2 |
7316585 | Smith et al. | Jan 2008 | B2 |
7318740 | Henry et al. | Jan 2008 | B1 |
7320614 | Toda et al. | Jan 2008 | B2 |
7322845 | Regnier et al. | Jan 2008 | B2 |
7331822 | Chen | Feb 2008 | B2 |
7335063 | Cohen et al. | Feb 2008 | B2 |
7364464 | Iino et al. | Apr 2008 | B2 |
7371117 | Gailus | May 2008 | B2 |
7407413 | Minich | Aug 2008 | B2 |
7467977 | Yi et al. | Dec 2008 | B1 |
7473124 | Briant et al. | Jan 2009 | B1 |
7494383 | Cohen et al. | Feb 2009 | B2 |
7540781 | Kenny et al. | Jun 2009 | B2 |
7581990 | Kirk et al. | Sep 2009 | B2 |
7588464 | Kim | Sep 2009 | B2 |
7604502 | Pan | Oct 2009 | B2 |
7645165 | Wu et al. | Jan 2010 | B2 |
7690946 | Knaub et al. | Apr 2010 | B2 |
7699644 | Szczesny et al. | Apr 2010 | B2 |
7722401 | Kirk et al. | May 2010 | B2 |
7727027 | Chiang et al. | Jun 2010 | B2 |
7727028 | Zhang et al. | Jun 2010 | B1 |
7731537 | Amleshi et al. | Jun 2010 | B2 |
7753731 | Cohen et al. | Jul 2010 | B2 |
7771233 | Gailus | Aug 2010 | B2 |
7789676 | Morgan et al. | Sep 2010 | B2 |
7794240 | Cohen et al. | Sep 2010 | B2 |
7794278 | Cohen et al. | Sep 2010 | B2 |
7806729 | Nguyen et al. | Oct 2010 | B2 |
7824192 | Lin et al. | Nov 2010 | B2 |
7871296 | Fowler et al. | Jan 2011 | B2 |
7874873 | Do et al. | Jan 2011 | B2 |
7883369 | Sun et al. | Feb 2011 | B1 |
7887371 | Kenny et al. | Feb 2011 | B2 |
7887379 | Kirk | Feb 2011 | B2 |
7906730 | Atkinson et al. | Mar 2011 | B2 |
7914304 | Cartier et al. | Mar 2011 | B2 |
7946889 | Mizumura | May 2011 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
7993147 | Cole et al. | Aug 2011 | B2 |
8018733 | Jia | Sep 2011 | B2 |
8083553 | Manter et al. | Dec 2011 | B2 |
8123544 | Kobayashi | Feb 2012 | B2 |
8182289 | Stokoe et al. | May 2012 | B2 |
8215968 | Cartier et al. | Jul 2012 | B2 |
8216001 | Kirk | Jul 2012 | B2 |
8262411 | Kondo | Sep 2012 | B2 |
8272877 | Stokoe et al. | Sep 2012 | B2 |
8337247 | Zhu | Dec 2012 | B2 |
8348701 | Lan et al. | Jan 2013 | B1 |
8371875 | Gailus | Feb 2013 | B2 |
8382524 | Khilchenko et al. | Feb 2013 | B2 |
8440637 | Elmen | May 2013 | B2 |
8480432 | Wu | Jul 2013 | B2 |
8506319 | Ritter et al. | Aug 2013 | B2 |
8506331 | Wu | Aug 2013 | B2 |
8545253 | Amidon et al. | Oct 2013 | B2 |
8550861 | Cohen et al. | Oct 2013 | B2 |
8597051 | Yang et al. | Dec 2013 | B2 |
8657627 | McNamara et al. | Feb 2014 | B2 |
8715003 | Buck et al. | May 2014 | B2 |
8715005 | Pan | May 2014 | B2 |
8740637 | Wang et al. | Jun 2014 | B2 |
8764492 | Chiang | Jul 2014 | B2 |
8771016 | Atkinson et al. | Jul 2014 | B2 |
8864506 | Little et al. | Oct 2014 | B2 |
8864521 | Atkinson et al. | Oct 2014 | B2 |
8905777 | Zhu et al. | Dec 2014 | B2 |
8926377 | Kirk et al. | Jan 2015 | B2 |
8944831 | Stoner et al. | Feb 2015 | B2 |
8968034 | Hsu | Mar 2015 | B2 |
8998642 | Manter et al. | Apr 2015 | B2 |
9004942 | Paniagua | Apr 2015 | B2 |
9011177 | Lloyd et al. | Apr 2015 | B2 |
9022806 | Cartier, Jr. et al. | May 2015 | B2 |
9028281 | Kirk et al. | May 2015 | B2 |
9065230 | Milbrand, Jr. | Jun 2015 | B2 |
9124009 | Atkinson et al. | Sep 2015 | B2 |
9219335 | Atkinson et al. | Dec 2015 | B2 |
9225085 | Cartier, Jr. et al. | Dec 2015 | B2 |
9257794 | Wanha et al. | Feb 2016 | B2 |
9263835 | Guo | Feb 2016 | B2 |
