High frequency electroporation for cancer therapy

Information

  • Patent Grant
  • 10292755
  • Patent Number
    10,292,755
  • Date Filed
    Monday, June 20, 2016
    8 years ago
  • Date Issued
    Tuesday, May 21, 2019
    5 years ago
Abstract
The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. Methods, devices, and systems for in vivo treatment of cell proliferative disorders are provided. In embodiments, the methods comprise the delivery of high-frequency bursts of bipolar pulses to achieve the desired modality of cell death. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale. In embodiments, the methods rely on conventional electroporation with adjuvant drugs or irreversible electroporation to cause cell death in treated tumors. The invention can be used to treat solid tumors, such as brain tumors.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to the field of biomedical engineering and medical treatment of diseases and disorders. More specifically, embodiments of the invention relate to a device and method for destroying aberrant cells, including tumor tissues, using high-frequency, bipolar electrical pulses having a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale.


Description of Related Art


Electroporation based therapies typically involve delivering multiple, unipolar pulses with a short duration (˜100 μs) through electrodes inserted directly into, or adjacent to, the target tissue. See Nuccitelli, R., X. Chen, A. G. Pakhomov, W. H. Baldwin, S. Sheikh, J. L. Pomicter, W. Ren, C. Osgood, R. J. Swanson, J. F. Kolb, S. J. Beebe, and K. H. Schoenbach, A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence. Int J Cancer, 2009. 125(2): p. 438-45; Davalos, R. V., L. M. Mir, and B. Rubinsky, Tissue ablation with irreversible electroporation. Ann Biomed Eng, 2005. 33(2): p. 223-31 (“Davalos 2005”); Payselj, N., V. Preat, and D. Miklavcic, A numerical model of skin electroporation as a method to enhance gene transfection in skin. 11th Mediterranean Conference on Medical and Biological Engineering and Computing 2007, Vols 1 and 2, 2007. 16(1-2): p. 597-601 (“Payselj 2007”); and Payselj, N., Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavcic, The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. Ieee Transactions on Biomedical Engineering, 2005. 52(8): p. 1373-1381.


The extent of electroporation is attributed to the induced buildup of charge across the plasma membrane, or transmembrane potential (TMP). See Abidor, I. G., V. B. Arakelyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F. Pastushenko, and M. R. Tarasevich, Electric Breakdown of Bilayer Lipid-Membranes 0.1. Main Experimental Facts and Their Qualitative Discussion . Bioelectrochemistry and Bioenergetics, 1979. 6(1): p. 37-52; Benz, R., F. Beckers, and U. Zimmermann, Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol, 1979. 48(2): p. 181-204; Neumann, E. and K. Rosenheck, Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol, 1972. 10(3): p. 279-90; Teissie, J. and T. Y. Tsong, Electric-Field Induced Transient Pores in Phospholipid-Bilayer Vesicles . Biochemistry, 1981. 20(6): p. 1548-1554; Zimmermann, U., G. Pilwat, and F. Riemann, Dielectric breakdown of cell membranes . Biophys J, 1974. 14(11): p. 881-99; and Kinosita, K. and T. Y. Tsong, Formation and Resealing of Pores of Controlled Sizes in Human Erythrocyte-Membrane . Nature, 1977. 268(5619): p. 438-441.


Once the TMP reaches a critical voltage, it is thought that permeabilizing defects, or pores, form in the plasma membrane in attempt to limit further TMP rise. Pore formation can either be reversible to allow for the introduction of foreign particles into viable cells, or irreversible to promote cell death through a loss of homeostasis. Known devices and methods of performing electroporation clinically involve several drawbacks, including painful muscle contractions, unpredictable treatment outcomes, and a high potential for thermal damage in low passive conductivity tissues.


IRE performed with unipolar pulses causes intense muscle contractions. Therefore, clinical applications of IRE require the administration of general anesthesia and neuroparalytic agents in order to eliminate the discomfort caused by muscle contractions seen during each pulse. See Talele, S. and P. Gaynor, Non-linear time domain model of electropermeabilization: Response of a single cell to an arbitrary applied electric field. Journal of Electrostatics, 2007. 65(12): p. 775-784. Receiving paralytic agents is undesirable for patients, and may deter them from seeking an electroporation based therapy. Further, in some cases, even with an adequate neuromuscular blockade, muscle contractions are still visible (see Payselj 2007), and questions remain as to what constitutes an appropriate dosage. Muscle contractions may affect the location of implanted needle electrodes, which can invalidate treatment planning algorithms Additionally, in treatments near vital structures, displacement of the implanted electrodes may cause unavoidable collateral damage.


The time course of the pulsed electric field and dielectric properties of the tissue control the TMP development and the extent to which the transient defects form and reseal within the membrane. Knowledge of these two components can be used to predict treatment outcomes. However, predictions are complicated in heterogeneous tissues, or organs with multiple types of parenchymal tissue. There is often an intricate and unknown geometrical arrangement between tissues of low and high electrical conductivity, and the conductivity can change in real-time due to the phenomenon of electroporation, the extent of which is highly unpredictable without prior knowledge.


Low conductivity tissues, such as epithelial layers, often contain a dense packing of cells with reduced extracellular current pathways. As such, the resistance of the extracellular space is increased. Additionally, when pulses much longer than the charging time of the plasma membrane (˜1 μs) are applied (see T. R., A. T. Esser, Z. Vasilkoski, K. C. Smith, and J. C. Weaver, Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun, 2006. 341(4): p. 1266-76, “Gowrishankar 2006”), the current is confined to the extracellular space prior to the onset of electroporation, as shown in FIGS. 1A-B. As shown, when the pulse duration (td) is much less than the plasma membrane time constant (τpm), current flows through both intracellular and extracellular spaces (FIG. 1A). In the case that td is much greater than τpm, current flow is restricted to the narrower extracellular spaces (FIG. 1B). Consequently, there is a large voltage drop across tissues with low conductivity, which increases the potential for deleterious Joule heating effects, such as thermal damage.


SUMMARY OF THE INVENTION

The present invention provides advancements over conventional tissue electroporation by utilizing high-frequency, bipolar pulses. Pulsing protocols according to embodiments of the invention involve bursts of bipolar pulses with a burst width on the order of microseconds and duration of single polarity on the microsecond to nanosecond scale, as shown in FIG. 2. The total burst width of the high-frequency pulses (˜100-1000 ns duration of single polarity) is on the order of hundreds of microseconds, the time delay in between bursts is on the order of seconds, and the total number of bursts can be adjusted.


It is possible for the electric field to penetrate tissue heterogeneities when high-frequency electric fields are employed, because capacitive coupling is enhanced allowing current to flow through both extracellular and intracellular spaces. See Gowrishankar, T. R. and J. C. Weaver, An approach to electrical modeling of single and multiple cells. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(6): p. 3203-3208; and Ivorra, A., ed. Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts . Irreversible Electroporation, ed. B. Rubinsky. 2010, Springer Berlin Heidelberg. 23-61. In this case, all cells present in the organ, regardless of their packing and morphology, experience a macroscopically homogeneous electric field distribution. See Esser, A. T., K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields. Technology in Cancer Research & Treatment, 2009. 8(4): p. 289-306. This results in more predictable and uniform treatment outcomes without the electric energy being preferentially deposited into regions of tissue with a lower passive conductivity. As a result, Joule heating is also more uniformly distributed throughout the tissue, which mitigates the potential for thermal damage in regions with a low passive conductivity.


Enhanced capacitive coupling also limits the change in tissue electrical conductivity due to electroporation. Therefore, prior knowledge of how the conductivity of a tissue is modulated in response to electroporation is not required to accurately predict the electric field distribution. As a result, simplified algorithms can be implemented for treatment planning.


High-frequency, bipolar waveforms are also included in embodiments of the invention for mitigating or completely eliminating muscle contractions during electroporation based therapies. It is well known in the field of functional electrical stimulation that the threshold for nerve stimulation increases as the center frequency of bipolar waveforms increases. Further, muscle twitch forces are reduced as frequency increases. The present invention demonstrates that a range of frequencies exist where non-thermal tissue ablation can be achieved without causing nerve excitation or muscle contraction. In the context of this specification, it is noted that the term ablation is used to indicate destruction of cells, but not necessarily destruction of the supportive stroma.


Clinically, this translates to performing IRE without the requirement of paralytic agents (or a reduction in the amount of paralytic agents administered) in all procedures, and without the further requirement of general anesthesia in minimally invasive procedures. Additionally, other complications caused by IRE with unipolar electric pulses are alleviated, including electrode displacement and pain associated with intense muscle contractions.


Examples of heterogeneous systems include, but are not limited to, tumors surrounded by or containing any type of epithelial layer, such as a skin fold geometry, or systems comprised of multiple tissue types including, brain, bone, breast, pancreatic, kidney, or lung. In this specification, an epithelial layer is defined as a dense packing of cells that restrict the flow of materials (e.g., electrical current) resulting in a low passive electrical conductivity.


The present invention applies to all electroporation based therapies. Recently, electroporation has been utilized in vivo as a means to destroy cancer cells within tissues in both reversible and irreversible modalities. Reversible electroporation is being studied to facilitate the delivery of anticancer drugs and DNA into cancer cells through the plasma membrane in the form of electrochemotherapy (ECT) and electrogenetherapy (EGT), respectively. Irreversible electroporation (IRE) promotes cell death resulting in the development of a tissue lesion. It is an independent means to ablate substantial volumes of targeted tissue without the use of harmful adjuvant chemicals if used prior to the onset of thermal injury. See Davalos 2005. By not relying on thermal processes, IRE has been shown to spare the extracellular matrix and architecture of nerves and blood vessels.


More specifically, the present invention provides new devices and methods for the treatment of diseases and disorders, such as hemic and solid neoplasias, which improves conventional clinical practice associated with electroporating target tissues.


Included in embodiments of the invention is a method of treating a subject suffering from a neoplasia comprising: implanting at least one device for emitting electric pulses into or adjacent a neoplastic site within the body of a subject; and delivering one or more electric pulse to the neoplastic site, such that amplitude and duration of the pulse are in the range of about 1500 V/cm to 2500 V/cm for 10 μs or less which is capable of inducing irreversible electroporation. Methods of the invention also include non-invasive methods of treating a subject comprising non-invasively placing at least one device for emitting electric pulses around a region of the body containing a neoplastic site within; and delivering one or more electric pulse, such that amplitude and duration of the pulse are in the range of about 1500 V/cm to 2500 V/cm for 10 μs or less which is capable of inducing irreversible electroporation.


According to embodiments of the invention, such methods can employ multiple pulses administered in a pulse burst having a duration of less than 10 ms.


Such methods can employ one or more pulses or a plurality of pulses in a pulsing protocol, wherein the amplitude of the pulse is in the range of about 500 V/cm to 1500 V/cm. Amplitude in the context of this specification refers to the voltage-distance ratio of a pulse, such as for 1500 V/cm the voltage is 750V over a distance of 0.5 cm.


Such methods can have a pulse duration in the range of about 2 MHz (250 ns) to about 500 kHz (1 μs). For example, the pulse duration can be about 1 MHz (500 ns). In preferred embodiments, the duration of each pulse is in the range of about 100 to 10,000 ns.


Any number of probes or electrodes can be used invasively, semi-invasively, or non-invasively according to embodiment of the invention. In preferred embodiments, two or more electrically conductive regions are used within a single device for emitting the electrical pulses. Similarly, in any of the methods according to the invention, two or more devices can be used to deliver multiple electric pulses at different positions within, on, or near a body.


Custom treatment area shapes can be created through varying electrode activation patterns in combination with any of the embodiments of the invention.


The methods can also employ delivery of a bipolar burst of pulses. In embodiments, a bipolar burst of pulses can be delivered with multiple pulses in a single phase before a polarity switch. Even further, total burst width of any pulse protocol according to the invention can be between 1 μs and 10,000 μs. In preferred embodiments, the methods can have a duration of single polarity within a bipolar burst of between about 100 ns and 100,000 ns.


The shape of the electric pulses delivered using methods of the invention can be square, ramp, sinusoidal, exponential, or trapezoidal.


In preferred embodiments, two or more electric pulse bursts can be administered with a delay between bursts. In preferred embodiments, a delay between bursts can be on the order of seconds. For example, in bipolar protocols a selected positive voltage (+V) can be applied for a selected period of time (e.g., 50 μs), then a zero voltage applied for a selected period of time (e.g., 75 μs), then a negative voltage (−V) can be applied (e.g., 50 μs). The voltage can be applied in any number of individual pulses, as a pulse or pulse burst.


Also included in embodiments of the invention is a method of delivering electric pulses such that amplitude and duration of single polarity are selected to be capable of administering electroporation to electrically excitable tissue without stimulation of the tissue.


Further included is a method of delivering electric pulses such that amplitude and duration of single polarity are selected to be capable of administering electroporation to electrically excitable tissue with reduced stimulation of the tissue as compared with higher amplitude and longer duration pulse protocols. Preferably tissue stimulation that is avoided or prevented refers to a muscle contraction.


In embodiments, the neoplastic site, region of the body, or electrically excitable tissue can be nerve tissue, muscle, or an organ containing nerves and/or muscle tissue.


Any embodiment of the invention can employ applying electric pulses having an amplitude and duration in the range of about 1500 V/cm to 2500 V/cm for 10 ms or less which is capable of inducing irreversible electroporation.


Method embodiments of the invention can be used to build up the transmembrane potential of a tissue to a critical value (˜1V) by delivering trains of less than 1 μs bipolar pulses. For example, multiple monopolar pulses can be delivered at a pulse duration of about 5 MHz prior to a polarity switch, then delivered at a pulse duration of about 5 MHz after polarity switch.


Methods of the invention may or may not employ administering of a drug designed to induce a neural blockade. The methods can include administration of general, local, or no anesthesia for treatment of tissues with electroporation based therapies. In preferred embodiments, no neural blockade is required for treatment of tissues with electroporation based therapies, or lower dosages of a neural blockade can be used in embodiments of the invention to achieve the same results as using higher doses with lower frequency pulsing protocols.


The pulses of any method of the invention can be delivered on a short enough timescale to flow through epithelial cells but are long enough to induce electroporation in underlying cells. In specific embodiments, a frequency of 500 kHz or 1 MHz or 250 kHz is used to treat underlying fat cells in a layer of fat disposed under the epidermis.


Methods according to the invention can be modified to provide for administering non-thermal IRE, IRE, and/or reversible electroporation.


Treatment planning according to embodiments of the invention can result in more predictable outcomes in homogeneous and heterogeneous tissues than compared with lower frequency pulsing protocols.


Any one or more of the methods, devices, or systems, or parts thereof, can be combined with other methods, devices, systems, or parts thereof mentioned in this specification to obtain additional embodiments within the scope of this invention.


Devices and systems for implementing any one or more of the above mentioned methods are also within the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit the invention. Together with the written description the drawings serve to explain certain principles of the invention.



FIGS. 1A-B are schematic illustrations showing electrical current pathways through epithelial layers and bulk tissue prior to the onset of electroporation.



FIG. 2 is a schematic diagram of a representative pulsing protocol for electroporation based therapy according to embodiments of the present invention.



FIGS. 3A-D are graphs showing dielectric properties (τ and ∈r) as a function of frequency for skin and fat.



FIGS. 4A-B are graphs showing respectively 2 MHz AC burst with a width of 4 μs, and a DC pulse with a duration of 4 μs of equal amplitude (FIG. 4A); and magnitude spectrum of the AC burst (thick) and DC pulse (thin) (FIG. 4B).



FIG. 5 is a graph showing frequency (f) response of the TMP at the cell pole (θ=0) for rectangular bipolar pulses (-) and sinusoidal waveforms (- -). The box illustrates the frequency window implemented in the FEM.



FIG. 6 is a graph of the strength-duration curve for unipolar electric pulses expressed as electric field strength in tissue. Adapted from Rogers, W. R., J. H. Merritt, J. A. Comeaux, C. T. Kuhnel, D. F. Moreland, D. G. Teltschik, J. H. Lucas, and M. R. Murphy, Strength-duration curve for an electrically excitable tissue extended down to near 1nanosecond. Ieee Transactions on Plasma Science, 2004. 32(4): p. 1587-1599 (“Reilly 2004”).



FIG. 7 is a strength-duration graph comparing unipolar to bipolar rectangular and sine waveforms expressed as phase charge and current. Adapted from Reilly 2004.



FIGS. 8A-B are schematic diagrams showing meshed geometry of the FEM with boundary settings (FIG. 8A) and the geometry with dimensions (FIG. 8B).



FIGS. 9A-D are schematic diagrams showing the electric field, norm (V/cm) contours predicted by the FEM at the end of a 2 μs burst with an amplitude of 2600 V and a frequency of 250 kHz (FIG. 9A), 500 kHz (FIG. 9B), 1 MHz (FIG. 9C), and 2 MHz (FIG. 9D).



FIGS. 10A-B are graphs showing temperature changes predicted by the FEM at the center of the skin (FIG. 10A) and fat (FIG. 10B) for various frequencies of 250 kHz (- -), 500 kHz ( - - - ), 1 MHz ( . . . ), and 2 MHz (-).



FIGS. 11A-B are graphs of TMP predicted by the FEM at the center of the skin (FIG. 11A) and fat (FIG. 11B) for frequencies of 250 kHz (- -), 500 kHz ( - - - ), 1 MHz ( . . . ), and 2 MHz (-).



FIG. 12 is a diagram of a system for implementing high-frequency, bipolar pulses for tissue electroporation.



FIGS. 13A-B are graphs showing output of the arbitrary function generator prior to signal amplification by the high voltage MOSFET positive and negative polarity switches.



FIGS. 14A-B are micrographs showing in vitro experimental results on electroporation with high-frequency bipolar, pulses using a trypan blue dye exclusion assay.



FIG. 15A-C are waveforms of IRE with unipolar pulses and high-frequency IRE with the corresponding TMP development across the plasma membrane (Φpm) for a 1500 V/cm unipolar pulse (FIG. 15A) and a 1500 V/cm bipolar burst without a delay (FIG. 15B) and with a delay (FIG. 15C).



FIG. 16 is a graph comparing time above the critical threshold (Φpm) for IRE at various center frequencies.



FIGS. 17A-C are waveforms of IRE with unipolar pulses and high-frequency IRE with the corresponding TMP development across the plasma membrane (Φpm) for a 1500 V/cm unipolar pulse (FIG. 17A), a 1500 V/cm bipolar burst without a delay and with a shortened negative phase (FIG. 17B), and a 1500 V/cm bipolar burst with a delay and with a shortened, lower amplitude negative phase (FIG. 17C).



FIG. 18 is a chart showing an exemplary output from an in vivo treatment of the brain with high-frequency, bipolar pulses, where the snapshot is taken within a single burst.



FIGS. 19A-B are photographs showing histological sections of liver tissue treated with high-frequency IRE (FIG. 19A) and conventional IRE with unipolar (FIG. 19B), with cross sections of tissue taken between the electrodes (scale bar=250 μm).



FIGS. 20A-D are micrographs showing the histopathology of rat brain tissue for untreated rats (FIGS. 20A-B) and treated with high-frequency, bipolar pulses at 200 V/250 kHz (FIG. 20C-D, Rat #2, right hemisphere), with the delineation between treated and untreated tissue shown in FIG. 20C (black, dotted line).



FIGS. 21A-F are MRIs of lesions in rat brain appearing as focal hyper-intense regions (white) compared to adjacent untreated cerebrocortical tissue (gray). FIGS. 21A-C were obtained from Rat #3, in which both the left and right cerebral hemispheres were treated with high-frequency waveforms at 300 V/250 kHz and 400 V/250 kHz, respectively. FIGS. D-F were obtained from Rat #4, which underwent high-frequency, bipolar pulses in the right cerebrum at 400 V/500 kHz, and conventional IRE with unipolar pulses at 50 V in the left cerebrum.