9281590 | Liu et al. | Mar 2016 | B1 |
9287668 | Chen et al. | Mar 2016 | B2 |
9300074 | Gailus | Mar 2016 | B2 |
9337585 | Yang | May 2016 | B1 |
9350095 | Arichika et al. | May 2016 | B2 |
9450344 | Cartier, Jr. et al. | Sep 2016 | B2 |
9484674 | Cartier, Jr. et al. | Nov 2016 | B2 |
9509101 | Cartier, Jr. et al. | Nov 2016 | B2 |
9520686 | Hu et al. | Dec 2016 | B2 |
9520689 | Cartier, Jr. et al. | Dec 2016 | B2 |
9531130 | Phillips | Dec 2016 | B1 |
9537250 | Kao et al. | Jan 2017 | B2 |
9640915 | Phillips et al. | May 2017 | B2 |
9692183 | Phillips et al. | Jun 2017 | B2 |
9742132 | Hsueh | Aug 2017 | B1 |
9843135 | Guetig et al. | Dec 2017 | B2 |
9935385 | Phillips et al. | Apr 2018 | B2 |
9972945 | Huang et al. | May 2018 | B1 |
9997871 | Zhong et al. | Jun 2018 | B2 |
10050369 | Yang | Aug 2018 | B1 |
10122129 | Milbrand, Jr. et al. | Nov 2018 | B2 |
10135197 | Little et al. | Nov 2018 | B2 |
10211577 | Milbrand, Jr. et al. | Feb 2019 | B2 |
10243304 | Kirk et al. | Mar 2019 | B2 |
10270191 | Li et al. | Apr 2019 | B1 |
10276995 | Little | Apr 2019 | B2 |
10283910 | Chen et al. | May 2019 | B1 |
10320102 | Phillips et al. | Jun 2019 | B2 |
10348040 | Cartier, Jr. et al. | Jul 2019 | B2 |
10381767 | Milbrand, Jr. et al. | Aug 2019 | B1 |
10431936 | Horning et al. | Oct 2019 | B2 |
10439311 | Phillips et al. | Oct 2019 | B2 |
10511128 | Kirk et al. | Dec 2019 | B2 |
10541482 | Sasame et al. | Jan 2020 | B2 |
10601181 | Lu et al. | Mar 2020 | B2 |
10777921 | Lu et al. | Sep 2020 | B2 |
10797446 | Liu et al. | Oct 2020 | B2 |
10826214 | Phillips et al. | Nov 2020 | B2 |
10833437 | Huang et al. | Nov 2020 | B2 |
10840622 | Sasame et al. | Nov 2020 | B2 |
10950961 | Lai | Mar 2021 | B2 |
10965064 | Hsu et al. | Mar 2021 | B2 |
11146025 | Lu et al. | Oct 2021 | B2 |
11189971 | Lu | Nov 2021 | B2 |
11264755 | Te | Mar 2022 | B2 |
20010012730 | Ramey et al. | Aug 2001 | A1 |
20010042632 | Manov et al. | Nov 2001 | A1 |
20010046810 | Cohen et al. | Nov 2001 | A1 |
20020042223 | Belopolsky et al. | Apr 2002 | A1 |
20020061671 | Torii | May 2002 | A1 |
20020089464 | Joshi | Jul 2002 | A1 |
20020098738 | Astbury et al. | Jul 2002 | A1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
20020111069 | Astbury et al. | Aug 2002 | A1 |
20020123266 | Ramey et al. | Sep 2002 | A1 |
20020132518 | Kobayashi | Sep 2002 | A1 |
20020146926 | Fogg et al. | Oct 2002 | A1 |
20030119360 | Jiang et al. | Jun 2003 | A1 |
20030220018 | Winings et al. | Nov 2003 | A1 |
20040005815 | Mizumura et al. | Jan 2004 | A1 |
20040020674 | McFadden et al. | Feb 2004 | A1 |
20040058572 | Fromm et al. | Mar 2004 | A1 |
20040115968 | Cohen | Jun 2004 | A1 |
20040121652 | Gailus | Jun 2004 | A1 |
20040171305 | McGowan et al. | Sep 2004 | A1 |
20040196112 | Welbon et al. | Oct 2004 | A1 |
20040235352 | Takemasa | Nov 2004 | A1 |
20040259419 | Payne et al. | Dec 2004 | A1 |
20050048818 | Pan | Mar 2005 | A1 |
20050048838 | Korsunsky et al. | Mar 2005 | A1 |
20050048842 | Benham et al. | Mar 2005 | A1 |
20050070160 | Cohen et al. | Mar 2005 | A1 |
20050133245 | Katsuyama et al. | Jun 2005 | A1 |
20050176835 | Kobayashi et al. | Aug 2005 | A1 |
20050233610 | Tutt et al. | Oct 2005 | A1 |
20050283974 | Richard et al. | Dec 2005 | A1 |
20050287869 | Kenny et al. | Dec 2005 | A1 |
20060019525 | Lloyd et al. | Jan 2006 | A1 |
20060068640 | Gailus | Mar 2006 | A1 |
20060166560 | Shuey et al. | Jul 2006 | A1 |
20060255876 | Kushta et al. | Nov 2006 | A1 |
20060276082 | Hung et al. | Dec 2006 | A1 |
20060292932 | Benham et al. | Dec 2006 | A1 |
20070004282 | Cohen et al. | Jan 2007 | A1 |
20070004828 | Khabbaz | Jan 2007 | A1 |
20070021000 | Laurx | Jan 2007 | A1 |
20070021001 | Laurx et al. | Jan 2007 | A1 |
20070021002 | Laurx et al. | Jan 2007 | A1 |
20070021003 | Laurx et al. | Jan 2007 | A1 |
20070021004 | Laurx et al. | Jan 2007 | A1 |
20070037419 | Sparrowhawk | Feb 2007 | A1 |
20070042639 | Manter et al. | Feb 2007 | A1 |
20070054554 | Do et al. | Mar 2007 | A1 |
20070059961 | Cartier et al. | Mar 2007 | A1 |
20070155241 | Lappohn | Jul 2007 | A1 |
20070197063 | Ngo et al. | Aug 2007 | A1 |
20070218765 | Cohen et al. | Sep 2007 | A1 |
20070243764 | Liu et al. | Oct 2007 | A1 |
20070293084 | Ngo | Dec 2007 | A1 |
20080020640 | Zhang et al. | Jan 2008 | A1 |
20080194146 | Gailus | Aug 2008 | A1 |
20080246555 | Kirk et al. | Oct 2008 | A1 |
20080248658 | Cohen et al. | Oct 2008 | A1 |
20080248659 | Cohen et al. | Oct 2008 | A1 |
20080248660 | Kirk et al. | Oct 2008 | A1 |
20090011641 | Cohen et al. | Jan 2009 | A1 |
20090011645 | Laurx et al. | Jan 2009 | A1 |
20090035955 | McNamara | Feb 2009 | A1 |
20090061661 | Shuey et al. | Mar 2009 | A1 |
20090117386 | Vacanti et al. | May 2009 | A1 |
20090203259 | Nguyen et al. | Aug 2009 | A1 |
20090239395 | Cohen et al. | Sep 2009 | A1 |
20090258516 | Hiew et al. | Oct 2009 | A1 |
20090291593 | Atkinson et al. | Nov 2009 | A1 |
20090305530 | Ito et al. | Dec 2009 | A1 |
20090305533 | Feldman et al. | Dec 2009 | A1 |
20090305553 | Thomas et al. | Dec 2009 | A1 |
20100048058 | Morgan et al. | Feb 2010 | A1 |
20100068934 | Li et al. | Mar 2010 | A1 |
20100075538 | Ohshida | Mar 2010 | A1 |
20100081302 | Atkinson et al. | Apr 2010 | A1 |
20100112846 | Kotaka | May 2010 | A1 |
20100124851 | Xiong et al. | May 2010 | A1 |
20100144167 | Fedder et al. | Jun 2010 | A1 |
20100203772 | Mao et al. | Aug 2010 | A1 |
20100291806 | Minich et al. | Nov 2010 | A1 |
20100294530 | Atkinson et al. | Nov 2010 | A1 |
20110003509 | Gailus | Jan 2011 | A1 |
20110067237 | Cohen et al. | Mar 2011 | A1 |
20110104948 | Girard, Jr. et al. | May 2011 | A1 |
20110130038 | Cohen et al. | Jun 2011 | A1 |
20110143605 | Pepe | Jun 2011 | A1 |
20110212649 | Stokoe et al. | Sep 2011 | A1 |
20110212650 | Amleshi et al. | Sep 2011 | A1 |
20110230095 | Atkinson et al. | Sep 2011 | A1 |
20110230096 | Atkinson et al. | Sep 2011 | A1 |
20110256739 | Toshiyuki et al. | Oct 2011 | A1 |
20110287663 | Gailus et al. | Nov 2011 | A1 |
20120094536 | Khilchenko et al. | Apr 2012 | A1 |
20120156929 | Manter et al. | Jun 2012 | A1 |
20120184145 | Zeng | Jul 2012 | A1 |
20120184154 | Frank et al. | Jul 2012 | A1 |
20120202363 | McNamara et al. | Aug 2012 | A1 |
20120202386 | McNamara et al. | Aug 2012 | A1 |
20120214344 | Cohen et al. | Aug 2012 | A1 |
20130012038 | Kirk et al. | Jan 2013 | A1 |
20130017733 | Kirk et al. | Jan 2013 | A1 |
20130065454 | Milbrand, Jr. | Mar 2013 | A1 |