FIGS. 22A-D are data recordings of acceleration (a) versus time during treatments with unipolar IRE pulses and high-frequency IRE pulses.



FIG. 23 is a chart showing peak acceleration (a) during pulsing protocols averaged over the first 90 pulses.



FIGS. 24A-C are schematic diagrams showing electric field, norm (V/cm) contours predicted by the FEM during a 1000 V amplitude burst with a center frequency of 1 kHz (FIG. 24A) and 1 MHz (FIG. 24B). In FIG. 24C, the homogeneous solution is shown for a constant pulse.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

Reference will now be made in detail to various exemplary embodiments of the invention. It is to be understood that the following discussion of exemplary embodiments is not intended as a limitation on the invention. Rather, the following discussion is provided to give the reader a more detailed understanding of certain aspects and features of the invention.


Despite being a well-known technique, there is significant controversy about the mechanisms governing electroporation. Weaver, J. C., Electroporation of cells and tissues. IEEE Transactions on Plasma Science, 2000. 28(1): p. 24-33. Even though the biophysical phenomenon at the molecular level is not known, the hypothesis is that in the presence of an externally applied electric field, the lipid bilayer in cellular membranes rearranges to create water-filled structures. These structures (or pores) provide a pathway for ions and molecules through the membranes that normally are impermeable. The dynamics of membrane poration is considered a four-step process: pore induction, expansion, stabilization and resealing. Weaver, J. C. and Y. A. Chizmadzhev, Theory of electroporation: a review. Bioelectrochem. Bioenerg., 1996. 41: p. 135-60. Initial thermal fluctuations are responsible for the presence of hydrophobic pores. There exists a critical radius where it is more energetically favorable for a hydrophobic pore to transition to a hydrophilic pore. In addition, increasing the TMP reduces this critical radius and increases the stability of a hydrophilic pore. Kinosita, K., Jr., S. Kawato, and A. Ikegami, A theory of fluorescence polarization decay in membranes. Biophys J, 1977. 20(3): p. 289-305. When the pore reaches this meta-stable state, it becomes permeable to small molecules. The presence of the induced transmembrane potential lowers the energy required for the pore's existence. Freeman, S. A., M. A. Wang, and J. C. Weaver, Theory of Electroporation of Planar Bilayer-Membranes—Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation. Biophysical Journal, 1994. 67(1): p. 42-56. When the electric field has been turned off, the membrane starts to return to its normal membrane potential and resealing of the pores takes place.


The dielectric permittivity and conductivity of a given tissue are typically functions of frequency. A comparison of the dielectric properties between skin and fat is presented in Table 1. This data was obtained by interpolating the results from Gabriel et al. (FIGS. 3A-D). Gabriel, S., R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues 0.2. Measurements in the frequency range 10Hz to 20GHz . Physics in Medicine and Biology, 1996.41(11): p. 2251-2269. At varying frequencies, different mechanisms of charge transfer contribute differently to the permittivity and conductivity. Stoy, R. D., K. R. Foster, and H. P. Schwan, Dielectric properties of mammalian tissues from 0.1to 100MHz: a summary of recent data . Phys Med Biol, 1982. 27(4): p. 501-13.









TABLE 1







Conductivity of skin and fat as a function of frequency.













Tissue











Frequency
Waveform
Property
Skin
Fat





250 kHz


embedded image


σ [S/m] ϵr
 0.00216 888
 0.0263 47





500 kHz


embedded image


σ [S/m] ϵr
 0.00485 851
 0.0265 33





1 MHz


embedded image


σ [S/m] ϵr
 0.0119 792
 0.0267 25





2 MHz


embedded image


σ [S/m] ϵr
 0.0290 700
 0.0270 20









In general, as the frequency increases, so does the conductivity of the skin and fat. According to Table 1, the difference in conductivity between skin (s) and fat (f) is reduced as the frequency increases from 250 kHz to 2 MHz (σsf˜1).


Therefore, if electroporation is used to treat a tumor within a heterogeneous skin fold geometry, the electric field distribution in the surrounding skin and fat would be more homogenous if high-frequency waveforms are utilized. Oftentimes tissue impedance has patient-to-patient variability and the impedance distribution and any impedance changes may be difficult to determine for a particular patient. This point is emphasized further in EXAMPLE 1. Because rectangular waveforms are comprised of components with various frequencies and amplitudes, tissue properties at frequencies associated with the center frequency, defined as the inverse of twice the duration of single polarity, are chosen when studying AC bursts. This is illustrated in FIGS. 4A-B. By taking the absolute value of the Fourier Transform of an AC burst and a DC pulse, the magnitude spectrum can be obtained. While the DC pulse transmits a majority of its power at low frequencies (0 Hz), the AC burst has a characteristic peak at the center frequency (2 MHz in this case).


The benefits of bipolar pulses have been studied for electroporation applications at the single-cell level. Theoretically, Talele et al. have shown that asymmetrical electroporation due to the resting TMP (˜0.1 V) (see Gowrishankar 2006) of cells seen when unipolar pulses are delivered (see Chang, D. C., Cell Poration and Cell-Fusion Using an Oscillating Electric-Field. Biophysical Journal, 1989. 56(4): p. 641-652, “Chang 1989”; and Tekle, E., R. D. Astumian, and P. B. Chock, Electroporation by Using Bipolar Oscillating Electric - Field—an Improved Method for DNA Transfection of Nih 3t3Cells . Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(10): p. 4230-4234, “Tekle 1991”) can be alleviated by switching to bipolar pulses. Talele, S. and P. Gaynor, Non-linear time domain model of electropermeabilization: Response of a single cell to an arbitrary applied electric field. Journal of Electrostatics, 2007. 65(12): p. 775-784. Experimentally, this leads to increased efficiency of macromolecule uptake through the membrane. Chang 1989; and Tekle 1991. Depending on the extracellular conductivity, bipolar pulses with a frequency of 1 MHz (i.e. 500 ns duration of single polarity) can also lessen the dependence of electroporation on cell size, allowing more cells to be electroporated. Talele, S. and P. Gaynor, Non-linear time domain model of electropermeabilization: Effect of extracellular conductivity and applied electric field parameters. Journal of Electrostatics, 2008. 66(5-6): p. 328-334; and Talele, S., P. Gaynor, M. J. Cree, and J. van Ekeran, Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii. Journal of Electrostatics, 2010. 68(3): p. 261-274. In general, pore formation increases as long as the TMP is sustained above a critical threshold (˜1 V). Gowrishankar 2006. Bipolar pulses require higher field strengths to induce a given TMP as compared to a unipolar pulse of equivalent duration. This is accentuated when the frequency of the bipolar pulses is increased, because the time interval above the critical TMP is reduced. Talele, S., P. Gaynor, M. J. Cree, and J. van Ekeran, Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii. Journal of Electrostatics, 2010.68(3): p. 261-274. Kotnik et al. have explored the benefits of bipolar pulse trains at significantly lower frequencies, up to 1 kHz (i.e. 500 μs duration of single polarity). At lower frequencies, theoretical results show that the pore formation symmetry can also be normalized with bipolar pulses. Kotnik, T., L. M. Mir, K. Flisar, M. Puc, and D. Miklavcic, Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permeabilization. Bioelectrochemistry, 2001. 54(1): p. 83-90, “Kotnik I 2001.” Experimentally, bipolar pulses reduce electrolytic contamination (see Kotnik, T., D. Miklavcic, and L. M. Mir, Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. Bioelectrochemistry, 2001. 54(1): p. 91-5) and the required field strength for reversible electroporation, while the field strength required for IRE remains unchanged. Kotnik I 2001. The authors attribute this to the fact that when the duration of single polarity is much longer than the plasma membrane charging time, permeabilized area differences on the membrane between unipolar and bipolar pulses decreases as pulse amplitude increases.


Bipolar pulse delivery has been studied in vivo for reversible applications of electroporation using center frequencies that are two orders of magnitude lower than that used in embodiments of the present invention. Daskalov et al. have demonstrated that pulses delivered at 1 kHz are associated with less patient pain in during electrochemotherapy. Daskalov, I., N. Mudrov, and E. Peycheva, Exploring new instrumentation parameters for electrochemotherapy—Attacking tumors with bursts of biphasic pulses instead of single pulses. IEEE Eng Med Biol Mag, 1999. 18(1): p. 62-66. Similarly, Nikolova et al. has recently demonstrated the same findings during electrochemotherapy with a Bacillus Calmette-Guerin vaccine. Nikolova, B., I. Tsoneva, and E. Peycheva, Treatment of Melanoma by Electroporation of Bacillus Calmette-Guerin. Biotechnology & Biotechnological Equipment, 2011.25(3): p. 2522-2524. Both authors attribute the reduction in patient pain due to the associated reduction in muscle contractions seen with bipolar pulses.


There is a balance between employing pulses that are delivered at a high enough frequency to reduce the conductivity mismatch between different tissues but have a duration of single polarity long enough to induce electroporation of cells comprising the tissues. As mentioned, electrical current associated with pulses longer than −1 μs is confined to extracellular spaces prior to the onset of electroporation. Ivorra, A., ed. Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts. Irreversible Electroporation, ed. B. Rubinsky. 2010, Springer Berlin Heidelberg. 23-61; and Esser, A. T., K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue. Technol Cancer Res Treat, 2007. 6(4): p. 261-74. This can be attributed to the migration of charges towards biological membranes following the application of an external electric field. The time required for a membrane to become charged to 63% of its steady state value is defined as the charging time constant of the membrane. Displacement currents across the plasma membrane allow organelles to be exposed to fields during the time that it takes the plasma membrane to reach steady state. Esser, A. T., K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields. Technology in Cancer Research & Treatment, 2009. 8(4): p. 289-306. Once steady state is achieved, the counter-field developed along the plasma membrane due to the accumulation of charges is significant enough to shield the field from entering the cell, and current is directed through extracellular spaces. Only after permeabilization of the membrane does ionic conduction allow the field to re-enter the cell. Kolb, J. F., S. Kono, and K. H. Schoenbach, Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics, 2006. 27(3): p. 172-187. If extracellular current pathways between cells are reduced, as in layers of epithelial cells connected by tight or gap junctions (see Jones, D. M., R. H. Smallwood, D. R. Hose, B. H. Brown, and D. C. Walker, Modelling of epithelial tissue impedance measured using three different designs of probe . Physiological Measurement, 2003. 24(2): p. 605-623), the field is highly concentrated across the layer, and the extent of electroporation in underlying cells is reduced. This problem is alleviated when the duration of single polarity approaches the membrane time constant.


By treating cells as a series of spherical, dielectric shells containing and surrounded by a conductive medium, the analytical solution for induced TMP across the plasma membrane (ΔΦ) can be obtained according to the law of total current (see Yao, C. G., D. B. Mo, C. X. Li, C. X. Sun, and Y. Mi, Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation. IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-1549, “Yao 2007”):












·

(



ɛ
0



ɛ
r





E



t



+

σ





E


)



=



Λ
k





·
E



=
0





(
1
)







Λ
k

=

σ
+


ɛ
0



ɛ
r






t








(
2
)







where Λ is the admittivity operator and the subscript k denotes cellular regions including the nucleoplasm (n), nuclear envelop (ne), cytoplasm (c), plasma membrane (pm), and extracellular space (e). Transforming (2), (5), and (6) into the frequency domain (see Yao 2007):

E=−∇Φ(s)  (3)
Λk∇·E(s)=0  (4)
Λk(S)=σ+∈0rs  (5)


where s=jω=j2πf, and applying the appropriate boundary conditions of potential continuity and normal vector continuity of current density at the interface between the different regions yields the solution for TMP (see Yao 2007):

ΔΦ(s)=Fnnecpme)E(s)cos θ  (6)


where θ represents the polar angle at the cell center between the electric field and the point of interest along the membrane. TMP is defined as the potential directly outside the membrane minus the inside. The natural, resting component of the plasma membrane TMP was ignored in all simulations, because it is typically an order of magnitude less than the induced TMP. See Gowrishankar 2006. Further, the TMP across the nuclear envelope never reached a permeabilizing threshold with the chosen pulsing protocols, and reference to TMP from this point forward refers only to the plasma membrane. As shown in Table 2, the term F(Λk) represents a transfer function of the TMP that reflects the geometric and dielectric properties of the cellular regions as a function of the admittivity. See Hu, Q., S. Viswanadham, R. P. Joshi, K. H. Schoenbach, S. J. Beebe, and P. F. Blackmore, Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Physical Review E, 2005. 71(3). Dielectric properties at the cellular level are assumed to be frequency independent, which is valid for predicting TMP up to around 100 MHz. Kotnik, T. and D. Miklavcic, Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields. Bioelectromagnetics, 2000. 21(5): p. 385-394.









TABLE 2







Dielectric properties of various cellular regions.










Geometry
σ [S/m]
εr
Dimensions [m]













Extracellular Space
0.6
80.0



Plasma Membrane
5.3 × 10−6
7.0
 7.0 × 10−9 (thickness)


Cytoplasm
0.13
60.0
5.0 × 10−6 (radius)


Nuclear Envelope
4.3 × 10−3
22.8
40.0 × 10−9 (thickness)


Nucleoplasm
0.18
120.0
2.5 × 10−6 (radius)









The exact formulation for F(Λk) is lengthy and can be found in (see Kotnik, T. and D. Miklavcic, Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysical Journal, 2006. 90(2): p. 480-491), but is not included here for brevity. The term E(s) represents the Laplace transform of the pulsed electric field as a function of time.


Using the analytical model, the frequency dependence of the induced TMP can be investigated for both rectangular and sinusoidal electric fields with identical maximum amplitude. By substituting the transient electric fields into (6) the results of a parametric study on TMP for frequencies spanning from 62.5 kHz to 16 MHz are shown in FIG. 5. The maximum amplitude of the sinusoidal and bipolar rectangular electric fields was 2000 V/cm (peak). For this applied field and the given geometric and dielectric properties of the modeled cell, the TMP never exceeds 1.46 V. Additionally, the time constant of the plasma membrane is 345 ns. All measurement were taken at the cell pole (θ=0) to depict the maximum achieved TMP after the system reached a steady oscillatory state. From the curve, as the frequency increases, the magnitude of the TMP is reduced. For the sinusoidal waveform, the reduction is evident at lower frequencies compared to the rectangular waveform. This has to do with the fact that the rectangular waveform maintains its maximum amplitude for a longer period of time than the sinusoidal waveform. It is not until the frequency of the rectangular waveform surpasses 250 kHz that a dramatic decrease in TMP occurs. For this reason, only rectangular pulses in a frequency window of 250 kHz to 2 MHz are best suited for electroporation with high-frequency, bipolar pulses.


Based on the analytical model for TMP presented above, the time constant of the plasma membrane for a constant field (2000 V/cm) is 345 ns. The time constant of 345 ns falls between the 2 MHz (250 ns pulse duration) and 1 MHz (500 ns pulse duration) bursts. Further, the 500 kHz burst (1 μs pulse duration) is close to the time it takes the TMP to reach steady state. As frequency is increased, the dielectric properties different tissues become more macroscopically homogeneous, but above 2 MHz, the pulse duration is not adequate for the cell to charge and induce electroporation. According to in vitro experiments that utilize bipolar rectangular pulses, the typical burst width required to induce either reversible electroporation or IRE increases with the frequency of the applied field. For EGT, a 60 kHz bipolar square with a burst width of 400 μs and an amplitude of 1600 V/cm has a six times greater transfection efficiency than a 1 MHz bipolar square wave with equal amplitude and width. Tekle, E., R. D. Astumian, and P. B. Chock, Electroporation by Using Bipolar Oscillating Electric-Field—an Improved Method for DNA Transfection of Nih 3t3 Cells. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(10): p. 4230-4234 (Telke 1991). In terms of IRE, a 60 kHz bipolar square with a burst width of 400 μs and an amplitude of 4000 V/cm results in 19% cell viability. Telke 1991. These results were obtained when a single burst was delivered to the sample. The inventors, however, appear to be the first in providing data on high-frequency electroporation with rectangular pulses that implemented multiple bursts. Similar to how multiple unipolar pulses are typically delivered in ECT, EGT, or IRE protocols to enhance the desired outcome (see Belehradek, J., S. Orlowski, L H Ramirez, G. Pron, B. Poddevin, and L. M. Mir, Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin . Biochimica Et Biophysica Acta-Biomembranes, 1994. 1190(1): p. 155-163; and Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos, Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. Journal of Membrane Biology, 2010. 236(1): p. 127-136) multiple bipolar bursts would likely produce similar trends. Data is also available for burst sinusoidal waveforms in the frequency range of 2 kHz to 50 MHz (see Jordan, D. W., R. M. Gilgenbach, M. D. Uhler, L. H. Gates, and Y. Y. Lau, Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells. Ieee Transactions on Plasma Science, 2004. 32(4): p. 1573-1578; and Katsuki, S., N. Nomura, H. Koga, H. Akiyama, I. Uchida, and S. I. Abe, Biological effects of narrow band pulsed electric fields. Ieee Transactions on Dielectrics and Electrical Insulation, 2007. 14(3): p. 663-668), but the results are inconclusive, and sinusoidal waveforms are less efficient than rectangular bipolar pulses for inducing electroporation. Kotnik, T., G. Pucihar, M. Rebersek, D. Miklavcic, and L. M. Mir, Role of pulse shape in cell membrane electropermeabilization. Biochimica Et Biophysica Acta-Biomembranes, 2003. 1614(2): p. 193-200.


There is a narrow window of pulse parameters where ECT and EGT have proven to be effective without reducing cell viability by IRE. For ECT, the field for inducing optimal reversible electroporation conditions is between 300 and 500 V/cm in tumors, when eight square-wave pulses 100 μs in duration are delivered at a frequency of 1 Hz. Mir, L. M., Therapeutic perspectives of in vivo cell elect ropermeabilization. Bioelectrochemistry, 2001. 53: p. 1-10 (Mir 2001). For EGT, permeabilization conditions are optimal when eight square-wave pulses 20 ms in duration are delivered at a frequency of 1 Hz, which constitutes a field of around 90 V/cm. Mir 2001. To maintain its non-thermal benefits, the pulse parameters for IRE procedures are restricted to those that minimize any associated Joule heating. Davalos, R. V. and B. Rubinsky, Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer, 2008. 51(23-24): p. 5617-5622. However, a similar field strength and duration to those required for ECT can induce IRE when the number of pulses is raised above the traditional 8 pulses to 90 pulses, and the temperature of the tissue remains below 50° C. Rubinsky, J., G. Onik, P. Mikus, and B. Rubinsky, Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation. Journal of Urology, 2008. 180(6): p. 2668-2674.


In addition to being bipolar, the pulses used according to methods of the invention can have a duration of single polarity (˜1 μs) that is two orders of magnitude less than the duration of a conventional electroporation pulse (˜100 μs) and an amplitude that is one order of magnitude less than supraporation protocols with nanosecond pulsed electric field (nsPEF). Supraporation involves pulses with a duration ranging from 1-100 ns and an amplitude ranging from 10-100 kV/cm. These electric fields are capable of causing electroporation within the membranes of intracellular organelles. Vernier, P. T., Y. H. Sun, and M. A. Gundersen, Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. Bmc Cell Biology, 2006. 7. When the pulse length is shorter than the charging time of the plasma membrane, the field can penetrate the plasma membrane to reach the cell interior. Beebe, S. J., P. M. Fox, L. J. Rec, L. K. Willis, and K. H. Schoenbach, Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J, 2003. 17(9): p. 1493-5. Because organelles are smaller in diameter than cells, the amplitude required to raise the TMP on organelles up to ˜1 V is greater than that in ECT and IRE procedures. However, due to the ultra-short nature of the pulses, the accompanying Joule heating is still negligible. Schoenbach, K. H., S. J. Beebe, and E. S. Buescher, Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics, 2001. 22(6): p. 440-8. While immediate necrosis is suspected as the primary mechanism of cell death following IRE, apoptosis triggered by DNA fragmentation and the release of calcium from intracellular stores occurs in cells exposed to sufficiently high nsPEFs. Beebe, S. J., J. White, P. F. Blackmore, Y. P. Deng, K. Somers, and K. H. Schoenbach, Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA and Cell Biology, 2003. 22(12): p. 785-796.


In vivo experiments on supraporation have shown that the ultra-short, unipolar pulses do not cause stimulation of excitable tissue, such as muscle and nerves. Long, G., P. K. Shires, D. Plescia, S. J. Beebe, J. F. Kolb, and K. H. Schoenbach, Targeted Tissue Ablation With Nanosecond Pulses. Ieee Transactions on Biomedical Engineering, 2011. 58(8). This is a consequence of the pulses being below the strength-duration threshold determined by Rogers et al. Rogers, W. R., J. H. Merritt, J. A. Comeaux, C. T. Kuhnel, D. F. Moreland, D. G. Teltschik, J. H. Lucas, and M. R. Murphy, Strength-duration curve for an electrically excitable tissue extended down to near 1nanosecond. Ieee Transactions on Plasma Science, 2004. 32(4): p. 1587-1599. As seen in FIG. 6, for IRE pulses, the electric field threshold for stimulation is between 1-10 V/cm. The present invention describes pulses where the duration of single polarity is as low as 100 ns. At this duration, the electric field threshold for stimulation increases to 1000 V/cm, which is above the amplitude required for reversible electroporation and on the order of the amplitude for IRE.


In addition to the duration of single polarity being reduced, the fact that the inventive waveforms are inherently bipolar offers an additional benefit in terms of the stimulation of excitable tissue. As shown in FIG. 7, biphasic waveforms have a higher threshold current for inducing nerve stimulation. Reilly, J. P., V. T. Freeman, and W. D. Larkin, Sensory Effects of Transient Electrical-Stimulation—Evaluation with a Neuroelectric Model. IEEE Trans Biomed Eng, 1985. 32(12): p. 1001-1011. Further, the threshold increases exponentially as the duration of single polarity is decreased. While the mechanism of this phenomenon is unknown, it is thought that the reversal in polarity prevents an action potential from being generated by limiting the flow of sodium ions down their concentration gradient. This has been shown to translate to a reduced muscle twitch force during bipolar functional electrical stimulation as opposed to monopolar. Vandenhonert, C. and J. T. Mortimer, Response of the Myelinated Nerve-Fiber to Short Duration Biphasic Stimulating Currents. Annals of Biomedical Engineering, 1979.7(2): p. 117-125.


The inventors have shown that bipolar waveforms can induce IRE at center frequencies high enough to eliminate muscle contraction completely. This procedure is termed high-frequency IRE (H-FIRE). Overall, the results indicate that H-FIRE can produce more predictable treatment outcomes, reduce the potential for thermal damage, and obviate the need for (or reduce the necessity of) neuroparalytic agents delivered prior to or during treatment.


The following examples show that bursts of bipolar, nanosecond pulses can maintain a critical TMP beneath epithelial layers, while minimizing Joule heating. This has to do with the ability of high-frequency waveforms to achieve a macroscopically homogeneous field distribution in a heterogeneous system. At high-frequencies, tissues with a low passive DC conductivity become more conductive. Additionally, it is proven that high-frequency IRE (H-FIRE) can be applied to non-thermally ablate tissue while eliminating muscle contractions seen in conventional IRE protocols with longer duration unipolar pulses. These results have implications not only for skin, brain, and liver as presented here, but for other tissues, such as bone, breast, pancreas, kidney, and lung. These examples should not be considered as limiting the invention in any way.


As a general background to the examples, it is noted that the inventors and their colleagues have successfully demonstrated that finite element models (FEMs) can accurately predict treatment outcomes of pulsed electric field therapies for cancer treatment. See Edd, J. F. and R. V. Davalos, Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat, 2007. 6: p. 275-286; and Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky, In vivo results of a new focal tissue ablation technique: irreversible electroporation . IEEE Trans Biomed Eng, 2006. 53(7): p. 1409-15.


EXAMPLE 1
High-Frequency Electroporation Results in More Uniform and Predictable Treatment Outcomes in Heterogeneous Tissues

A 2D axisymmetric FEM representative of a cylindrical section of non-infiltrated fat encapsulated by dry skin was simulated using COMSOL 3.5a (Burlington, Mass.). The electric potential distribution within the tissue was obtained by transiently solving:












-


·

(

σ











Φ


)


-


ɛ
0



ɛ
r





·

(









Φ




t


)





=
0




(
7
)







where Φ is the electric potential and σ and ∈r are the conductivity and relative permittivity of each tissue layer, respectively, which depends on frequency (Table 1). Equation (7) is obtained from Maxwell's equations assuming no external current density (J=σE), no remnant displacement (D=∈0rE), and the quasi-static approximation. This approximation implies a negligible coupling between the electric and magnetic fields (∇×E=0), which allows for the expression of electric field only in terms of electric potential:

E=−∇Φ  (8)


Dielectric properties of the bulk tissue were chosen from data generated by Gabriel et al. (see Gabriel, S., R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues 0.2. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 1996. 41(11): p. 2251-2269) available at (http://niremf.ifac.cnr.it/docs/dielectric/home.html). The data was interpolated in Mathematica 7 (Wolfram Research, Inc.) in order to estimate the dielectric properties at the desired frequencies. Dielectric properties of the electrode were chosen to be stainless steel, as incorporated in the Comsol material library. All electrical boundary conditions are shown in FIGS. 8A-B, which provides in FIG. 8A, a meshed geometry of the FEM with boundary settings. The mesh consists of 3028 elements and was refined until there was <0.1% change in the magnitude of the electric field at the center of the tissue. FIG. 8B provides a schematic diagram of the geometry with dimensions. The box represents an expanded view of the tissue that describes the link between the macroscopic electric field (E) and the microscopic analysis of TMP. Adjacent cells are drawn with dashed lines, indicating their role was ignored in calculating TMP.


Because rectangular waveforms are comprised of components with various frequencies and amplitudes, tissue properties at frequencies associated with the center frequency, defined as the inverse of twice the duration of single polarity, are chosen. Intuitively, the duration of single polarity defines the frequency at which the current changes direction in the tissue. The pulses were constructed by multiplying the applied voltage by a function consisting of two smoothed Heaviside functions with a continuous second derivative and a tolerance of 5 ns (rise and fall times). The quasi-static assumption is confirmed based on the fact that the primary frequency of the pulses is lower than 200 MHz (rise and fall times), which corresponds to a wavelength that is greater than the longest dimension in the geometry. Chen, M. T., C. Jiang, P. T. Vernier, Y. H. Wu, and M. A. Gundersen, Two-dimensional nanosecond electric field mapping based on cell electropermeabilization. PMC Biophys, 2009. 2(1): p. 9. The inclusion of a permittivity term in (1) differs from previous, simplified models (see Edd, J. F. and R. V. Davalos, Mathematical Modeling of irreversible Electroporation for treatment planning. Technology in Cancer Research & Treatment, 2007. 6(4): p. 275-286; and Neal, R. E. and R. V. Davalos, The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems. Annals of Biomedical Engineering, 2009. 37(12): p. 2615-2625), and accounts for reactive component of tissue to time dependent pulsing, which is required for obtaining accurate potential distributions in heterogeneous models. Yousif, N., R. Bayford, and X. Liu, The Influence of Reactivity of the Electrode-Brain Interface on the Crossing Electric Current in Therapeutic Deep Brain Stimulation. Neuroscience, 2008. 156(3): p. 597-606.



FIGS. 9A-D show the electric field distribution at the end of a 2 μs burst with various frequencies given in Table 1. In each case, the maximum applied voltage was set to 2600 V (peak) in order to set up a voltage to distance ratio of 2000 V/cm between the electrodes (1.3 cm spacing). From the surface contour map, as frequency is increased, the electric field in the fat rises while the field in the skin drops. This trend extends to the point that at 2 MHz the field in the skin is lower than the fat, which is a direct result of the tissue dielectric properties at that frequency (greater conductivity and permittivity of skin as compared to fat). Therefore, high-frequency fields, or pulses with shorter duration, are better suited to penetrate epithelial layers, such as the skin, and reach underlying tissue.


EXAMPLE 2
High-Frequency Electroporation Results in Homogeneous Energy Deposition and Reduces the Potential for Thermal Damage in Low Passive Conductivity Tissue

The temperature distribution in the model described in EXAMPLE 1 was obtained by transiently solving a modified version of the Pennes bioheat equation (see Pennes, H. H., Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol, 1948. 1(2): p. 93-122) with the inclusion of a Joule heating term:










ρ





C




T



t



=




·

(

k











T


)



+


ρ
b



ω
b




C
b



(


T
b

-
T

)



+

Q
m

+



J
·
E








(
9
)







where T is the tissue temperature, Tb is the blood temperature, k is the thermal conductivity of the tissue, C and Cb are the tissue and blood specific heat, respectively, ρ and ρb are the tissue and blood density, respectively, Qm is the metabolic heat source term, ωb is the blood perfusion coefficient, and |J·E| is the Joule heating term. All thermal tissue properties are given in Table 3. Fiala, D., K. J. Lomas, and M. Stohrer, A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of Applied Physiology, 1999. 87(5): p. 1957-1972.









TABLE 3







Thermal tissue properties of various tissues.











Tissue












Property
Blood
Skin
Fat
















ρ [kg/m3]
1069
1085
850



C [J/(Kg□K)]
3650
3680
2300



k [W/(m□K)]

0.47
0.16



ω [1/s]

1.1
0.0036



Qm [kg/m3]

368
58










Due to the presence of different tissue layers and the high frequencies under consideration (250 kHz-2 MHz), displacement currents are considered along with conduction currents in the formulation of Joule heating:









J
=



J
D

+

J
C


=



ɛ
0



ɛ
r





E



t



+

σ





E







(
10
)







where J is the total current density, JD is the displacement current density, and JC is the conduction current density. In order to ensure that negative current components due to polarity changes add to the total current in the tissue, the absolute value of the resistive heating term was taken prior to temperature calculations. It was assumed that all subdomains were initially at physiologic temperature (T0=310.15 K). The boundaries between the electrode-skin interface and the skin-fat interface were treated as continuous (n·(k1∇T1−k2∇T2)=0), the centerline was defined as axial symmetry (r=0), and the remaining boundaries were thermally insulated (n·(k∇T)=0) for conservative temperature estimates. Temperature profiles were investigated along the centerline (r=0 mm) in the middle of the fat (z=0 mm) and skin (z=5.75 mm) layers. Data was imported into Mathematica, and a moving average with a period of 100 ns was taken to smooth the plots. Additionally, the data was fit with a linear trendline in order to extrapolate to longer burst widths and predict the onset of thermal damage.


Temperature changes predicted by the FEM at the center of the skin and fat are shown in FIGS. 10A-B, which provides temperature changes predicted by the FEM at the center of the skin (FIG. 10A) and fat (FIG. 10B) for frequencies of 250 kHz (- -), 500 kHz ( - - - ), 1 MHz ( . . . ), and 2 MHz (-). Equations represent a linear fit to the data. In this case, a burst width of 4 μs was simulated in order to capture the trends in temperature development. Polarity of the 2 μs pulse (250 kHz) was switched between pulses to maintain consistency with the other waveforms that are inherently bipolar. With respect to the skin, as the frequency of the applied field increases, the temperature rises at a slower rate. This is a consequence of the fact that the electric field within the skin also decreases with increasing frequency. In the case of the fat, the temperature rises at a faster rate when the frequency of the applied field is increased. At first glance, this seems to be detrimental, however, it is merely an indication that energy is preferentially being deposited more uniformly into the fat at higher frequencies. Again, this can be correlated to the electric field profile. In both tissues, the sharp rises in temperature are due to the spikes in displacement current that occur at the onset and offset of each pulse (data not shown). The total temperature increase in all cases is less than 0.003 K for a burst width of 4 μs. As explained in the discussion, even for bursts of longer widths, the temperature increase is not enough to promote thermal damage.


The onset of protein denaturation and loss of cell structure occurs above 318.15 K (see Bilchik, A. J., T. F. Wood, and D. P. Allegra, Radiofrequency ablation of unresectable hepatic malignancies: Lessons learned. Oncologist, 2001. 6(1): p. 24-33), which correlates to an increase in temperature of 8 K above physiological temperature. Using this information, the maximum energy delivery period (number of pulses multiplied by pulse duration) can be calculated for an amplitude of 2000 V/cm at each of the frequencies investigated using the trendlines generated by the FEM data (FIGS. 9A-D). In the skin layer, heating is reduced by increasing the frequency of the applied field. This shows that the potential for thermal damage in the skin is reduced when the frequency of the applied field is increased. At higher frequencies, the energy is preferentially deposited in the fat layer. For 2 MHz, the total energy delivery period required to cause an 8 K increase in temperature is 12 ms. An example treatment plan can include 12, 1 ms pulses separated by a delay of 1 s. If the frequency is reduced to 500 kHz, which shows the greatest electroporation efficiency (Table 4, see EXAMPLE 3), the allowable energy delivery period increases to 16 ms, which would permit the delivery of an additional 4, 1 ms pulses before the onset of thermal damage.









TABLE 4







Various exemplary treatment protocols.











Frequency
Time (μs),
% of Pulse,



(pulse duration)
|TMP| > 0.5 V
|TMP| > 0.5 V















250 kHz (2 μs)
1.2
60



500 kHz (1 μs (×2))
1.9
95



1 MHz (500 ns (×4))
1.3
65



2 MHz (250 ns (×8))
0.1
5










The restrictions could be increased if less conservative estimates are obtained that account for heat dissipation between pulses and heat convection at the tissue surface. Lackovic, I., R. Magjarevic, and D. Miklavcic, Three-dimensional Finite-element Analysis of Joule Heating in Electrochemotherapy and in vivo Gene Electrotransfer. Ieee Transactions on Dielectrics and Electrical Insulation, 2009. 16(5): p. 1338-1347. These projected protocols represent a maximum, and it is likely that the desired effects will be induced at a significantly lower energy. See Belehradek, J., S. Orlowski, L. H. Ramirez, G. Pron, B. Poddevin, and L. M. Mir, Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin. Biochimica Et Biophysica Acta-Biomembranes, 1994. 1190(1): p. 155-163; and Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos, Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. Journal of Membrane Biology, 2010. 236(1): p. 127-136.


EXAMPLE 3
High-Frequency Electroporation can Overcome Shielding Effects of Low Passive Conductivity Tissues and Induce Electroporation in Underlying Layers

The analytical model for TMP described in this specification was utilized to investigate electroporation in a hypothetical cell located along the centerline (r=0 mm) in the middle of the fat (z=0) and skin (z=5.75 mm) layers of the FEM described in EXAMPLE 1. The equations for TMP are derived under the assumption that there is no influence on the microscopic electric field from neighboring cells. Therefore, the macroscopic electric field in the bulk tissue predicted by the FEM dictates the microscopic electric field experienced by the cell. The vertical z-component of the electric field was imported from the specific locations within FEM into Mathematica to account for polarity changes. The radial r-component was neglected due to the fact that it never surpassed 3 V/cm as current traveled primarily in the z-direction. Non-uniform electric field data was fit with a series of step functions (50 ns duration), such that the Laplace transform of the field could be performed and the solution for TMP could be obtained in the frequency domain as the summation of individual steps. The inverse Laplace transform of the data was taken to obtain the complete time courses. Measurements were taken at the pole (θ=0) to depict the maximum induced TMP around the cell.


With respect to the skin, as the frequency of the applied field increases, the maximum oscillation amplitude of the TMP decreases, as shown in FIGS. 11A-B. This occurs for two reasons. First, as seen in FIGS. 8A-B, the electric field in the skin decreases with increasing frequency. Second, as seen in FIG. 5, even with constant field amplitude, the TMP decreases with increasing frequency, because the time during which the membrane has to charge before the polarity switches is less at higher frequencies. In the case of the fat, the behavior is slightly more complex. At lower frequencies, a majority of the voltage drop occurs across the skin as demonstrated in FIGS. 9A-D, resulting in a reduced electric field in the fat. This shielding effect is best shown in FIGS. 10A-B along the 250 kHz trace. According to FIG. 5, at 250 kHz, the maximum TMP should be reached. However, due to the shielding effect from the skin, a reduction in the TMP prior to the polarity change is seen. This reduction in TMP can be alleviated by increasing the frequency of the applied field. However, the tradeoff between increased frequency and reduced TMP is still evident at a frequency of 2 MHz (FIGS. 11A-B).


As mentioned, there is a balance between employing pulses that are delivered on a short enough timescale to flow through epithelial cells but are long enough to induce electroporation in underlying cells. The time constant of 345 ns, predicted by the analytical model for TMP, falls between the 2 MHz (250 ns pulse duration) and 1 MHz (500 ns pulse duration) bursts. Further, the 500 kHz burst (1 μs pulse duration) is close to the time it takes the TMP to reach steady state. Table 4 summarizes the results based on the time that the TMP on a hypothetical cell at the center of the fat layer is above 0.5 V. This amplitude was chosen such that even the highest frequency burst was above the set voltage level for a certain amount of time. The results would hold if the applied field was doubled and the voltage level was set to the 1 V threshold for pore formation, due to the linear dependence of TMP on the electric field. Based on this criterion, a frequency of 500 kHz is best suited to treat cells in the fat layer, followed by 1 MHz and 250 kHz. As frequency is increased, the dielectric properties and electric field distribution in the skin and fat become more macroscopically homogeneous, but above 1 MHz, the pulse duration is not adequate for the cell to charge.


EXAMPLE 4
System for Implementing High-Frequency, Bipolar Pulses for Tissue Electroporation

The electronic drive system for delivering bipolar electroporation signals is schematically depicted in FIG. 12. The system relies upon both commercially available components and circuits built by the inventors. An arbitrary function generator (Tektronix AFG 3011) is programmed to output a tri-state square waveform. The AFG 3011 is capable of generating 20 V peak-to-peak into a 50 ohm load and has an effective analog bandwidth of 8 MHz. The burst width, interval between bursts, and total number of bursts is externally controlled by a microcontroller (Arduino Duemilanove) through the general purpose input/output (GPIO) pins. The output signal for a 1 MHz waveform with a burst width of 10 μs and amplitude of 6 V peak is given in FIG. 12. This signal is simultaneously fed through both positive polarity and negative polarity high voltage MOSFET switches (IXYS Colorado HV 1000). The signal into the negative polarity HV 1000 is inverted using an LM 7171 op amp with a slew rate of 4100 V/ρs in order to properly sequence the amplification of the positive and negative polarity pulses without delay. The maximum output of each HV 1000 is 17 A and +/−850 V into a 50 ohm load. Additionally the pulse rise time is 10 ns or less. This results in an amplification of the AFG 3011 trigger signal up to 1700 V peak-to-peak, which is capable of inducing electroporation when the electrodes are spaced approximately 3 cm apart or less. The input power to each HV 1000 is maintained by a high voltage sequencer (LabSmith HVS 448), which can regulate voltage up to +/−3000 V and current up to 100 mA. In order to increase current storage up to 17 A, an external capacitor bank was included between the HVS 448 and HV 1000. The total capacitance of the bank can be adjusted depending on the desired voltage and current output or electrode spacing. This system allows for a flexible treatment program that may be tailored to meet a patient's individual needs.


Other systems are available in the literature for generating bipolar pulses, and the invention should not be limited to the system described above. For example, De Vuyst et al. built a generator around an NE555 timer configured as an astable multivibrator capable of producing up to 50 kHz bipolar pulses. De Vuyst, E., M. De Bock, E. Decrock, M. Van Moorhem, C. Naus, C. Mabilde, and L. Leybaert, In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling. Biophysical Journal, 2008. 94(2): p. 469-479. However, the frequency of the pulses administered according to embodiments of the invention are an order of magnitude greater, which is easily met by the bandwidth of the AFG 3011. Additionally, the MOSFET switches provide an excellent means to produce high-frequency pulses for high voltage switching. However, MOSFETs are not the only semiconductor devices that can be utilized to produce a pulse. Bipolar Junction Transistors (BJTs), Insulated Gate Bipolar Transistors (IGBTs), and Junction Field Effect Transistors (JFETs) are examples of some of the semiconductor devices that may be used to produce an output pulse.