20130078870 | Milbrand, Jr. | Mar 2013 | A1 |
20130078871 | Milbrand, Jr. | Mar 2013 | A1 |
20130090001 | Kagotani | Apr 2013 | A1 |
20130109232 | Paniaqua | May 2013 | A1 |
20130143442 | Cohen et al. | Jun 2013 | A1 |
20130196553 | Gailus | Aug 2013 | A1 |
20130217263 | Pan | Aug 2013 | A1 |
20130225006 | Khilchenko et al. | Aug 2013 | A1 |
20130237100 | Affeltranger | Sep 2013 | A1 |
20130316590 | Hon | Nov 2013 | A1 |
20140004724 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004726 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004746 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140024263 | Dong et al. | Jan 2014 | A1 |
20140057498 | Cohen | Feb 2014 | A1 |
20140113487 | Chen et al. | Apr 2014 | A1 |
20140273557 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140273627 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140370729 | Wang | Dec 2014 | A1 |
20140377992 | Chang et al. | Dec 2014 | A1 |
20150056856 | Atkinson et al. | Feb 2015 | A1 |
20150072546 | Li | Mar 2015 | A1 |
20150099408 | Myer et al. | Apr 2015 | A1 |
20150111401 | Guo | Apr 2015 | A1 |
20150111427 | Foxconn | Apr 2015 | A1 |
20150126068 | Fang | May 2015 | A1 |
20150140866 | Tsai et al. | May 2015 | A1 |
20150214673 | Gao et al. | Jul 2015 | A1 |
20150236451 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150236452 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150255904 | Ito | Sep 2015 | A1 |
20150255926 | Paniagua | Sep 2015 | A1 |
20150340798 | Kao et al. | Nov 2015 | A1 |
20160149343 | Atkinson et al. | May 2016 | A1 |
20160268744 | Little et al. | Sep 2016 | A1 |
20170077654 | Yao et al. | Mar 2017 | A1 |
20170352970 | Liang et al. | Dec 2017 | A1 |
20180062323 | Kirk et al. | Mar 2018 | A1 |
20180076555 | Scholeno et al. | Mar 2018 | A1 |
20180145438 | Cohen | May 2018 | A1 |
20180198220 | Sasame et al. | Jul 2018 | A1 |
20180205177 | Zhou et al. | Jul 2018 | A1 |
20180212376 | Wang et al. | Jul 2018 | A1 |
20180212385 | Little | Jul 2018 | A1 |
20180219331 | Cartier, Jr. et al. | Aug 2018 | A1 |
20180241156 | Huang et al. | Aug 2018 | A1 |
20180269607 | Wu et al. | Sep 2018 | A1 |
20180331444 | Ono | Nov 2018 | A1 |
20190006778 | Fan et al. | Jan 2019 | A1 |
20190044284 | Dunham | Feb 2019 | A1 |
20190052019 | Huang et al. | Feb 2019 | A1 |
20190067854 | Ju et al. | Feb 2019 | A1 |
20190173209 | Lu et al. | Jun 2019 | A1 |
20190173232 | Lu et al. | Jun 2019 | A1 |
20190214755 | Manickam | Jul 2019 | A1 |
20190334292 | Cartier, Jr. et al. | Oct 2019 | A1 |
20200021052 | Milbrand, Jr. et al. | Jan 2020 | A1 |
20200076135 | Tang et al. | Mar 2020 | A1 |
20200153134 | Sasame et al. | May 2020 | A1 |
20200161811 | Lu | May 2020 | A1 |
20200203865 | Wu et al. | Jun 2020 | A1 |
20200203867 | Lu | Jun 2020 | A1 |
20200203886 | Wu et al. | Jun 2020 | A1 |
20200235529 | Kirk et al. | Jul 2020 | A1 |
20200259294 | Lu | Aug 2020 | A1 |
20200266584 | Lu | Aug 2020 | A1 |
20200328541 | Lai | Oct 2020 | A1 |
20200335914 | Hsu et al. | Oct 2020 | A1 |
20200358226 | Lu et al. | Nov 2020 | A1 |
20200395698 | Hou et al. | Dec 2020 | A1 |
20200403350 | Hsu | Dec 2020 | A1 |
20210036452 | Phillips et al. | Feb 2021 | A1 |
20210050683 | Sasame et al. | Feb 2021 | A1 |
20210135403 | Yang et al. | May 2021 | A1 |