EXAMPLE 5
Experimental Results of High-Frequency, Bipolar Pulses for Electroporation of Cells

A chemical reaction technique was performed to fabricate parallel silver electrodes on glass microscope slides with 100 μM spacing. Briefly, a commercially available mirroring kit was used to deposit pure silver onto the microscope slides (Angel Gilding Stained Glass Ltd, Oak Park, Ill.). A negative thin film photoresist (#146DFR-4, MG Chemicals, Surrey, British Colombia, Canada) was laid on top of the slide and passed through an office laminator (#4, HeatSeal H212, General Binding Corporation, Lincolnshire, Ill.). A photomask printed at 20 k DPI on a transparent film (Output City, Cad/Art Services Inc, Bandon, Oreg.) was placed ink side down onto the photoresist, and slides were exposed to UV light for 45 seconds. After exposure, the slides were placed in a 200 mL bath containing a 10:1 DI water to negative photo developer (#4170-500ML, MG Chemicals, Surrey, British Colombia, Canada). The slides were placed in a beaker containing DI water to stop the development process and gently dried using pressurized air. Electrode structures on the microscope slides were fabricated by removing all silver not covered by the patterned photoresist. A two part silver remover was included in the mirroring kit used to deposit the silver. The photoresist was then removed by placing the slide in a bath of acetone.


Microfluidic channels were fabricated using the patterned photoresist on a microscope slide that had not undergone the silvering process. Liquid phase polydimethylsiloxane (PDMS) in a 10:1 ratio of monomers to curing agent (Sylgrad 184, Dow Corning, USA) was degassed under vacuum prior to being poured onto the photoresist master and cured for 1 hour at 100° C. After removing the cured PDMS from the mold, fluidic connections to the channels were punched in the devices using 1.5 mm core borers (Harris Uni-Core, Ted Pella Inc., Redding, Calif.). The PDMS mold was then bonded over the glass slides containing the patterned electrodes by treating with air plasma for 2 minutes in a PDC-001 plasma cleaner (Harrick Plasma, Ithaca, N.Y.).


High voltage electrical wires were taped to the glass slide with exposed wire placed in direct contact with the electrical pads. A drop of high purity silver paint (Structure Probe Inc., West Chester, Pa.) was placed on the pad and allowed to dry for one hour creating a solid electrical connection. A drop of 5 minute epoxy (Devcon, Danvers, Mass.), used to secure the electrical connections, was placed on top of each electrode pad and allowed to cure for 24 hours. Pulses were delivered across the electrodes as described in EXAMPLE 4 prior to the amplification stage. No amplification was needed as the gap between the electrodes was only 100 μm. Therefore, the output signal of a function generator (GFG-3015, GW Instek, Taipei, Taiwan) +/−10 V can be used to generate an electric field capable of inducing electroporation, as shown in FIGS. 13A-B.


Following culture in DMEM-F12 (supplemented with 10% FBS and 1% penicillin streptomycin) MDA-MB-231 cells were resuspended in a PBS solution 1:1 with Trypan Blue (0.4%). Trypan Blue is a determinant of cell membrane integrity, and stains electroporated cells blue, whereas non-electroporated cells remain transparent. Cells at a concentration of 106/ml were injected into the microfluidic channel using a syringe. The function generator was triggered by the microcontroller to deliver 80, 50 kHz bursts with a width of 1 ms and an amplitude of 500 V/cm. Results shown in FIGS. 14A-B, which shows that 60% transfection efficiency was obtained when starting with cells that are 92% viable. This efficiency of reversible electroporation could be improved by either increasing the number of pulses or the burst width. Additionally, IRE could be performed by increasing the applied voltage.


EXAMPLE 6
Alternate Waveforms for Performing High-Frequency Electroporation

The analytical model for TMP described in the detailed description of the invention was utilized to investigate electroporation of a spherical cell subject to alternative waveforms. As mentioned, the critical TMP (Φcr) across the plasma membrane required to induce IRE is approximately 1 V. Belehradek, J., S. Orlowski, L. H. Ramirez, G. Pron, B. Poddevin, and L. M. Mir, Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin. Biochimica Et Biophysica Acta-Biomembranes, 1994. 1190(1): p. 155-163. This threshold is illustrated in FIGS. 15A-C by the dashed, horizontal line on the TMP profiles. Characteristic waveforms of IRE with unipolar pulses and high-frequency IRE with the corresponding TMP development across the plasma membrane (Φpm). All results are presented at the cell pole (θ=0) to show the maximum TMP around the cell. Further, results are only shown for TMP across the plasma membrane, as the TMP across the nuclear envelope never approached the permeabilizing threshold. For an electric field of 1500 V/cm, results indicate that a unipolar pulse (FIG. 15A), a 250 kHz bipolar burst (FIG. 15B), and 250 kHz bipolar burst that includes delays between the pulses (FIG. 15C) are all capable of inducing IRE. However, the time above the threshold TMP varies between the different cases. The 1500 V/cm unipolar pulse causes the TMP to rise above the critical threshold for IRE (1 V, dashed line). The 1500 V/cm bipolar burst without a delay and with a delay causes the TMP to oscillate around the same critical threshold. This is investigated further in FIG. 16 for center frequencies of 0, 100, 250, 500, and 1000 kHz, with the 0 kHz case representing the unipolar pulse, and electric fields of 1000 V/cm and 1500 V/cm. FIG. 16 provides a comparison of time above the critical threshold (Φcr) for IRE at various center frequencies. The burst width of the bipolar waveform that included delays was twice as long (40 μs) as the corresponding burst with no delays in order to generate an equivalent pulse on-time (20 μs). The amount of time that the TMP was above the critical value was normalized by the on-time and converted to a percentage. FIG. 16 illustrates that, for a given frequency, as the electric field is increased from 1000 V/cm to 1500 V/cm, the percentage of the burst above the critical TMP also increases. At 250 kHz, IRE is possible during all waveforms, but at 500 kHz, only the waveforms with amplitudes of 1500 V/cm are capable of inducing IRE. As the center frequency of the burst increases, the percentage of the burst above the critical TMP decreases. However, with the inclusion of delays between the pulses, this characteristic dispersion is shifted towards higher frequencies. At 1 MHz, only the 1500 V/cm waveform with delays can theoretically cause IRE.


The theoretical model of TMP suggests that IRE should be possible up to 1 MHz for an electric field of 1500 V/cm. Including a delay between the positive and negative pulses comprising the bipolar burst offers a therapeutic advantage in addition to protecting the MOSFETs in the pulse generation system (see EXAMPLE 4) from ringing. By not forcing a discharge of the TMP with an immediate reversal of polarity, the cell is allowed to return to the resting TMP according to its characteristic time constant. As a result, the TMP is maintained above the critical voltage required for IRE for a longer amount of time. This metric has been recognized as a potential indicator of treatment outcomes in electroporation based therapies with bipolar waveforms. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos, Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis. Journal of Membrane Biology, 2010. 236(1): p. 127-136.


Other potential waveforms for performing high-frequency electroporation are shown in FIGS. 17A-C, which provide characteristic waveforms of IRE with unipolar pulses and high-frequency IRE with the corresponding TMP development across the plasma membrane (Φpm). A unipolar pulse with an amplitude of 1500 V/cm is shown for comparison (FIG. 17A). A waveform without delays between polarity reversals (FIG. 17B) can maintain a positive TMP throughout the entire treatment if the duration of positive polarity is tuned to be slightly longer than the duration of negative polarity. Similarly, for a waveform that includes delays (FIG. 17C), a train of positive ultra-short pulses could be used to gradually increase the TMP up to the critical permeabilizing threshold, and a single ultra-short pulse of negative polarity could follow the train without causing the TMP to go negative. In both examples, the ultra-short negative going pulse is designed to maintain the predicted benefits of high-frequency electroporation. Namely, it is predicted that the negative going pulse will prevent action potential generation and still permit a degree of capacitive coupling across epithelial layers. FIG. 18 is a chart showing an exemplary output from an in vivo treatment of the brain with high-frequency, bipolar pulses, where the snapshot is taken within a single burst.


EXAMPLE 7
Experimental Results of High-Frequency IRE (H-FIRE) of Brain Tissue

H-FIRE was performed using a custom pulse generator as described in EXAMPLE 4 with minor modifications. An unregulated DC power supply was constructed to replace the both the high voltage sequencer and external capacitor in order to maintain a sufficient level of charge to deliver 20 A over a 100 μs burst. A center tapped 400 VA transformer (AS-4T320, Antek, Inc., North Arlington, N.J., USA) was rectified and smoothed by a capacitor bank to provide positive and negative power rails to the HV1000P and HV1000N, respectively. The voltage rails were controlled by adjusting the input voltage using a variable transformer, and the maximum output rating of the system was +/−450 V. A delay equal to the duration of single polarity was included between the pulses in order to protect the MOSFETs from ringing. A unity gain inverting amplifier (AD844, Analog Devices, Norwood, Mass., USA) was used to invert this signal and appropriately trigger the negative pulse generator. The outputs of the two monopolar pulse generators were terminated into a 50Ω load in parallel with the electrodes. This load was used to maintain appropriate pulse characteristics and as a safety to ensure the system was never triggered without an attached load. For comparison, the IRE treatments were performed using the BTX ECM 830 electroporation system (Harvard Apparatus, Holliston, Mass., USA).


All study procedures were conducted following Institutional Animal Care and Use Committee approval and performed in a GLP compliant facility. Four, Fischer 344 male rats weighing 200-240 g were anesthetized by intraperitoneal injection of 10 mg/kg xylazine and 60 mg/kg ketamine hydrochloride, and a surgical plane of anesthesia was assessed by loss of the tail pinch reflex. To monitor muscle contractions, a 3-axis accelerometer breakout board (ADXL335, Adafruit Industries, New York, N.Y., USA) with a sensing range of ±3 g's was sutured to the dorsum of each rat in the interscapular region at the cervicothoracic junction using 5-0 monocryl suture. Low-pass filter capacitors (0.1 μF) were included at the x, y, and z outputs of the accelerometer for noise reduction. The hair of the skull was clipped and aseptically prepared using povidone-iodine and alcohol solutions. Anesthetized rats were placed in a small animal stereotactic head frame (Model 1350M, David Kopf Instruments, Tungisten, Calif., USA). A routine lateral rostrotentorial surgical approach to the skull was made, and 6 mm by 3 mm rectangular parieto-occipital craniectomy defects were created in the right and left aspects of the skull of each rat using a high-speed electric drill. Custom electrodes were inserted into the center of the forelimb area of the sensorimotor cortex of each rat (coordinates relative to Bregma: 1 mm anterior, 2.5 mm lateral, 2 mm dorsoventral) and advanced to a depth of 2 mm beneath the surface of the exposed dura. The electrodes were fashioned by blunting stainless steel acupuncture needles (0.45 mm diameter, Kingli Medical Appliance Co., Wuxi, China) with high grade sandpaper. Exposure length was set to 1 mm by insulating the electrodes with miniature polyimide tubing (25 AWG, Small Parts, Seattle, Wash., USA), and the edge-to-edge electrode spacing was set to 1 mm by molding the electrodes in liquid phase polydimethylsiloxane (PDMS) cured in a 10:1 ratio with Sylgard 184 (Dow Corning Corp., Midland, Mich., USA) at 150° C. for 30 min.


Pulse parameters were chosen based on the results from the analytical and numerical models to ensure the greatest potential for non-thermal tissue ablation. Following electrode insertion, pulses were applied to the right and left cerebral hemispheres, resulting in two treatments per rat (Table 5).









TABLE 5







Pulse parameters of various treatment protocols.













Rat


Frequency
Voltage



Number
Treatment
Hemisphere
(kHz)
(V)

















1
IRE
Left

100




H-FIRE
Right
250
100



2
IRE
Left

200




H-FIRE
Right
250
200



3
H-FIRE
Left
250
300




H-FIRE
Right
250
400



4
IRE
Left

50




H-FIRE
Right
500
400










H-FIRE experiments were performed using 180 bursts with a pulse on-time of 200 μs within each burst, and bursts were delivered at a rate of one per second. In Rat #1 and Rat #2, H-FIRE was applied at voltages of 100 V and 200 V, respectively, to the right hemisphere with a center frequency of 250 kHz (duration of single polarity equal to two microseconds). The left hemisphere of Rat #1 and Rat #2 were treated with 180 IRE pulses (200 μs duration) of equivalent energy. In Rat #3, H-FIRE was applied to the left and right hemispheres at voltages of 300 V and 400 V, respectively, with a frequency of 250 kHz. In Rat #4, H-FIRE was applied at a voltage of 400 V to the right hemisphere with a frequency of 500 kHz (duration of single polarity equal to one microsecond). The left hemisphere of Rat #4 was treated with 90 IRE pulses (200 μs) and an applied voltage of 50V. This lower energy scenario was designed to compare H-FIRE treatment outcomes to traditional IRE protocols in the brain. Kotnik, T. and D. Miklavcic, Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysical Journal, 2006. 90(2): p. 480-491.


Immediately following treatment, Rats #3 and #4 were subjected to MRI examinations of the brain while under general anesthesia. The MRI was performed with a 0.2 T MRI scanner using a dual phased array hand/wrist coil for RF signal transmission and reception. Sequence acquisition parameters were as follows: T1-weighted images were acquired using spin echo pulse sequence (TR=200 ms, TE=16 ms, FOV=6 cm, matrix=256×196, slice thickness=2 mm), and T2-weighted images were acquired using a gradient echo pulse sequence (TR=3000 ms, TE=90 ms, FOV=6 cm, matrix=256×196, slice thickness=3 mm) T1-weigthed images were obtained following intraperitoneal injection of 0.1 mmol/kg of gadopentetate dimeglumine (Magnevist, Berlex Laboratories, NJ, USA). In all rats, humane euthanasia was performed by cervical dislocation approximately 1 hr post-treatment, and the brain was removed and fixed intact in 10% neutral buffered formalin. Following fixation for 48 hours, an adult rat brain matrix slicer (Zivic Instruments, Pittsburgh, Pa.) was used to obtain contiguous 2 mm coronal brain sections from each animal Brain and sections were embedded routinely in paraffin, sectioned at 5 μm, and stained with hematoxylin and eosin (H&E).


Treatments evaluated in this study produced ablative lesions in brain tissue, as evaluated with MRI examinations (FIGS. 21A-F) and pathologic preparations (FIGS. 20A-D). In Rats #3 and #4, the MRI characteristics of both H-FIRE and IRE lesions were similar. The MRI appearance of lesions in rat brain appeared as focal, ovoid to elliptical, T1 iso- to hypo-intense, uniformly and markedly contrast enhanced (FIGS. 21A, B, C, D, F) and T2 hyper-intense (FIG. 21E). In all panels, lesions appear as focal hyper-intense regions (white) compared to adjacent untreated cerebrocortical tissue (gray). Top Panels (A-C) obtained from Rat #3, in which both the left and right cerebral hemispheres were treated with high-frequency waveforms at 300 V/250 kHz and 400 V/250 kHz, respectively. Bottom Panels (D-F), Rat #4, which underwent high-frequency, bipolar pulses in the right cerebrum at 400 V/500 kHz, and conventional IRE with unipolar pulses at 50 V in the left cerebrum. Panels A and D, post-gadolinium T1-weighted MRI sequences in the axial plane. Panel B, post-gadolinium T1-weighted MRI sequences in the right parasagittal plane. Panels C and F, post-gadolinium T1-weighted MRI sequences in the dorsal plane. Panel D, T2-weighted MRI sequence in the transverse plane. In all panels, the right side of the brain is on the left side of the panel.


All lesions were well demarcated from adjacent, normal brain tissue and appeared similar in size. Compared to untreated brain (FIGS. 20A and B), histopathologic examination of brain sections from all treatments demonstrated clear areas of ablation indicated by pallor of the treated tissue that was sharply delineated from adjacent normal brain (FIG. 20C). H-FIRE and IRE lesions were predominantly characterized by areas of complete obliteration of cerebrocortical architecture by an eosinophilic, vacuolated amorphous debris (FIGS. 20C and D). In Rat #1, the H-FIRE ablation zone was confined to regions of elevated electric field surrounding the electrodes, whereas all other pulsing protocols resulted in ablation zones spanning the entire region between the electrodes. Cavitary cerebrocortical defects were induced with H-FIRE in Rat #1 and IRE in Rat #4. Variably sized regions of intraparenchymal hemorrhage were most pronounced immediately adjacent to and within electrode insertion tracks. The morphology of remnant neuronal and glial elements within H-FIRE ablated regions demonstrated features of both apoptosis and necrosis, including shrunken and hypereosinophilic cytoplasm, nuclear chromatin condensation, and nuclear pyknosis and karyolysis (FIG. 20D). Free glial and neuronal nuclei in various states of degeneration were scattered throughout ablation zones. Inflammation was not a significant feature of IRE or H-FIRE lesions at the time point brains were examined.


EXAMPLE 8
Elimination of Muscle Contractions During High-Frequency IRE (H-FIRE) of Brain Tissue

Muscle contractions were monitored throughout the procedure described in EXAMPLE 7 with the accelerometer located in the interscapular region at the cervicothoracic junction. All IRE pulsing protocols were associated with macroscopic muscular contractions of the cervicothoracic junction, which were also palpable to the neurosurgeon, while no visual or tactile evidence of muscular contraction was seen during any of the H-FIRE bursts. These results were quantitatively confirmed by the data recordings from the accelerometer (FIGS. 22A-D). Peak acceleration was determined during the first 90 bursts of the highest energy H-FIRE protocol (400 V/250 kHz) and the first 90 pulses of each IRE protocol (50 V, 100 V, 200 V). A one-way ANOVA was used to investigate the effects of each protocol on the ranks of peak acceleration at the cervicothoracic junction. In the event of a significant main effect, pairwise comparisons were completed using Tukey's Honestly Significant Difference (HSD). All statistical analyses were conducted using JMP 7 (Cary, N.C., USA) with a significance level of p<0.05. Results indicate that, even in the highest energy H-FIRE protocol, there are no detectable peaks in acceleration above the inherent noise of the system. However, in all IRE protocols, peaks in acceleration associated with each pulse are detectable above the baseline noise. Further, pairwise comparisons between the various IRE protocols indicated that the mean peak acceleration during each treatment was energy dependent. Specifically, the mean peak acceleration decreased as the applied voltage decreased (FIG. 23).


EXAMPLE 9
Experimental Results of High-Frequency IRE (H-FIRE) of Liver Tissue

All study procedures were conducted following Institutional Animal Care and Use Committee approval and performed in a GLP compliant facility. Two, Fischer 344 male rats weighing 200-240 g were anesthetized by intraperitoneal injection of 10 mg/kg xylazine and 60 mg/kg ketamine hydrochloride, and a surgical plane of anesthesia was assessed by loss of the tail pinch reflex. A routine laparotomy surgical approach to the abdomen was made in order to expose the liver. Custom electrodes were inserted into the liver parenchyma and advanced to a depth of 2 mm beneath the surface. The electrodes were fashioned from steel pins (Dritz, 0.5 mm diameter), and the edge-to-edge electrode spacing was set to 1 mm by inserting the electrodes in a custom polycarbonate spacer.


In Rat #1, H-FIRE was applied at 1000 V/cm with 80 unipolar bursts at a center frequency of 2 MHz and, 50% duty cycle, and 50 μs burst width. In Rat #2 IRE was applied at an equivalent energy using 80 unipolar pulses with a duration of 50 μs and amplitude of 1000 V/cm. In all rats, humane euthanasia was performed by cervical dislocation approximately 1 hr post-treatment, and the liver was removed and fixed intact in 10% neutral buffered formalin. Following fixation for 48 hours, 5 mm sections from each animal were obtained and embedded routinely in paraffin, sectioned at 5 pm, and stained with hematoxylin and eosin (H&E).


Histologically, in both treatments, there is evidence of necrosis and sinusoidal congestion (FIGS. 19A-B). Additionally, the lesions are well demarcated with cell scale resolution between treated and untreated tissue. Both of these features are common to IRE ablation of liver. No evidence of muscle contraction was observed visually. These results supplement those presented in EXAMPLE 7 and confirm that H-FIRE ablation can be achieved in multiple tissue types.


EXAMPLE 10
The Electric Field Distribution During High-Frequency Electroporation can be Approximated by the Laplace Equation

A 2D axisymmetric FEM representative of a slab of non-infiltrated fat adjacent to dry skin was simulated using COMSOL 4.2a (Burlington, Mass.). An energized and grounded electrode were modeled as infinite fins (0.5 mm diameter) separated 0.5 cm from the skin-fat interface, for a total spacing of 1 cm. The electric potential distribution within the tissue was obtained by transiently solving Equation 7 (see Example 1). Additionally, the homogeneous solution was solved according to the Laplace equation:

—∇·(∇Φ)=0  (11)


For the heterogeneous case, the dielectric properties of various tissues were chosen from data generated by Gabriel et al. available at (http://niremf.ifac.cnr.it/docs/dielectric/home.html). Gabriel, S., R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues 0.2. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 1996. 41(11): p. 2251-2269. The data was interpolated in Mathematica 7 (Wolfram Research, Inc.) in order to estimate the dielectric properties at 1 kHz and 1 MHz. For the homogeneous case, the electric field distribution is independent of the dielectric properties. The energized and grounded electrodes were subtracted from the skin and fat subdomains, and treated purely as boundary conditions at 1000 V and 0V, respectively.



FIGS. 24A and B show the electric field distribution during a bipolar burst with the frequencies given in TABLE 6.









TABLE 6







Dielectric properties of skin and fat tissue at various frequencies.











Tissue










Frequency
Property
Skin
Fat













1 kHz
σ [S/m]
0.000180
0.0246



εr
1170
20800


1 MHz
σ [S/m]
0.0119
0.0267



εr
792
25









From the surface contour map, at 1 kHz, which is representative of a 500 μs traditional electroporation pulse, the electric field is highly non-uniform. A majority of the voltage drop occurs within the skin layer, and the fat layer remains untreated. However, at 1 MHz, which is representative of a 500 ns high-frequency electroporation pulse, the voltage drop is distributed more uniformly throughout the entire domain. As a result, both the skin and fat layers can be treated. Additionally, the electric field distribution at 1 MHz closely resembles that of the homogenous solution. Therefore, knowledge of dielectric properties and intricate geometrical arrangements of heterogeneous tissues can be neglected during treatment planning for high-frequency electroporation. This greatly reduces treatment planning protocols and produces more predictable outcomes.


The present invention has been described with reference to particular embodiments having various features. It will be apparent to those skilled in the art that various modifications and variations can be made in the practice of the present invention without departing from the scope or spirit of the invention. One skilled in the art will recognize that these features may be used singularly or in any combination based on the requirements and specifications of a given application or design. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention. Where a range of values is provided in this specification, each value between the upper and lower limits of that range is also specifically disclosed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range as well. As used in this specification, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It is intended that the specification and examples be considered as exemplary in nature and that variations that do not depart from the essence of the invention are intended to be within the scope of the invention. Further, the references cited in this disclosure are incorporated by reference herein in their entireties.

Claims
  • 1. A method of ablating tissue cells by non-thermal irreversible electroporation comprising: positioning one or more electrodes near a target area containing target tissue cells to be ablated;applying a plurality of electrical pulses to the target area through the positioned electrodes by applying pulses at a frequency rate of 50 kHz or higher with each electrical pulse having a pulse width of 10 microseconds or less, so as to ablate the target tissue cells by non-thermal irreversible electroporation.
  • 2. The method of claim 1, wherein the step of applying includes applying the plurality of electrical pulses at the frequency rate of between 50 kHz and 2 MHz, inclusive.
  • 3. The method of claim 1, wherein the step of applying includes applying the plurality of electrical pulses at the frequency rate of between 250 kHz and 2 MHz, inclusive.
  • 4. The method of claim 1, wherein the step of positioning includes non-invasively positioning the one or more electrodes near the target area.
  • 5. The method of claim 1, wherein the pulse width of a single electrical pulse is at least 100 nanoseconds.
  • 6. The method of claim 1, wherein the pulse width of a single electrical pulse is in the range of 250 nanoseconds to 2 microseconds, inclusive.
  • 7. The method of claim 1, wherein the step of applying includes applying a plurality of bipolar electrical pulses.
  • 8. The method of claim 1, wherein the step of applying includes applying a plurality of bipolar bursts of electrical pulses with multiple pulses in a single phase before a polarity switch.
  • 9. The method of claim 1, wherein the electrical pulses are square, ramp, sinusoidal, exponential, or trapezoidal.
  • 10. The method of claim 1, wherein the step of applying includes applying a burst of electrical pulses which is sufficient to cause a transmembrane potential (TMP) of the target tissue cells to rise above a critical threshold (CT) for inducing electroporation while a single electrical pulse in the burst of electrical pulses is insufficient to cause the TMP of the target tissue cells to rise above the CT.
  • 11. The method of claim 1, wherein the step of applying includes applying a plurality of electrical pulses wherein each electrical pulse is sufficient to cause a transmembrane potential (TMP) of the target tissue cells to rise above a critical threshold (CT) for inducing electroporation.
  • 12. The method of claim 1, wherein the step of applying includes applying a burst of electrical pulses which is sufficient to cause a transmembrane potential (TMP) of the target tissue cells to rise above a critical threshold for inducing irreversible electroporation (CTIRE) while a single electrical pulse in the burst of electrical pulses is insufficient to cause the TMP of the target tissue cells to rise above the CTIRE.
  • 13. The method of claim 12, wherein the CTIRE is about 1 Volt.
  • 14. The method of claim 1, wherein the step of applying includes applying a plurality of electrical pulses wherein each electrical pulse is sufficient to cause a transmembrane potential (TMP) of the target tissue cells to rise above a critical threshold (CT) for inducing irreversible electroporation.
  • 15. The method of claim 1, wherein the step of applying includes applying the electrical pulses at 2500 V/cm or lower.
  • 16. The method of claim 1, wherein the step of applying includes controlling voltage and pulse width of the electrical pulses to reduce tissue stimulation sufficiently to perform tissue ablation without using general anesthesia.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to and is a Divisional of parent application U.S. patent application Ser. No. 13/332,133 filed Dec. 20, 2011, which published as U.S. Patent Application Publication No. 20120109122 on May 3, 2012. The '133 application relies on and claims priority to and the benefit of the filing date of U.S. Provisional Patent Application No. 61/424,872 filed Dec. 20, 2010. The '133 application is a Continuation-In-Part (CIP) application of U.S. patent application Ser. No. 12/757,901, filed Apr. 9, 2010 (patented as U.S. Pat. No. 8,926,606 on Jan. 6, 2015), which relies on and claims priority to and the benefit of the filing date of U.S. Provisional Patent Application No. 61/167,997, filed Apr. 9, 2009, and 61/285,618 filed Dec. 11, 2009. The present application is also related to International Patent Application No. PCT/US 11/66239, filed Dec. 20, 2011, which published as WO 2012/088149 on Jun. 28, 2012. The entire disclosures of all of these patent applications are hereby incorporated herein by reference.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under Contract No. CBET-0933335 awarded by National Science Foundation. The government has certain rights in the invention.