20210135404 | Jiang | May 2021 | A1 |
20210203104 | Chen | Jul 2021 | A1 |
20210218195 | Hsu et al. | Jul 2021 | A1 |
20210313726 | Huang | Oct 2021 | A1 |
20210399449 | Guo et al. | Dec 2021 | A1 |
20220059954 | Yue | Feb 2022 | A1 |
20220069496 | Yi et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
1175101 | Mar 1998 | CN |
1192068 | Sep 1998 | CN |
1275825 | Dec 2000 | CN |
2519434 | Oct 2002 | CN |
1179448 | Dec 2004 | CN |
1650479 | Aug 2005 | CN |
1799290 | Jul 2006 | CN |
2896615 | May 2007 | CN |
1996678 | Jul 2007 | CN |
2930006 | Aug 2007 | CN |
101019277 | Aug 2007 | CN |
101176389 | May 2008 | CN |
101208837 | Jun 2008 | CN |
101312275 | Nov 2008 | CN |
201323275 | Oct 2009 | CN |
101600293 | Dec 2009 | CN |
201374434 | Dec 2009 | CN |
101752700 | Jun 2010 | CN |
101790818 | Jul 2010 | CN |
101120490 | Nov 2010 | CN |
101926055 | Dec 2010 | CN |
201846527 | May 2011 | CN |
102106041 | Jun 2011 | CN |
201868621 | Jun 2011 | CN |
102195173 | Sep 2011 | CN |
102224640 | Oct 2011 | CN |
102232259 | Nov 2011 | CN |
102239605 | Nov 2011 | CN |
102292881 | Dec 2011 | CN |
101600293 | May 2012 | CN |
102456990 | May 2012 | CN |
102487166 | Jun 2012 | CN |
102593661 | Jul 2012 | CN |
102598430 | Jul 2012 | CN |
202395248 | Aug 2012 | CN |
102694318 | Sep 2012 | CN |
102738621 | Oct 2012 | CN |
102859805 | Jan 2013 | CN |
202695788 | Jan 2013 | CN |
202695861 | Jan 2013 | CN |
203445304 | Feb 2014 | CN |
103840285 | Jun 2014 | CN |
203690614 | Jul 2014 | CN |
204030057 | Dec 2014 | CN |
204167554 | Feb 2015 | CN |
104409906 | Mar 2015 | CN |
104577577 | Apr 2015 | CN |
104659573 | May 2015 | CN |
204349140 | May 2015 | CN |
204577746 | Aug 2015 | CN |
204696287 | Oct 2015 | CN |
105633660 | Jun 2016 | CN |
105703103 | Jun 2016 | CN |
106099546 | Nov 2016 | CN |
107069281 | Aug 2017 | CN |
304240766 | Aug 2017 | CN |
304245430 | Aug 2017 | CN |
206712072 | Dec 2017 | CN |
206712089 | Dec 2017 | CN |
107706632 | Feb 2018 | CN |
207677189 | Jul 2018 | CN |
208078300 | Nov 2018 | CN |
208209042 | Dec 2018 | CN |
208797273 | Apr 2019 | CN |
210326355 | Apr 2020 | CN |
112072400 | Dec 2020 | CN |
107706675 | Apr 2021 | CN |
212874843 | Apr 2021 | CN |
113517619 | Oct 2021 | CN |
60216728 | Nov 2007 | DE |
0 560 551 | Sep 1993 | EP |
0820124 | Jan 1998 | EP |
1 018 784 | Jul 2000 | EP |
1 779 472 | May 2007 | EP |
2 169 770 | Mar 2010 | EP |
2 405 537 | Jan 2012 | EP |
1049435 | Nov 1966 | GB |
1272347 | Apr 1972 | GB |
H3-156761 | Jul 1991 | JP |
H07-302649 | Nov 1995 | JP |
2001-510627 | Jul 2001 | JP |
2002-151190 | May 2002 | JP |
2006-344524 | Dec 2006 | JP |
2010-129173 | Jun 2010 | JP |
9907324 | Aug 2000 | MX |
200835073 | Aug 2008 | TW |
M357771 | May 2009 | TW |
M474278 | Mar 2014 | TW |
I535129 | May 2016 | TW |
M534922 | Jan 2017 | TW |
I596840 | Aug 2017 | TW |
M558481 | Apr 2018 | TW |
M558482 | Apr 2018 | TW |
M558483 | Apr 2018 | TW |
M559006 | Apr 2018 | TW |
M559007 | Apr 2018 | TW |
M560138 | May 2018 | TW |
M562507 | Jun 2018 | TW |
M565894 | Aug 2018 | TW |
M565895 | Aug 2018 | TW |
M565899 | Aug 2018 | TW |
M565900 | Aug 2018 | TW |
M565901 | Aug 2018 | TW |
M605564 | Dec 2020 | TW |
WO 8805218 | Jul 1988 | WO |
WO 9835409 | Aug 1998 | WO |