US Referenced Citations (807)
Number Name Date Kind
1653819 Northcott et al. Dec 1927 A
3730238 Butler May 1973 A
3746004 Jankelson Jul 1973 A
3871359 Pacela Mar 1975 A
4016886 Doss et al. Apr 1977 A
4037341 Odle et al. Jul 1977 A
4216860 Heimann Aug 1980 A
4226246 Fragnet Oct 1980 A
4262672 Kief Apr 1981 A
4267047 Henne et al. May 1981 A
4278092 Borsanyi et al. Jul 1981 A
4299217 Sagae et al. Nov 1981 A
4311148 Courtney et al. Jan 1982 A
4336881 Babb et al. Jun 1982 A
4344436 Kubota Aug 1982 A
4392855 Oreopoulos et al. Jul 1983 A
4406827 Carim Sep 1983 A
4407943 Cole et al. Oct 1983 A
4416276 Newton et al. Nov 1983 A
4447235 Clarke May 1984 A
4469098 Davi Sep 1984 A
4489535 Veltman Dec 1984 A
4512765 Muto Apr 1985 A
4580572 Granek et al. Apr 1986 A
4636199 Victor Jan 1987 A
4672969 Dew Jun 1987 A
4676258 Inokuchi et al. Jun 1987 A
4676782 Yamamoto et al. Jun 1987 A
4687471 Twardowski et al. Aug 1987 A
4716896 Ackerman Jan 1988 A
4723549 Wholey et al. Feb 1988 A
D294519 Hardy Mar 1988 S
4756838 Veltman Jul 1988 A
4772269 Twardowski et al. Sep 1988 A
4798585 Inoue et al. Jan 1989 A
4810963 Blake-Coleman et al. Mar 1989 A
4813929 Semrad Mar 1989 A
4819637 Dormandy et al. Apr 1989 A
4822470 Chang Apr 1989 A
4836204 Landymore et al. Jun 1989 A
4840172 Augustine et al. Jun 1989 A
4863426 Ferragamo et al. Sep 1989 A
4885003 Hillstead Dec 1989 A
4886496 Conoscenti et al. Dec 1989 A
4886502 Poirier et al. Dec 1989 A
4889634 El-Rashidy Dec 1989 A
4907601 Frick Mar 1990 A
4919148 Muccio Apr 1990 A
4920978 Colvin May 1990 A
4921484 Hillstead May 1990 A
4946793 Marshall, III Aug 1990 A
4976709 Sand Dec 1990 A
4981477 Schon et al. Jan 1991 A
4986810 Semrad Jan 1991 A
4987895 Heimlich Jan 1991 A
5019034 Weaver et al. May 1991 A
5031775 Kane Jul 1991 A
5052391 Silberstone et al. Oct 1991 A
5053013 Ensminger et al. Oct 1991 A
5058605 Slovak Oct 1991 A
5071558 Itoh Dec 1991 A
5098843 Calvin Mar 1992 A
5122137 Lennox Jun 1992 A
5134070 Casnig Jul 1992 A
5137517 Loney et al. Aug 1992 A
5141499 Zappacosta Aug 1992 A
D329496 Wotton Sep 1992 S
5156597 Verreet et al. Oct 1992 A
5173158 Schmukler Dec 1992 A
5186715 Phillips et al. Feb 1993 A
5186800 Dower Feb 1993 A
5188592 Hakki Feb 1993 A
5190541 Abele et al. Mar 1993 A
5192312 Orton Mar 1993 A
5193537 Freeman Mar 1993 A
5209723 Twardowski et al. May 1993 A
5215530 Hogan Jun 1993 A
5224933 Bromander Jul 1993 A
5227730 King et al. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5273525 Hofmann Dec 1993 A
D343687 Houghton et al. Jan 1994 S
5277201 Stern Jan 1994 A
5279564 Taylor Jan 1994 A
5281213 Milder Jan 1994 A
5283194 Schmukler Feb 1994 A
5290263 Wigness et al. Mar 1994 A
5308325 Quinn et al. May 1994 A
5308338 Helfrich May 1994 A
5318543 Ross et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5328451 Davis et al. Jul 1994 A
5334167 Cocanower Aug 1994 A
5348554 Imran et al. Sep 1994 A
D351661 Fischer Oct 1994 S
5383917 Desai et al. Jan 1995 A
5389069 Weaver Feb 1995 A
5391158 Peters Feb 1995 A
5403311 Abele et al. Apr 1995 A
5405320 Twardowski et al. Apr 1995 A
5425752 Vu Nguyen Jun 1995 A
5439440 Hofmann Aug 1995 A
5458625 Kendall Oct 1995 A
5484400 Edwards et al. Jan 1996 A
5484401 Rodriguez et al. Jan 1996 A
5533999 Hood et al. Jul 1996 A
5536240 Edwards et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540737 Fenn Jul 1996 A
5546940 Panescu et al. Aug 1996 A
5562720 Stern et al. Oct 1996 A
5575811 Reid et al. Nov 1996 A
D376652 Hunt et al. Dec 1996 S
5582588 Sakurai et al. Dec 1996 A
5586982 Abela Dec 1996 A
5588424 Insler et al. Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5599294 Edwards et al. Feb 1997 A
5599311 Raulerson Feb 1997 A
5616126 Malekmehr et al. Apr 1997 A
5620479 Diederich Apr 1997 A
5626146 Barber et al. May 1997 A
D380272 Partika et al. Jun 1997 S
5634899 Shapland et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5645855 Lorenz Jul 1997 A
5672173 Gough et al. Sep 1997 A
5674267 Mir et al. Oct 1997 A
5683384 Gough et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5690620 Knott Nov 1997 A
5697905 d'Ambrosio Dec 1997 A
5700252 Klingenstein Dec 1997 A
5702359 Hofmann et al. Dec 1997 A
5718246 Vona Feb 1998 A
5720921 Meserol Feb 1998 A
5735847 Gough et al. Apr 1998 A
5752939 Makoto May 1998 A
5778894 Dorogi et al. Jul 1998 A
5782882 Lerman et al. Jul 1998 A
5800378 Edwards et al. Sep 1998 A
5800484 Gough et al. Sep 1998 A
5807272 Kun et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810742 Pearlman Sep 1998 A
5810762 Hofmann Sep 1998 A
5830184 Basta Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5843026 Edwards et al. Dec 1998 A
5843182 Goldstein Dec 1998 A
5865787 Shapland et al. Feb 1999 A
5868708 Hart et al. Feb 1999 A
5873849 Bernard Feb 1999 A
5904648 Amdt et al. May 1999 A
5919142 Boone et al. Jul 1999 A
5919191 Lennox et al. Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5944710 Dev et al. Aug 1999 A
5947284 Foster Sep 1999 A
5947889 Hehrlein Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5957919 Laufer Sep 1999 A
5957963 Dobak Sep 1999 A
5968006 Hofmann Oct 1999 A
5983131 Weaver et al. Nov 1999 A
5984896 Boyd Nov 1999 A
5991697 Nelson et al. Nov 1999 A
5999847 Elstrom Dec 1999 A
6004339 Wijay Dec 1999 A
6009347 Hofmann Dec 1999 A
6009877 Edwards Jan 2000 A
6010613 Walters et al. Jan 2000 A
6016452 Kasevich Jan 2000 A
6029090 Herbst Feb 2000 A
6041252 Walker et al. Mar 2000 A
6043066 Mangano et al. Mar 2000 A
6050994 Sherman Apr 2000 A
6055453 Hofmann et al. Apr 2000 A
6059780 Gough et al. May 2000 A
6066134 Eggers et al. May 2000 A
6068121 McGlinch May 2000 A
6068650 Hofmann et al. May 2000 A
6071281 Burnside et al. Jun 2000 A
6074374 Fulton Jun 2000 A
6074389 Levine et al. Jun 2000 A
6085115 Weaver et al. Jul 2000 A
6090016 Kuo Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
D430015 Himbert et al. Aug 2000 S
6096035 Sodhi et al. Aug 2000 A
6102885 Bass Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109270 Mah et al. Aug 2000 A
6110192 Ravenscroft et al. Aug 2000 A
6113593 Tu et al. Sep 2000 A
6116330 Salyer Sep 2000 A
6122599 Mehta Sep 2000 A
6123701 Nezhat Sep 2000 A
6132397 Davis et al. Oct 2000 A
6132419 Hofmann Oct 2000 A
6134460 Chance Oct 2000 A
6139545 Utley et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6159163 Strauss et al. Dec 2000 A
6178354 Gibson Jan 2001 B1
D437941 Frattini Feb 2001 S
6193715 Wrublewski et al. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6200314 Sherman Mar 2001 B1
6208893 Hofmann Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6212433 Behl Apr 2001 B1
6216034 Hofmann et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
D442697 Hajianpour May 2001 S
6233490 Kasevich May 2001 B1
6235023 Lee et al. May 2001 B1
D443360 Haberland Jun 2001 S
6241702 Lundquist et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
D445198 Frattini Jul 2001 S
6258100 Alferness et al. Jul 2001 B1
6261831 Agee Jul 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6278895 Bernard Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6284140 Sommermeyer et al. Sep 2001 B1
6287293 Jones et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6298726 Adachi et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6300108 Rubinsky et al. Oct 2001 B1
D450391 Hunt et al. Nov 2001 S
6312428 Eggers et al. Nov 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6347247 Dev et al. Feb 2002 B1
6349233 Adams Feb 2002 B1
6351674 Silverstone Feb 2002 B2
6387671 Rubinsky et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6403348 Rubinsky et al. Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6419674 Bowser et al. Jul 2002 B1
6428802 Atala Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6463331 Edwards Oct 2002 B1
6470211 Ideker et al. Oct 2002 B1
6482221 Hebert et al. Nov 2002 B1
6482619 Rubinsky et al. Nov 2002 B1
6485487 Sherman Nov 2002 B1
6488673 Laufer et al. Dec 2002 B1
6488678 Sherman Dec 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6491706 Alferness et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6493592 Leonard et al. Dec 2002 B1
6500173 Underwood et al. Dec 2002 B2
6503248 Levine Jan 2003 B1
6506189 Rittman et al. Jan 2003 B1
6514248 Eggers et al. Feb 2003 B1
6520183 Amar Feb 2003 B2
6526320 Mitchell Feb 2003 B2
D471640 McMichael et al. Mar 2003 S
D471641 McMichael et al. Mar 2003 S
6530922 Cosman et al. Mar 2003 B2
6533784 Truckai et al. Mar 2003 B2
6537976 Gupta Mar 2003 B1
6558378 Sherman et al. May 2003 B2
6562604 Rubinsky et al. May 2003 B2
6569162 He May 2003 B2
6575969 Rittman et al. Jun 2003 B1
6589161 Corcoran Jul 2003 B2
6592594 Rimbaugh et al. Jul 2003 B2
6607529 Jones et al. Aug 2003 B1
6610054 Edwards et al. Aug 2003 B1
6611706 Avrahami et al. Aug 2003 B2
6613211 Mccormick et al. Sep 2003 B1
6616657 Simpson et al. Sep 2003 B2
6627421 Unger et al. Sep 2003 B1
D480816 McMichael et al. Oct 2003 S
6634363 Danek et al. Oct 2003 B1
6638253 Breznock Oct 2003 B2
6653091 Dunn et al. Nov 2003 B1
6666858 Lafontaine Dec 2003 B2
6669691 Taimisto Dec 2003 B1
6673070 Edwards et al. Jan 2004 B2
6678558 Dimmer et al. Jan 2004 B1
6689096 Loubens et al. Feb 2004 B1
6692493 Mcgovern et al. Feb 2004 B2
6694979 Deem et al. Feb 2004 B2
6694984 Habib Feb 2004 B2
6695861 Rosenberg et al. Feb 2004 B1
6697669 Dev et al. Feb 2004 B2
6697670 Chomenky et al. Feb 2004 B2
6702808 Kreindel Mar 2004 B1
6712811 Underwood et al. Mar 2004 B2
D489973 Root et al. May 2004 S
6753171 Karube et al. Jun 2004 B2
6761716 Kadhiresan et al. Jul 2004 B2
D495807 Agbodoe et al. Sep 2004 S
6795728 Chornenky et al. Sep 2004 B2
6801804 Miller et al. Oct 2004 B2
6812204 McHale et al. Nov 2004 B1
6837886 Collins et al. Jan 2005 B2
6847848 Sterzer et al. Jan 2005 B2
6860847 Alferness et al. Mar 2005 B2
6865416 Dev et al. Mar 2005 B2
6881213 Ryan et al. Apr 2005 B2
6892099 Jaafar et al. May 2005 B2
6895267 Panescu et al. May 2005 B2
6905480 McGuckin et al. Jun 2005 B2
6912417 Bernard et al. Jun 2005 B1
6927049 Rubinsky et al. Aug 2005 B2
6941950 Wilson et al. Sep 2005 B2
6942681 Johnson Sep 2005 B2
6958062 Gough et al. Oct 2005 B1
6960189 Bates et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6972013 Zhang et al. Dec 2005 B1
6972014 Eum et al. Dec 2005 B2
6989010 Francischelli et al. Jan 2006 B2
6994689 Zadno-Azizi et al. Feb 2006 B1
6994706 Chornenky et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7012061 Reiss et al. Mar 2006 B1
7027869 Danek et al. Apr 2006 B2
7036510 Zgoda et al. May 2006 B2
7053063 Rubinsky et al. May 2006 B2
7054685 Dimmer et al. May 2006 B2
7063698 Whayne et al. Jun 2006 B2
7087040 McGuckin et al. Aug 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7100616 Springmeyer Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7130697 Chornenky et al. Oct 2006 B2
7211083 Chornenky et al. May 2007 B2
7232437 Berman et al. Jun 2007 B2
7250048 Francischelli et al. Jul 2007 B2
D549332 Matsumoto et al. Aug 2007 S
7257450 Auth et al. Aug 2007 B2
7264002 Danek et al. Sep 2007 B2
7267676 Chornenky et al. Sep 2007 B2
7273055 Danek et al. Sep 2007 B2
7291146 Steinke et al. Nov 2007 B2
7331940 Sommerich Feb 2008 B2
7331949 Marisi Feb 2008 B2
7341558 Torre et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
D565743 Phillips et al. Apr 2008 S
D571478 Horacek Jun 2008 S
7387626 Edwards et al. Jun 2008 B2
7399747 Clair et al. Jul 2008 B1
D575399 Matsumoto et al. Aug 2008 S
D575402 Sandor Aug 2008 S
7419487 Johnson et al. Sep 2008 B2
7434578 Dillard et al. Oct 2008 B2
7449019 Uchida et al. Nov 2008 B2
7451765 Adler Nov 2008 B2
7455675 Schur et al. Nov 2008 B2
7476203 DeVore et al. Jan 2009 B2
7520877 Lee et al. Apr 2009 B2
7533671 Gonzalez et al. May 2009 B2
D595422 Mustapha Jun 2009 S
7544301 Shah et al. Jun 2009 B2
7549984 Mathis Jun 2009 B2
7565208 Harris et al. Jul 2009 B2
7571729 Saadat et al. Aug 2009 B2
7632291 Stephens et al. Dec 2009 B2
7655004 Long Feb 2010 B2
7674249 Ivorra et al. Mar 2010 B2
7680543 Azure Mar 2010 B2
D613418 Ryan et al. Apr 2010 S
7718409 Rubinsky et al. May 2010 B2
7722606 Azure May 2010 B2
7742795 Stone et al. Jun 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7771401 Hekmat et al. Aug 2010 B2
RE42016 Chornenky et al. Dec 2010 E
D630321 Hamilton Jan 2011 S
D631154 Hamilton Jan 2011 S
RE42277 Jaafar et al. Apr 2011 E
7918852 Tullis et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938824 Chornenky et al. May 2011 B2
7951582 Gazit et al. May 2011 B2
7955827 Rubinsky et al. Jun 2011 B2
RE42835 Chornenky et al. Oct 2011 E
D647628 Helfteren Oct 2011 S
8048067 Davalos et al. Nov 2011 B2
RE43009 Chornenky et al. Dec 2011 E
8109926 Azure Feb 2012 B2
8114070 Rubinsky et al. Feb 2012 B2
8162918 Ivorra et al. Apr 2012 B2
8187269 Shadduck et al. May 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8231603 Hobbs et al. Jul 2012 B2
8240468 Wilkinson et al. Aug 2012 B2
8251986 Chornenky et al. Aug 2012 B2
8267927 Dalal et al. Sep 2012 B2
8267936 Hushka et al. Sep 2012 B2
8282631 Davalos et al. Oct 2012 B2
8298222 Rubinsky et al. Oct 2012 B2
8348921 Ivorra et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
D677798 Hart et al. Mar 2013 S
8425455 Nentwick Apr 2013 B2
8425505 Long Apr 2013 B2
8454594 Demarais et al. Jun 2013 B2
8465484 Davalos et al. Jun 2013 B2
8511317 Thapliyal et al. Aug 2013 B2
8518031 Boyden et al. Aug 2013 B2
8562588 Hobbs et al. Oct 2013 B2
8603087 Rubinsky et al. Dec 2013 B2
8632534 Pearson et al. Jan 2014 B2
8634929 Chornenky et al. Jan 2014 B2
8647338 Chornenky et al. Feb 2014 B2
8715276 Thompson et al. May 2014 B2
8753335 Moshe et al. Jun 2014 B2
8814860 Davalos et al. Aug 2014 B2
8835166 Phillips et al. Sep 2014 B2
8845635 Daniel et al. Sep 2014 B2
8880195 Azure Nov 2014 B2
8903488 Callas et al. Dec 2014 B2
8906006 Chornenky et al. Dec 2014 B2
8926606 Davalos et al. Jan 2015 B2
8958888 Chornenky et al. Feb 2015 B2
8968542 Davalos et al. Mar 2015 B2
8992517 Davalos et al. Mar 2015 B2
9005189 Davalos et al. Apr 2015 B2
9078665 Moss et al. Jul 2015 B2
9149331 Deem et al. Oct 2015 B2
9173704 Hobbs et al. Nov 2015 B2
9198733 Neal, II et al. Dec 2015 B2
9283051 Garcia et al. Mar 2016 B2
9414881 Callas et al. Aug 2016 B2
9598691 Davalos Mar 2017 B2
9867652 Sano et al. Jan 2018 B2
10117707 Garcia et al. Nov 2018 B2
10154874 Davalos et al. Dec 2018 B2
20010039393 Mori et al. Nov 2001 A1
20010044596 Jaafar Nov 2001 A1
20010046706 Rubinsky et al. Nov 2001 A1
20010047167 Heggeness Nov 2001 A1
20010051366 Rubinsky et al. Dec 2001 A1
20020002393 Mitchell Jan 2002 A1
20020010491 Schoenbach et al. Jan 2002 A1
20020022864 Mahvi et al. Feb 2002 A1
20020040204 Dev et al. Apr 2002 A1
20020049370 Laufer et al. Apr 2002 A1
20020052601 Goldberg et al. May 2002 A1
20020055731 Atala et al. May 2002 A1
20020065541 Fredricks et al. May 2002 A1
20020072742 Schaefer et al. Jun 2002 A1
20020077314 Falk et al. Jun 2002 A1
20020077676 Schroeppel et al. Jun 2002 A1
20020082543 Park et al. Jun 2002 A1
20020099323 Dev et al. Jul 2002 A1
20020111615 Cosman et al. Aug 2002 A1
20020112729 DeVore et al. Aug 2002 A1
20020115208 Mitchell et al. Aug 2002 A1
20020119437 Grooms et al. Aug 2002 A1
20020133324 Weaver et al. Sep 2002 A1
20020137121 Rubinsky et al. Sep 2002 A1
20020138075 Edwards et al. Sep 2002 A1
20020138117 Son Sep 2002 A1
20020143365 Herbst Oct 2002 A1
20020147462 Mair et al. Oct 2002 A1
20020156472 Lee et al. Oct 2002 A1
20020161361 Sherman et al. Oct 2002 A1
20020183684 Dev et al. Dec 2002 A1
20020183735 Edwards et al. Dec 2002 A1
20020183740 Edwards et al. Dec 2002 A1
20020188242 Wu Dec 2002 A1
20020193784 McHale et al. Dec 2002 A1
20020193831 Smith Dec 2002 A1
20030009110 Tu et al. Jan 2003 A1
20030016168 Jandrell Jan 2003 A1
20030055220 Legrain Mar 2003 A1
20030055420 Kadhiresan et al. Mar 2003 A1
20030059945 Dzekunov et al. Mar 2003 A1
20030060856 Chornenky et al. Mar 2003 A1
20030078490 Damasco et al. Apr 2003 A1
20030088189 Tu et al. May 2003 A1
20030088199 Kawaji May 2003 A1
20030096407 Atala et al. May 2003 A1
20030105454 Cucin Jun 2003 A1
20030109871 Johnson et al. Jun 2003 A1
20030127090 Gifford et al. Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030135242 Mongeon et al. Jul 2003 A1
20030149451 Chomenky et al. Aug 2003 A1
20030154988 DeVore et al. Aug 2003 A1
20030159700 Laufer et al. Aug 2003 A1
20030166181 Rubinsky et al. Sep 2003 A1
20030170898 Gundersen et al. Sep 2003 A1
20030194808 Rubinsky et al. Oct 2003 A1
20030195385 DeVore Oct 2003 A1
20030195406 Jenkins et al. Oct 2003 A1
20030199050 Mangano et al. Oct 2003 A1
20030208200 Palanker et al. Nov 2003 A1
20030208236 Heil et al. Nov 2003 A1
20030212394 Pearson et al. Nov 2003 A1
20030212412 Dillard et al. Nov 2003 A1
20030225360 Eppstein et al. Dec 2003 A1
20030228344 Fields et al. Dec 2003 A1
20040009459 Anderson et al. Jan 2004 A1
20040019371 Jaafar et al. Jan 2004 A1
20040055606 Hendricksen et al. Mar 2004 A1
20040059328 Daniel et al. Mar 2004 A1
20040059389 Chornenky et al. Mar 2004 A1
20040068228 Cunningham Apr 2004 A1
20040116965 Falkenberg Jun 2004 A1
20040133194 Eum et al. Jul 2004 A1
20040138715 Groeningen et al. Jul 2004 A1
20040146877 Diss et al. Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040176855 Badylak Sep 2004 A1
20040193097 Hofmann et al. Sep 2004 A1
20040199159 Lee et al. Oct 2004 A1
20040200484 Springmeyer Oct 2004 A1
20040206349 Alferness et al. Oct 2004 A1
20040210248 Gordon et al. Oct 2004 A1
20040230187 Lee et al. Nov 2004 A1
20040236376 Miklavcic et al. Nov 2004 A1
20040243107 Macoviak et al. Dec 2004 A1
20040267189 Mavor et al. Dec 2004 A1
20040267340 Cioanta et al. Dec 2004 A1
20050010209 Lee et al. Jan 2005 A1
20050010259 Gerber Jan 2005 A1
20050013870 Freyman et al. Jan 2005 A1
20050020965 Rioux et al. Jan 2005 A1
20050043726 Mchale et al. Feb 2005 A1
20050048651 Ryttsen et al. Mar 2005 A1
20050049541 Behar et al. Mar 2005 A1
20050061322 Freitag Mar 2005 A1
20050066974 Fields et al. Mar 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050165393 Eppstein Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050171523 Rubinsky et al. Aug 2005 A1
20050171574 Rubinsky et al. Aug 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050197619 Rule et al. Sep 2005 A1
20050261672 Deem et al. Nov 2005 A1
20050267407 Goldman Dec 2005 A1
20050282284 Rubinsky et al. Dec 2005 A1
20050288684 Aronson et al. Dec 2005 A1
20050288702 McGurk et al. Dec 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060004356 Bilski et al. Jan 2006 A1
20060004400 McGurk et al. Jan 2006 A1
20060009748 Mathis Jan 2006 A1
20060015147 Persson et al. Jan 2006 A1
20060020347 Barrett et al. Jan 2006 A1
20060024359 Walker et al. Feb 2006 A1
20060025760 Podhajsky Feb 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079838 Walker et al. Apr 2006 A1
20060079845 Howard et al. Apr 2006 A1
20060079883 Elmouelhi et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089635 Young et al. Apr 2006 A1
20060121610 Rubinsky et al. Jun 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060149123 Vidlund et al. Jul 2006 A1
20060173490 Lafontaine et al. Aug 2006 A1
20060182684 Beliveau Aug 2006 A1
20060195146 Tracey et al. Aug 2006 A1
20060212032 Daniel et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060217703 Chornenky et al. Sep 2006 A1
20060224188 Libbus et al. Oct 2006 A1
20060235474 Demarais Oct 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264807 Westersten et al. Nov 2006 A1
20060269531 Beebe et al. Nov 2006 A1
20060276710 Krishnan Dec 2006 A1
20060283462 Fields et al. Dec 2006 A1
20060293713 Rubinsky et al. Dec 2006 A1
20060293725 Rubinsky et al. Dec 2006 A1
20060293730 Rubinsky et al. Dec 2006 A1
20060293731 Rubinsky et al. Dec 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010805 Fedewa et al. Jan 2007 A1
20070016183 Lee et al. Jan 2007 A1
20070016185 Tullis et al. Jan 2007 A1
20070021803 Deem et al. Jan 2007 A1
20070025919 Deem et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070078391 Wortley et al. Apr 2007 A1
20070088347 Young et al. Apr 2007 A1
20070093789 Smith Apr 2007 A1
20070096048 Clerc May 2007 A1
20070118069 Persson et al. May 2007 A1
20070129711 Altshuler et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070156135 Rubinsky et al. Jul 2007 A1
20070191889 Lang Aug 2007 A1
20070203486 Young Aug 2007 A1
20070230757 Trachtenberg et al. Oct 2007 A1
20070239099 Goldfarb et al. Oct 2007 A1
20070244521 Bornzin et al. Oct 2007 A1
20070287950 Kjeken et al. Dec 2007 A1
20070295336 Nelson et al. Dec 2007 A1
20070295337 Nelson et al. Dec 2007 A1
20080015571 Rubinsky et al. Jan 2008 A1
20080021371 Rubinsky et al. Jan 2008 A1
20080027314 Miyazaki et al. Jan 2008 A1
20080027343 Fields et al. Jan 2008 A1
20080033340 Heller et al. Feb 2008 A1
20080033417 Nields et al. Feb 2008 A1
20080045880 Kjeken et al. Feb 2008 A1
20080052786 Lin et al. Feb 2008 A1
20080071262 Azure Mar 2008 A1
20080097139 Clerc et al. Apr 2008 A1
20080097422 Edwards et al. Apr 2008 A1
20080103529 Schoenbach et al. May 2008 A1
20080121375 Richason et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132826 Shadduck et al. Jun 2008 A1
20080132884 Rubinsky et al. Jun 2008 A1
20080132885 Rubinsky et al. Jun 2008 A1
20080140064 Vegesna Jun 2008 A1
20080146934 Czygan et al. Jun 2008 A1
20080154259 Gough et al. Jun 2008 A1
20080167649 Edwards et al. Jul 2008 A1
20080171985 Karakoca Jul 2008 A1
20080190434 Wai Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200912 Long Aug 2008 A1
20080208052 LePivert et al. Aug 2008 A1
20080210243 Clayton et al. Sep 2008 A1
20080214986 Ivorra et al. Sep 2008 A1
20080236593 Nelson et al. Oct 2008 A1
20080249503 Fields et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080269586 Rubinsky et al. Oct 2008 A1
20080269838 Brighton et al. Oct 2008 A1
20080275465 Paul et al. Nov 2008 A1
20080281319 Paul et al. Nov 2008 A1
20080283065 Chang et al. Nov 2008 A1
20080288038 Paul et al. Nov 2008 A1
20080300589 Paul et al. Dec 2008 A1
20080306427 Bailey Dec 2008 A1
20080312599 Rosenberg Dec 2008 A1
20090018206 Barkan et al. Jan 2009 A1
20090024075 Schroeppel et al. Jan 2009 A1
20090029407 Gazit et al. Jan 2009 A1
20090038752 Weng et al. Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090081272 Clarke et al. Mar 2009 A1
20090105703 Shadduck Apr 2009 A1
20090114226 Deem et al. May 2009 A1
20090125009 Zikorus et al. May 2009 A1
20090138014 Bonutti May 2009 A1
20090143705 Danek et al. Jun 2009 A1
20090157166 Singhal et al. Jun 2009 A1
20090163904 Miller et al. Jun 2009 A1
20090171280 Samuel et al. Jul 2009 A1
20090177111 Miller et al. Jul 2009 A1
20090186850 Kiribayashi et al. Jul 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090228001 Pacey Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090275827 Aiken et al. Nov 2009 A1
20090281477 Mikus et al. Nov 2009 A1
20090292342 Rubinsky et al. Nov 2009 A1
20090301480 Elsakka et al. Dec 2009 A1
20090306544 Ng et al. Dec 2009 A1
20090306545 Elsakka et al. Dec 2009 A1
20090318905 Bhargav et al. Dec 2009 A1
20090326436 Rubinsky et al. Dec 2009 A1
20090326570 Brown Dec 2009 A1
20100004623 Hamilton et al. Jan 2010 A1
20100023004 Francischelli et al. Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100057074 Roman et al. Mar 2010 A1
20100069921 Miller et al. Mar 2010 A1
20100087813 Long Apr 2010 A1
20100130975 Long May 2010 A1
20100147701 Field Jun 2010 A1
20100152725 Pearson et al. Jun 2010 A1
20100160850 Ivorra et al. Jun 2010 A1
20100168735 Deno et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100196984 Rubinsky et al. Aug 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100204638 Hobbs et al. Aug 2010 A1
20100222677 Placek et al. Sep 2010 A1
20100228234 Hyde et al. Sep 2010 A1
20100228247 Paul et al. Sep 2010 A1
20100241117 Paul et al. Sep 2010 A1
20100249771 Pearson et al. Sep 2010 A1
20100250209 Pearson et al. Sep 2010 A1
20100255795 Rubinsky et al. Oct 2010 A1
20100256628 Pearson et al. Oct 2010 A1
20100256630 Hamilton, Jr. et al. Oct 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100286690 Paul et al. Nov 2010 A1
20100298823 Cao et al. Nov 2010 A1
20100331758 Davalos et al. Dec 2010 A1
20110017207 Hendricksen et al. Jan 2011 A1
20110034209 Rubinsky et al. Feb 2011 A1
20110064671 Bynoe Mar 2011 A1
20110106221 Robert et al. May 2011 A1
20110112531 Landis et al. May 2011 A1
20110118727 Fish et al. May 2011 A1
20110118732 Rubinsky et al. May 2011 A1
20110130834 Wilson et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110144635 Harper et al. Jun 2011 A1
20110144657 Fish et al. Jun 2011 A1
20110152678 Aljuri et al. Jun 2011 A1
20110202053 Moss et al. Aug 2011 A1
20110217730 Gazit et al. Sep 2011 A1
20110251607 Kruecker et al. Oct 2011 A1
20110301587 Deem et al. Dec 2011 A1
20120034131 Rubinsky et al. Feb 2012 A1
20120059255 Paul et al. Mar 2012 A1
20120071872 Rubinsky et al. Mar 2012 A1
20120071874 Davalos et al. Mar 2012 A1
20120085649 Sano et al. Apr 2012 A1
20120089009 Omary et al. Apr 2012 A1
20120090646 Tanaka et al. Apr 2012 A1
20120095459 Callas et al. Apr 2012 A1
20120109122 Arena et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120150172 Ortiz et al. Jun 2012 A1
20120165813 Lee et al. Jun 2012 A1
20120179091 Ivorra et al. Jul 2012 A1
20120226218 Phillips et al. Sep 2012 A1
20120226271 Callas et al. Sep 2012 A1
20120265186 Burger et al. Oct 2012 A1
20120277741 Davalos et al. Nov 2012 A1
20120303020 Chornenky et al. Nov 2012 A1
20120310236 Placek et al. Dec 2012 A1
20130090646 Moss et al. Apr 2013 A1
20130108667 Soikum et al. May 2013 A1
20130110106 Richardson May 2013 A1
20130184702 Neal, II et al. Jul 2013 A1
20130196441 Rubinsky et al. Aug 2013 A1
20130197425 Golberg et al. Aug 2013 A1
20130202766 Rubinsky et al. Aug 2013 A1
20130218157 Callas et al. Aug 2013 A1
20130253415 Sano et al. Sep 2013 A1
20130281968 Davalos et al. Oct 2013 A1
20130345697 Garcia et al. Dec 2013 A1
20130345779 Maor et al. Dec 2013 A1
20140039489 Davalos et al. Feb 2014 A1
20140046322 Callas et al. Feb 2014 A1
20140066913 Sherman Mar 2014 A1
20140081255 Johnson et al. Mar 2014 A1
20140088578 Rubinsky et al. Mar 2014 A1
20140121663 Pearson et al. May 2014 A1
20140121728 Dhillon et al. May 2014 A1
20140163551 Maor et al. Jun 2014 A1
20140207133 Model et al. Jul 2014 A1
20140296844 Kevin et al. Oct 2014 A1
20140309579 Rubinsky et al. Oct 2014 A1
20140378964 Pearson Dec 2014 A1
20150088120 Garcia et al. Mar 2015 A1
20150088220 Callas et al. Mar 2015 A1
20150112333 Chorenky et al. Apr 2015 A1
20150126922 Willis May 2015 A1
20150164584 Davalos et al. Jun 2015 A1
20150173824 Davalos et al. Jun 2015 A1
20150201996 Rubinsky et al. Jul 2015 A1
20150265349 Moss et al. Sep 2015 A1
20150289923 Davalos et al. Oct 2015 A1
20150320488 Moshe et al. Nov 2015 A1
20150327944 Davalos et al. Nov 2015 A1
20160022957 Hobbs et al. Jan 2016 A1
20160066977 Neal et al. Mar 2016 A1
20160074114 Pearson et al. Mar 2016 A1
20160113708 Moss et al. Apr 2016 A1
20160143698 Garcia et al. May 2016 A1
20160235470 Callas et al. Aug 2016 A1
20160287313 Rubinsky et al. Oct 2016 A1
20160338761 Chornenky et al. Nov 2016 A1
20160354142 Pearson et al. Dec 2016 A1
20170035501 Chornenky et al. Feb 2017 A1
20170189579 Davalos Jul 2017 A1
20170209620 Davalos et al. Jul 2017 A1
20170266438 Sano Sep 2017 A1
20170360326 Davalos Dec 2017 A1
20180125565 Sano et al. May 2018 A1
20180161086 Davalos et al. Jun 2018 A1
20190029749 Garcia Jan 2019 A1
20190069945 Davalos et al. Mar 2019 A1
Foreign Referenced Citations (132)
Number Date Country
2002315095 Dec 2002 AU
2003227960 Dec 2003 AU
2005271471 Feb 2006 AU
2006321570 Jun 2007 AU
2006321574 Jun 2007 AU
2006321918 Jun 2007 AU
2297846 Feb 1999 CA
2378110 Feb 2001 CA
2445392 Nov 2002 CA
2458676 Mar 2003 CA
2487284 Dec 2003 CA
2575792 Feb 2006 CA
2631940 Jun 2007 CA
2631946 Jun 2007 CA
2632604 Jun 2007 CA
2751462 Nov 2010 CA
1525839 Sep 2004 CN
101534736 Sep 2009 CN
102238921 Nov 2011 CN
102421386 Apr 2012 CN
863111 Jan 1953 DE
4000893 Jul 1991 DE
60038026 Feb 2009 DE
0218275 Apr 1987 EP
0339501 Nov 1989 EP
0378132 Jul 1990 EP
0533511 Mar 1993 EP
0998235 May 2000 EP
0528891 Jul 2000 EP
1196550 Apr 2002 EP
1439792 Jul 2004 EP
1442765 Aug 2004 EP
1462065 Sep 2004 EP
1061983 Nov 2004 EP
1493397 Jan 2005 EP
1506039 Feb 2005 EP
0935482 May 2005 EP
1011495 Nov 2005 EP
1796568 Jun 2007 EP
1207797 Feb 2008 EP
1406685 Jun 2008 EP
1424970 Dec 2008 EP
2381829 Nov 2011 EP
2413833 Feb 2012 EP
1791485 Dec 2014 EP
2373241 Jan 2015 EP
1962710 Aug 2015 EP
1962708 Sep 2015 EP
1962945 Apr 2016 EP
2300272 Jun 2008 ES
2315493 Apr 2009 ES
2001510702 Aug 2001 JP
2003505072 Feb 2003 JP
2003506064 Feb 2003 JP
2004203224 Jul 2004 JP
2004525726 Aug 2004 JP
2004303590 Oct 2004 JP
2005501596 Jan 2005 JP
2005526579 Sep 2005 JP
2008508946 Mar 2008 JP
4252316 Apr 2009 JP
2009518130 May 2009 JP
2009518150 May 2009 JP
2009518151 May 2009 JP
2009532077 Sep 2009 JP
2010503496 Feb 2010 JP
2011137025 Jul 2011 JP
2011137025 Jul 2011 JP
2012510332 May 2012 JP
2012515018 Jul 2012 JP
2012521863 Sep 2012 JP
101034682 May 2011 KR
9104014 Apr 1991 WO
9634571 Nov 1996 WO
9639531 Dec 1996 WO
9810745 Mar 1998 WO
9814238 Apr 1998 WO
9901076 Jan 1999 WO
9904710 Feb 1999 WO
0020554 Apr 2000 WO
0107583 Feb 2001 WO
0107584 Feb 2001 WO
0107585 Feb 2001 WO
0110319 Feb 2001 WO
0148153 Jul 2001 WO
2001048153 Jul 2001 WO
0170114 Sep 2001 WO
0181533 Nov 2001 WO
02078527 Oct 2002 WO
02089686 Nov 2002 WO
02100459 Dec 2002 WO
2003020144 Mar 2003 WO
2003047684 Jun 2003 WO
03099382 Dec 2003 WO
2004037341 May 2004 WO
2004080347 Sep 2004 WO
2005065284 Jul 2005 WO
2006017666 Feb 2006 WO
2006031541 Mar 2006 WO
2006130194 Dec 2006 WO
2007067628 Jun 2007 WO
2007067937 Jun 2007 WO
2007067938 Jun 2007 WO
2007067939 Jun 2007 WO
2007067940 Jun 2007 WO
2007067941 Jun 2007 WO
2007067943 Jun 2007 WO
2007070361 Jun 2007 WO
2007100727 Sep 2007 WO
2007123690 Nov 2007 WO
2008063195 May 2008 WO
2008034103 Nov 2008 WO
2009046176 Apr 2009 WO
2007137303 Jul 2009 WO
2009134876 Nov 2009 WO
2009135070 Nov 2009 WO
2009137800 Nov 2009 WO
2010064154 Jun 2010 WO
2010080974 Jul 2010 WO
2010117806 Oct 2010 WO
2010118387 Oct 2010 WO
2010132472 Nov 2010 WO
2010151277 Dec 2010 WO
2011047387 Apr 2011 WO
2011062653 May 2011 WO
2011072221 Jun 2011 WO
2012051433 Apr 2012 WO
2012071526 May 2012 WO
2012088149 Jun 2012 WO
2015175570 Nov 2015 WO
2016100325 Jun 2016 WO
2016164930 Oct 2016 WO
Non-Patent Literature Citations (348)
Entry
Co-Pending U.S. Appl. No. 14/686,380, filed Apr. 14, 2015 and Published as US 2015/0289923 on Oct. 15, 2015.
Co-pending U.S. Appl. No. 15/011,752, filed Feb. 1, 2016.
A.I. Daud et al., “Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma,” Journal of Clinical Oncology, 26, pp. 5896-5903, 2008.
Agerholm-Larsen, B., et al., “Preclinical Validation of Electrochemotherapy as an Effective Treatment for Brain Tumors”, Cancer Research 71: 3753-3762 (2011).
Alberts et al., “Molecular Biology of the Cell,” 3rd edition, Garland Science, New York, 1994, 1 page.
Al-Sakere et al., “Tumor ablation with irreversible electroporation.” PLoS ONE, Issue 11, e1135, 8 pages, 2007.
Amasha, et al., Quantitative Assessment of Impedance Tomography for Temperature Measurements in Microwave Hyperthermia, Clin. Phys. Physiol. Meas., 1998, Suppl. A, 49-53.
Andreason, Electroporation as a Technique for the Transfer of Macromolecules into Mammalian Cell Lines, J. Tiss. Cult. Meth., 15:56-62, 1993.
Appelbaum et al., “US Findings after Irreversible Electroporation Ablation: Radiologic-Pathologic Correlation,” Radiology, 262, pp. 117-125, Jan. 1, 2012.
Arena et al. “High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction.” Biomed. Eng. Online, vol. 10, 20 pages (2011).
Arena, C.B., et al., “A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation.” Biophysical Journal, 2012.103(9): p. 2033-2042.
Arena, Christopher B., et al., “Towards the development of latent heat storage electrodes for electroporation-based therapies”, Applied Physics Letters, 101, 083902 (2012).
Arena, Christopher B., et al.,“Phase Change Electrodes for Reducing Joule Heating During Irreversible Electroporation”. Proceedings of the ASME 2012 Summer Bioengineering Conference, SBC2012, Jun. 20-23, 2012, Fajardo, Puerto Rico.
Asami et al., “Dielectric properties of mouse lymphocytes and erythrocytes.” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1010 (1989) pp. 49-55.
Bagla, S. and Papadouris, D., “Percutaneous Irreversible Electroporation of Surgically Unresectable Pancreatic Cancer: A Case Report” J. Vascular Int. Radiol. 23(1), 142-145 (2012).
Baker, et al., Calcium-Dependent Exocytosis in Bovine Adrenal Medullary Cells with Leaky Plasma Membranes, Nature, vol. 276, pp. 620-622, 1978.
Ball, C., K.R. Thomson, and H. Kavnoudias, “Irreversible electroporation: a new challenge in “out of-operating theater” anesthesia.” Anesth Analg, 2010. 110(5): p. 1305-9.
Bancroft, et al., Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications, Tissue Engineering, vol. 9, No. 3, 2003, p. 549-554.
Baptista et al., “The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid,” Heptatology, vol. 53, No. 2, pp. 604-617 (2011).
Barber, Electrical Impedance Tomography Applied Potential Tomography, Advances in Biomedical Engineering, Beneken and Thevenin, eds., IOS Press, pp. 165-173, 1993.
Beebe, S.J., et al., “Diverse effects of nanosecond pulsed electric fields on cells and tissues”, DNA and Cell Biology, 22(12): 785-796 (2003).
Beebe, S.J., et al., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. PPPS-2001 Pulsed Power Plasma Science 2001, 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, Digest of Technical Papers (Cat. No. 01CH37251). IEEE, Part vol. 1, 2001, pp. 211-215, vol. I, Piscataway, NJ, USA.
Ben-David, et al., “Characterization of Irreversible Electroporation Ablation in Vivo Porcine Liver,” Am J Roentgenol, vol. 198, pp. W62-W68, 2012.
Blad, et al., Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electrical Impedance Tomography, Physiol. Meas. 17 (1996) A105-A115.
Bolland, F., et al., “Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 28, No. 6, Nov. 28, 2006, pp. 1061-1070.
Boone, K., Barber, D. & Brown, B. Review—Imaging with electricity: report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21, 201-232 (1997).
Bower et al., “Irreversible electroporation of the pancreas: definitive local therapy without systemic effects.” Journal of surgical oncology, 2011. 104(1): p. 22-28.
BPH Management Strategies: Improving Patient Satisfaction, Urology Times, May 2001, vol. 29, Supplement 1.
Brown, et al., Blood Flow Imaging Using Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, 175-179.
Brown, S.G., Phototherapy of tumors. World J. Surgery, 1983. 7: p. 700-9.
Cannon et al., “Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures.” Journal of Surgical Oncology, 6 pages (2012).
Carpenter A.E. et al., “CellProfiler: image analysis software for identifying and quantifying cell phenotypes.” Genome Biol. 2006; 7(10): R100. Published online Oct. 31, 2006, 11 pages.
Cemazar M, Parkins CS, Holder AL, Chaplin DJ, Tozer GM, et al., “Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy”, Br J Cancer 84: 565-570 (2001).
Chandrasekar, et al., Transurethral Needle Ablation of the Prostate (TUNA)—a Propsective Study, Six Year Follow Up, (Abstract), Presented at 2001 National Meeting, Anaheim, CA, Jun. 5, 2001.
Chang, D.C., “Cell Poration and Cell-Fusion Using an Oscillating Electric-Field”. Biophysical Journal, 56(4): p. 641-652 (1989).
Charpentier, K.P., et al., “Irreversible electroporation of the pancreas in swine: a pilot study.” HPB: the official journal of the International Hepato Pancreato Biliary Association, 2010. 12(5): p. 348-351.
Chen et al., “Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.” Lab on a Chip, vol. 11, pp. 3174-3181 (2011).
Chen, M.T., et al., “Two-dimensional nanosecond electric field mapping based on cell electropermeabilization”, PMC Biophys, 2(1):9 (2009).
Clark et al., “The electrical properties of resting and secreting pancreas.” The Journal of Physiology, vol. 189, pp. 247-260 (1967).
Coates, C.W.,et al., “The Electrical Discharge of the Electric Eel, Electrophorous Electricus,” Zoologica, 1937, 22(1), pp. 1-32.
Cook, et al., ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph, IEEE Transactions on Biomedical Engineering, vol. 41, No. 8, Aug. 1994.
Co-pending U.S. Appl. No. 10/571,162, filed Oct. 18, 2006 (published as 2007/0043345 on Feb. 22, 2007).
Co-Pending U.S. Appl. No. 12/432,295, filed Apr. 29, 2009.
Co-Pending U.S. Appl. No. 12/609,779, filed Oct. 30, 2009.
Co-pending U.S. Appl. No. 12/751,826, filed Mar. 31, 2010 (published as 2010/0250209 on Sep. 30, 2010).
Co-pending U.S. Appl. No. 12/751,854, filed Mar. 31, 2010 (published as 2010/0249771 on Sep. 30, 2010).
Co-Pending U.S. Appl. No. 12/757,901, filed Apr. 9, 2010.
Co-Pending U.S. Appl. No. 12/906,923, filed Oct. 18, 2010.
Co-Pending U.S. Appl. No. 14/558,631, filed Dec. 2, 2014.
Co-Pending U.S. Appl. No. 14/808,679, filed Jul. 24, 2015 and Published as U.S. Publication No. 2015/0327944 on Nov. 19, 2015.
Co-Pending Application No. PCT/US04/43477, filed Dec. 21, 2004.
Co-Pending Application No. PCT/US09/42100, filed Apr. 29, 2009.
Co-Pending Application No. PCT/US09/62806, filed Oct. 30, 2009.
Co-Pending Application No. PCT/US10/30629, filed Apr. 9, 2010.
Co-Pending Application No. PCT/US10/53077, filed Oct. 18, 2010.
Co-Pending Application No. PCT/US11/62067, filed Nov. 23, 2011.
Co-Pending Application No. PCT/US11/66239, filed Dec. 20, 2011.
Co-Pending Application No. PCT/US15/30429, filed May 12, 2015.
Co-Pending Application No. PCT/US15/30429, International Search Report and Written Opinion dated Oct. 16, 2015, 19 pages.
Co-Pending Application No. PCT/US2010/029243, filed Mar. 30, 2010, published as WO 2010/117806 on Oct. 14, 2010.
Co-Pending Application No. PCT/US2015/030429, Published on Nov. 19, 2015 as WO 2015/175570.
Co-Pending U.S. Appl. No. 12/491,151, filed Jun. 24, 2009.
Co-Pending U.S. Appl. No. 13/332,133, Final Office Action dated Dec. 26, 2014, 7 pages.
Co-Pending U.S. Appl. No. 13/332,133, Final Office Action dated Mar. 30, 2016, 15 pages.
Co-Pending U.S. Appl. No. 13/332,133, Non-Final Office Action dated Oct. 16, 2015, 9 pages.
Co-Pending U.S. Appl. No. 13/332,133, Non-Final Office Action dated Sep. 4, 2014, 13 pages.
Co-Pending U.S. Appl. No. 13/332,133, Response to Final Office Action filed Jun. 29, 2016, 9 pages.
Co-Pending U.S. Appl. No. 13/332,133, Response to Final Office Action filed Mar. 26, 2015, 11 pages.
Co-Pending U.S. Appl. No. 13/332,133, Response to Non-Final Office Action filed Dec. 4, 2014, 9 pages.
Co-Pending U.S. Appl. No. 13/332,133, Response to Non-Final Office Action filed Feb. 16, 2016, 12 pages.
Co-Pending U.S. Appl. No. 13/332,133, filed Dec. 20, 2011.
Co-Pending U.S. Appl. No. 13/550,307, filed Jul. 16, 2012.
Co-Pending U.S. Appl. No. 13/919,640, filed Jun. 17, 2013.
Co-Pending U.S. Appl. No. 13/958,152, filed Aug. 2, 2013.
Co-Pending U.S. Appl. No. 13/989,175, filed May 23, 2013.
Co-Pending U.S. Appl. No. 14/012,832, filed Aug. 28, 2013.
Co-Pending U.S. Appl. No. 14/017,210, filed Sep. 3, 2013.
Co-Pending U.S. Appl. No. 14/627,046, filed Feb. 20, 2015.
Co-Pending U.S. Appl. No. 14/686,380, filed Apr. 14, 2015.
Co-Pending U.S. Appl. No. 14/940,863, filed Nov. 13, 2015 and Published as US 2016/0066977 on Mar. 10, 2016.
Corovic et al., “Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations,” Biomed Eng Online, 6, 14 pages, 2007.
Cowley, Good News for Boomers, Newsweek, Dec. 30, 1996/Jan. 6, 1997.
Cox, et al., Surgical Treatment of Atrial Fibrillation: A Review, Europace (2004) 5, S20-S-29.
Crowley, Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability, Biophysical Journal, vol. 13, pp. 711-724, 1973.
Dahl et al., “Nuclear shape, mechanics, and mechanotransduction.” Circulation Research vol. 102, pp. 1307-1318 (2008).
Daud, A.I., et al., “Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma,” Journal of Clinical Oncology, 26, 5896-5903, Dec. 20, 2008.
Davalos et al., “Electrical impedance tomography for imaging tissue electroporation,” IEEE Transactions on Biomedical Engineering, 51, pp. 761-767, 2004.
Davalos et al., “Theoretical analysis of the thermal effects during in vivo tissue electroporation.” Bioelectrochemistry, vol. 61(1-2): pp. 99-107, 2003.