WO 2004059794 | Jul 2004 | WO |
WO 2004059801 | Jul 2004 | WO |
WO 2006039277 | Apr 2006 | WO |
WO 2007005597 | Jan 2007 | WO |
WO 2007005599 | Jan 2007 | WO |
WO 2008124052 | Oct 2008 | WO |
WO 2008124054 | Oct 2008 | WO |
WO 2008124057 | Oct 2008 | WO |
WO 2008124101 | Oct 2008 | WO |
WO 2010030622 | Mar 2010 | WO |
WO 2010039188 | Apr 2010 | WO |
WO 2011100740 | Aug 2011 | WO |
WO 2017007429 | Jan 2017 | WO |
Entry |
---|
Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020. |
Chinese Office Action dated Jan. 18, 2021 in connection with Chinese Application No. 202010031395.7. |
Chinese Office Action for Application No. 201680051491.X dated Apr. 30, 2019. |
Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019. |
Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020. |
Chinese Office Action for Chinese Application No. 201780097919.9, dated Mar. 10, 2021. |
Extended European Search Report dated May 19, 2021 in connection with European Application No. 17930428.2. |
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012. |
International Preliminary Report on Patentability Chapter II for International Application No. PCT/CN2017/108344 dated Mar. 6, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013. |
International Preliminary Report on Patentability for International Application No. PCT/SG2016/050317 dated Jan. 18, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017. |
International Search Report and Written Opinion for International Application No. PCT/CN2017/108344 dated Aug. 1, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006. |
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011. |
International Search Report and Written Opinion for International Application No. PCT/SG2016/050317 dated Oct. 18, 2016. |
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007. |
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013. |
[No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 2008. 1-40 pages. |
[No Author Listed], Military Fibre Channel High Speed Cable Assembly. www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.--fibre . . . Last archive date Apr. 6, 2008. |
[No Author Listed], SFF-TA-1016 Specification for Internal Unshielded High Speed Connector System. Rev 0.0.1. SNIA SFF TWG Technology Affiliate. Nov. 15, 2019. 40 pages. |
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7. |
Hsu et al., SMT Receptacle Connector With Side Latching, U.S. Appl. No. 17/216,463, filed Mar. 29, 2021. |
Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91. |
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56. |
U.S. Appl. No. 16/998,845, filed Aug. 20, 2020, Yue. |
U.S. Appl. No. 17/283,511, filed Apr. 7, 2021, Guo et al. |
U.S. Appl. No. 17/402,255, filed Aug. 13, 2021, Yi et al. |
CN 201780097919.9, Dec. 3, 2021, Chinese Office Action. |
PCT/CN2018/118798, Jul. 18, 2019, International Search Report and Written Opinion. |
PCT/CN2021/114671, Nov. 29, 2021, International Search Report and Written Opinion. |
U.S. Appl. No. 16/556,728, filed Aug. 30, 2019, Lu. |
U.S. Appl. No. 16/556,778, filed Aug. 30, 2019, Lu. |
U.S. Appl. No. 16/684,755, filed Nov. 15, 2019, Lu. |
U.S. Appl. No. 16/721,594, filed Dec. 19, 2019, Lu. |
U.S. Appl. No. 16/760,400, filed Apr. 29, 2020, Hou et al. |
U.S. Appl. No. 16/827,328, filed Mar. 23, 2020, Lu et al. |
U.S. Appl. No. 16/905,593, filed Jun. 18, 2020, Hsu. |
U.S. Appl. No. 17/085,342, filed Oct. 30, 2020, Sasame et al. |
U.S. Appl. No. 17/089,934, filed Nov. 5, 2020, Jiang. |
U.S. Appl. No. 17/216,463, filed Mar. 29, 2021, Hsu et al. |
CN 201580014851.4, Sep. 4, 2019, Chinese Office Action. |
CN 201580014851.4, Jun. 1, 2020, Chinese Communication. |
CN 201680051491.X, Apr. 30, 2019, Chinese Office Action. |
CN 201780064531.9, Jan. 2, 2020, Chinese Office Action. |
CN 201780097919.9, Mar. 10, 2021, Chinese Office Action. |
CN 202010031395.7, Jan. 18, 2021, Chinese Office Action. |
EP 11166820.8, Jan. 24, 2012, Extended European Search Report. |
EP 17930428.2, May 19, 2021, Extended European Search Report. |
PCT/CN2017/108344, Aug. 1, 2018, International Search Report and Written Opinion. |
PCT/CN2017/108344, Mar. 6, 2020, International Preliminary Report on Patentability Chapter II. |
PCT/SG2016/050317, Oct. 18, 2016, International Search Report and Written Opinion. |
PCT/SG2016/050317, Jan. 18, 2018, International Preliminary Report on Patentability. |
PCT/US2005/034605, Jan. 26, 2006, International Search Report and Written Opinion. |
PCT/US2006/025562, Oct. 31, 2007, International Search Report with Written Opinion. |
PCT/US2010/056482, May 24, 2012, International Preliminary Report on Patentability. |
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion. |
PCT/US2011/026139, Sep. 7, 2012, International Preliminary Report on Patentability. |
PCT/US2011/026139, Nov. 22, 2011, International Search Report and Written Opinion. |
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion. |
PCT/US2012/023689, Aug. 15, 2013, International Preliminary Report on Patentability. |
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion. |
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion. |
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion. |
PCT/US2017/047905, Dec. 4, 2017, International Search Report and Written Opinion. |
Chinese Office Action for Chinese Application No. 201780097919.9, dated Dec. 3, 2021. |
International Search Report and Written Opinion dated Nov. 29, 2021 for International Application No. PCT/CN2021/114671. |
International Search Report and Written Opinion dated Jul. 18, 2019 for International Application No. PCT/CN2018/118798. |
[No Author Listed], Mini Cool Edge IO—The Ideal Solution to Transmit Next Generation High-Speed Signal to Designated Area in Your System. Jul. 25, 2018. 2 pages. URL:https://www.amphenol-icc.com/connect/mini-cool-edge-io-the-ideal-solution-to-transmit-next-generation-high-speedsignal.html [retrieved on Apr. 11, 2022]. |
[No Author Listed], Mini Cool Edge IO Connector. Commercial IO. Amphenol ICC. 5 pages. URL:https://cdn.amphenol-icc.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_mini_cool_edge_io.pdf [retrieved on Apr. 11, 2022]. |
[No Author Listed], MCIO 124pos 85ohm. Amphenol Assembletech. 1 page. URL:http://www.amphenol-ast.com/v3/en/overview.aspx?classId=234 [retrieved on Apr. 11, 2022]. |
Number | Date | Country | |
---|---|---|---|
20210135389 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62931317 | Nov 2019 | US |