Davalos et al., “Tissue ablation with irreversible electroporation.” Annals of Biomedical Engineering, vol. 33, No. 2, pp. 223-231 (Feb. 2005).
Davalos, et al., A Feasibility Study for Electrical Impedance Tomography as a Means to Monitor T issue Electroporation for Molecular Medicine, IEEE Transactions on Biomedical Engineering, vol. 49, No. 4, Apr. 2002.
Davalos, R. V. & Rubinsky, B. Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer 51, 5617-5622, doi:10.1016/j.ijheatmasstransfer.2008.04.046 (2008).
Davalos, Real-Time Imaging for Molecular Medicine through Electrical Impedance Tomography of Electroporation, Dissertation for Ph.D. In Engineering-Mechanical Engineering, Graduate Division of University of California, Berkeley, 2002.
De Vuyst, E., et al., “In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap unctional coupling”, Biophysical Journal, 94(2): p. 469-479 (2008).
Dean, Nonviral Gene Transfer to Skeletal, Smooth, and Cardiac Muscle in Living Animals, Am J. Physiol Cell Physiol 289: 233-245, 2005.
Demirbas, M. F., “Thermal Energy Storage and Phase Change Materials: An Overview” Energy Sources Part B 1(1), 85-95 (2006).
Dev, et al., Medical Applications of Electroporation, IEEE Transactions of Plasma Science, vol. 28, No. 1, pp. 206-223, Feb. 2000.
Dev, et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, Catheterization and Cardiovascular Diagnosis, Nov. 1998, vol. 45, No. 3, pp. 337-343.
Duraiswami, et al., Boundary Element Techniques for Efficient 2-D and 3-D Electrical Impedance Tomography, Chemical Engineering Science, vol. 52, No. 13, pp. 2185-2196, 1997.
Duraiswami, et al., Efficient 2D and 3D Electrical Impedance Tomography Using Dual Reciprocity Boundary Element Techniques, Engineering Analysis with Boundary Elements 22, (1998) 13-31.
Duraiswami, et al., Solution of Electrical Impedance Tomography Equations Using Boundary Element Methods, Boundary Element Technology XII, 1997, pp. 226-237.
Edd et al., “Mathematical modeling of irreversible electroporation for treatment planning.” Technology in Cancer Research and Treatment, vol. 6, No. 4, pp. 275-286 (2007).
Edd, J., et al., In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporaton, IEEE Trans. Biomed. Eng. 53 (2006) p. 1409-1415.
Ellis TL, Garcia PA, Rossmeisl JH, Jr., Henao-Guerrero N, Robertson J, et al., “Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation”, J Neurosurg 114: 681-688 (2011).
Eppich et al., “Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants” Nature Biotechnology 18, pp. 882-887 (2000).
Erez, et al., Controlled Destruction and Temperature Distributions in Biological Tissues Subjected to Monoactive Electrocoagulation, Transactions of the ASME: Journal of Mechanical Design, vol. 102, Feb. 1980.
Ermolina et al., “Study of normal and malignant white blood cells by time domain dielectric spectroscopy.” IEEE Transactions on Dielectrics and Electrical Insulation, 8 (2001) pp. 253-261.
Esser, A.T., et al., “Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue”. Technol Cancer Res Treat, 6(4): p. 261-74 (2007).
Esser, A.T., et al., “Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields”, Technology in Cancer Research & Treatment, 8(4): p. 289-306 (2009).
Faroja, M., et al., “Irreversible Electroporation Ablation: Is the entire Damage Nonthermal?”, Radiology, 266(2), 462-470 (2013).
Fischbach et al., “Engineering tumors with 3D scaffolds.” Nat Meth 4, pp. 855-860 (2007).
Flanagan et al., “Unique dielectric properties distinguish stem cells and their differentiated progeny.” Stem Cells, vol. 26, pp. 656-665 (2008).
Fong et al., “Modeling Ewing sarcoma tumors in vitro with 3D scaffolds.” Proceedings of the National Academy of Sciences vol. 110, pp. 6500-6505 (2013).
Foster RS, “High-intensity focused ultrasound in the treatment of prostatic disease”, European Urology, 1993, vol. 23 Suppl 1, pp. 29-33.
Foster, R.S., et al., Production of Prostatic Lesions in Canines Using Transrectally Administered High-Intensity Focused Ultrasound. Eur. Urol., 1993; 23: 330-336.
Fox, et al., Sampling Conductivity Images via MCMC, Mathematics Department, Auckland University, New Zealand, May 1997.
Freeman, S.A., et al., Theory of Electroporation of Planar Bilayer-Membranes—Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation. Biophysical Journal, 67(1): p. 42-56 (1994).
Garcia et al., “Irreversible electroporation (IRE) to treat brain cancer.” ASME Summer Bioengineering Conference, Marco Island, FL, Jun. 25-29, 2008, 2 pages.
Garcia et al., “Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient,” Technol Cancer Res Treat, 10, pp. 73-83, 2011.
Garcia et al., “Towards a Predictive Model of Electroporation-Based Therapies using Pre-Pulse Electrical Measurements” Abstract presented in the IEEE Engineering in Medicine and Biology Conference in Aug. 28, 2012 in San Diego, California, 4 pages.
Garcia P.A., et al., “7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible Electroporation”, PLOS ONE, Nov. 2012, 7:11, e50482.
Garcia P.A., et al., “Pilot study of irreversible electroporation for intracranial surgery”, Conf Proc IEEE Eng Med Biol Soc, 2009:6513-6516, 2009.
Garcia, et al., “A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure,” Biomed Eng Online, vol. 10:34, 22 pages, 2011.
Garcia, P. et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236, 127-136 (2010).
Gascoyne et al., “Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis.” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1149, pp. 119-126 (1993).
Gauger, et al., A Study of Dielectric Membrane Breakdown in the Fucus Egg, J. Membrane Biol., vol. 48, No. 3, pp. 249-264, 1979.
Gehl, et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biphysica Acta 1428, 1999, pp. 233-240.
Gençer, et al., Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System, IEEE Transactions on Biomedical Engineering, vol. 43, No. 2, Feb. 1996.
Gilbert, et al., Novel Electrode Designs for Electrochemotherapy, Biochimica et Biophysica Acta 1334, 1997, pp. 9-14.
Gilbert, et al., The Use of Ultrasound Imaging for Monitoring Cryosurgery, Proceedings 6th Annual Conference, IEEE Engineering in Medicine and Biology, 107-111, 1984.
Gilbert, T. W., et al., “Decellularization of tissues and organs”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 27, No. 19, Jul. 1, 2006, pp. 3675-3683.
Gimsa et al., “Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm.” Biophysical Journal, vol. 71, pp. 495-506 (1996).
Glidewell, et al., The Use of Magnetic Resonance Imaging Data and the Inclusion of Anisotropic Regions in Electrical Impedance Tomography, Biomed, Sci. Instrum. 1993; 29: 251-7.
Golberg, A. and Rubinsky, B., “A statistical model for multidimensional irreversible electroporation cell death in tissue.” Biomed Eng Online, 9, 13 pages, 2010.
Gothelf, et al., Electrochemotherapy: Results of Cancer Treatment Using Enhanced Delivery of Bleomycin by Electroporation, Cancer Treatment Reviews 2003: 29: 371-387.
Gowrishankar T.R., et al., “Microdosimetry for conventional and supra-electroporation in cells with organelles”. Biochem Biophys Res Commun, 341(4): p. 1266-76 (2006).
Griffiths, et al., A Dual-Frequency Electrical Impedance Tomography System, Phys. Met Biol., 1989, vol. 34, No. 10, pp. 1465-1476.
Griffiths, The Importance of Phase Measurement in Electrical Impedance Tomography, Phys. Med. Biol., 1987, vol. 32, No. 11, pp. 1435-1444.
Griffiths, Tissue Spectroscopy with Electrical Impedance Tomography: Computer Simulations, IEEE Transactions on Biomedical Engineering, vol. 42, No. 9, Sep. 1995.
Gumerov, et al., The Dipole Approximation Method and Its Coupling with the Regular Boundary Element Method for Efficient Electrical Impedance Tomography, Boundary Element Technology XIII, 1999.
Hapala, Breaking the Barrier: Methods for Reversible Permeabilization of Cellular Membranes, Critical Reviews in Biotechnology, 17(2): 105-122, 1997.
Helczynska et al., “Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ.” Cancer Research, vol. 63, pp. 1441-1444 (2003).
Heller, et al., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, pp. 119-129, 1999.
Hjouj, M., et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI”, Neuro-Oncology 13: Issue suppl 3, abstract ET-32 (2011).
Hjouj, M., et al., “MRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption”, PLOS ONE, Aug. 2012, 7:8, e42817.
Hjouj, Mohammad et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI,” Abstracts from 16th Annual Scientific Meeting of the Society for Neuro-Oncology in Conjunction with the AANS/CNS Section on Tumors, Nov. 17-20, 2011, Orange County California, Neuro-Oncology Supplement, vol. 13, Supplement 3, p. iii114.
Ho, et al., Electroporation of Cell Membranes: A Review, Critical Reviews in Biotechnology, 16(4): 349-362, 1996.
Holder, et al., Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects, Annals of the New York Academy of Science, vol. 873, Issue 1, Electrical BI, pp. 512-519, 1999.
Huang, et al., Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, vol. 2, pp. 145-150, 1999.
Hughes, et al., An Analysis of Studies Comparing Electrical Impedance Tomography with X-Ray Videofluoroscopy in the Assessment of Swallowing, Physiol. Meas. 15, 1994, pp. A199-A209.
Ibey et al., “Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells.” Biochimica Et Biophysica Acta-General Subjects, vol. 1800, pp. 1210-1219 (2010).
Mir, L.M., et al., Electric Pulse-Mediated Gene Delivery to Various Animal Tissues, in Advances in Genetics, Academic Press, 2005, p. 83-114.
Mir, Therapeutic Perspectives of In Vivo Cell Electropermeabilization, Bioelectrochemistry, vol. 53, pp. 1-10, 2000.
Mulhall et al., “Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis.” Analytical and Bioanalytical Chemistry, vol. 401, pp. 2455-2463 (2011).
Narayan, et al., Establishment and Characterization of a Human Primary Prostatic Adenocarcinoma Cell Line (ND-1), The Journal of Urology, vol. 148, 1600-1604, Nov. 1992.
Naslund, Cost-Effectiveness of Minimally Invasive Treatments and Transurethral Resection (TURP) in Benign Prostatic Hyperplasia (BPH), (Abstract), Presented at 2001 AUA National Meeting,, Anaheim, CA, Jun. 5, 2001.
Naslund, Michael J., Transurethral Needle Ablation of the Prostate, Urology, vol. 50, No. 2, Aug. 1997.
Neal II et al., “A Case Report on the Successful Treatment of a Large Soft-Tissue Sarcoma with Irreversible Electroporation,” Journal of Clinical Oncology, 29, pp. 1-6, 2011.
Neal II et al., “Experimental Characterization and Numerical Modeling of Tissue Electrical Conductivity during Pulsed Electric Fields for Irreversible Electroporation Treatment Planning,” Biomedical Engineering, IEEE Transactions on Biomedical Engineering, vol. 59, pp. 1076-1085, 2012.
Neal II, R. E., et al., “Successful Treatment of a Large Soft Tissue Sarcoma with Irreversible Electroporation”, Journal of Clinical Oncology, 29:13, e372-e377 (2011).
Neal II, R.E., et al., “Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode.” Breast Cancer Research and Treatment, 2010. 123(1): p. 295-301.
Neal II, Robert E. and R.V. Davalos, The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems, Ann Biomed Eng, 2009, 37(12): p. 2615-2625.
Nesin et al., “Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses.” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1808, pp. 792-801 (2011).
Neumann, et al., Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields, J. Embo., vol. 1, No. 7, pp. 841-845, 1982.
Neumann, et al., Permeability Changes Induced by Electric Impulses in Vesicular Membranes, J. Membrane Biol., vol. 10, pp. 279-290, 1972.
Nikolova, B., et al., “Treatment of Melanoma by Electroporation of Bacillus Calmette-Guerin”. Biotechnology & Biotechnological Equipment, 25(3): p. 2522-2524 (2011).
Nuccitelli, R., et al., “A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence”, Int J Cancer, 125(2): p. 438-45 (2009).
O'Brien et al., “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.” European Journal of Biochemistry, vol. 267, pp. 5421-5426 (2000).
Okino, et al., Effects of High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors, Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987.
Onik, et al., Sonographic Monitoring of Hepatic Cryosurgery in an Experimental Animal Model, AJR American J. of Roentgenology, vol. 144, pp. 1043-1047, May 1985.
Onik, et al., Ultrasonic Characteristics of Frozen Liver, Cryobiology, vol. 21, pp. 321-328, 1984.
Onik, G. and B. Rubinsky, eds. “Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer. Irreversible Electroporation”, ed. B. Rubinsky 2010, Springer Berlin Heidelberg, pp. 235-247.
Onik, G., P. Mikus, and B. Rubinsky, “Irreversible electroporation: implications for prostate ablation.” Technol Cancer Res Treat, 2007. 6(4): p. 295-300.
Organ, L.W., Electrophysiological principles of radiofrequency lesion making, Apply. Neurophysiol., 1976. 39: p. 69-76.
Ott, H. C., et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart”, Nature Medicine, Nature Publishing Group, New York, NY, US, vol. 14, No. 2, Feb. 1, 2008, pp. 213-221.
Paszek et al., “Tensional homeostasis and the malignant phenotype.” Cancer Cell, vol. 8, pp. 241-254 (2005).
Payselj, et al., “The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals,” IEEE Trans Biomed Eng, vol. 52, pp. 1373-1381, 2005.
PCT International Preliminary Report on Patentability of Corresponding International Application No. PCT/2011/062067, dated May 28, 2013.
PCT International Preliminary Report on Patentability of Corresponding International Application No. PCT/2011/066239, dated Jun. 25, 2013.
PCT International Search Report (dated Aug. 2, 2011), Written Opinion (dated Aug. 2, 2011), and International Preliminary Report on Patentability (dated Apr. 17, 2012) of PCT/US10/53077.
PCT International Search Report (dated Aug. 22, 2012), and Written Opinion (dated Aug. 22, 2012) of PCT/US11/66239.
PCT International Search Report (dated Aug. 26, 2005), Written Opinion (dated Aug. 26, 2005), and International Preliminary Report on Patentability (dated Jun. 26, 2006) of PCT/US2004/043477.
PCT International Search Report (dated Jan. 19, 2010), Written Opinion (dated Jan. 19, 2010), and International Preliminary Report on Patentability (dated Jan. 4, 2010) of PCT/US09/62806, 15 pgs.
PCT International Search Report (dated Jul. 15, 2010), Written Opinion (dated Jul. 15, 2010), and International Preliminary Report on Patentability (dated Oct. 11, 2011) from PCT/US2010/030629.
PCT International Search Report (dated Jul. 9, 2009), Written Opinion (dated Jul. 9, 2009), and International Preliminary Report on Patentability (dated Nov. 2, 2010) of PCT/US2009/042100.
PCT International Search Report and Written Opinion (dated Jul. 25, 2012) of PCT/US2011/062067.
PCT International Search Report, 4 pgs, (dated Jul. 30, 2010), Written Opinion, 7 pgs, (dated Jul. 30, 2010), and International Preliminary Report on Patentability, 8 pgs, (dated Oct. 4, 2011) from PCT/US2010/029243.
Phillips, M., Maor E. & Rubinsky, B. Non-Thermal Irreversible Electroporation for Tissue Decellularization. J. Biomech. Eng, doi: 10.1115/1.4001882 (2010).
Piñero, et al., Apoptotic and Necrotic Cell Death Are Both Induced by Electroporation in HL60 Human Promyeloid Leukaemia Cells, Apoptosis, vol. 2, No. 3, 330-336, Aug. 1997.
Polak et al., “On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations.” The Journal of Membrane Biology, vol. 246, pp. 843-850 (2013).
Precision Office TUNA System, When Patient Satisfaction is Your Goal, VidaMed 2001.
Pucihar et al., “Numerical determination of transmembrane voltage induced on irregularly shaped cells.” Annals of Biomedical Engineering, vol. 34, pp. 642-652 (2006).
Rajagopal, V. and S.G. Rockson, Coronary restenosis: a review of mechanisms and management, The American Journal of Medicine, 2003, 115(7): p. 547-553.
Reber{hacek over (s)}ek, M. and D. Miklav{hacek over (c)}i{hacek over (c)}, “Advantages and Disadvantages of Different Concepts of Electroporation Pulse Generation,” Automatika 52(2011) 1, 12-19.
Rols, M.P., et al., Highly Efficient Transfection of Mammalian Cells by Electric Field Pulses: Application to Large Volumes of Cell Culture by Using a Flow System, Eur. J. Biochem. 1992, 206, pp. 115-121.
Ron et al., “Cell-based screening for membranal and cytoplasmatic markers using dielectric spectroscopy.” Biophysica chemistry, 135 (2008) pp. 59-68.
Rossmeisl et al., “Pathology of non-thermal irreversible electroporation (N-TIRE)—induced ablation of the canine brain.” Journal of Veterinary Science vol. 14, pp. 433-440 (2013).
Rossmeisl, “New Treatment Modalities for Brain Tumors in Dogs and Cats.” Veterinary Clinics of North America: Small Animal Practice 44, pp. 1013-1038 (2014).
Rubinsky et al., “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation.” The Journal of Urology, 180 (2008) pp. 2668-2674.
Rubinsky, B., “Irreversible Electroporation in Medicine”, Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 1, 2007, pp. 255-259.
Rubinsky, B., ed, Cryosurgery. Annu Rev. Biomed. Eng. vol. 2 2000. 157-187.
Rubinsky, B., et al., “Irreversible Electroporation: A New Ablation Modality—Clinical Implications” Technol. Cancer Res. Treatment 6(1), 37-48 (2007).
Sabuncu et al., “Dielectrophoretic separation of mouse melanoma clones.” Biomicrofluidics, vol. 4, 7 pages (2010).
Salford, L.G., et al., “A new brain tumour therapy combining bleomycin with in vivo electropermeabilization”, Biochem. Biophys. Res. Commun., 194(2): 938-943 (1993).
Salmanzadeh et al., “Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells” Biomicrofiuidics 7, 011809 (2013), 12 pages.
Salmanzadeh et al., “Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis.” Biomicrofluidics, vol. 6, 13 Pages (2012).
Salmanzadeh et al., “Sphingolipid Metabolites Modulate Dielectric Characteristics of Cells in a Mouse Ovarian Cancer Progression Model.” Integr. Biol., 5(6), pp. 843-852 (2013).
Sano et al., “Contactless Dielectrophoretic Spectroscopy: Examination of the Dielectric Properties of Cells Found in Blood.” Electrophoresis, 32, pp. 3164-3171, 2011.
Sano et al., “In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies.” Bioelectrochemistry vol. 100, pp. 69-79 (2014).
Sano et al., “Modeling and Development of a Low Frequency Contactless Dielectrophoresis (cDEP) Platform to Sort Cancer Cells from Dilute Whole Blood Samples.” Biosensors & Bioelectronics, 8 pages (2011).
Sano, M. B., et al., “Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion”, Biomedical Engineering Online, Biomed Central LTD, London, GB, vol. 9, No. 1, Dec. 10, 2010, p. 83.
Saur et al., “CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer.” Gastroenterology, vol. 129, pp. 1237-1250 (2005).
Schmukler, Impedance Spectroscopy of Biological Cells, Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual Internal Conference of the IEEE, vol. 1, p. A74, downloaded from IEEE Xplore website, 1994.
Schoenbach et al., “Intracellular effect of ultrashort electrical pulses.” Bioelectromagnetics, 22 (2001) pp. 440-448.
Seibert et al., “Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice.” Cancer Research, vol. 43, pp. 2223-2239 (1983).
Seidler et al., “A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors.” Proceedings of the National Academy of Sciences, vol. 105, pp. 10137-10142 (2008).
Sel, D., Lebar, A. M. & Miklavcic, D. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54, 773-781 (2007).
Sel, et al., “Sequential finite element model of tissue electropermeabilization,” IEEE Trans Biomed Eng, vol. 52, pp. 816-827, 2005.
Sersa, et al., Reduced Blood Flow and Oxygenation in SA-1 Tumours after Electrochemotherapy with Cisplatin, British Journal of Cancer, 87, 1047-1054, 2002.
Sersa, et al., Tumour Blood Flow Modifying Effects of Electrochemotherapy: a Potential Vascular Targeted Mechanism, Radiol. Oncol., 37(1): 43-8, 2003.
Sharma, A. , et al., “Review on Thermal Energy Storage with Phase Change Materials and Applications”, Renewable Sustainable Energy Rev. 13(2), 318-345 (2009).
Sharma, et al., Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, No. 6, pp. 3229-3241, Dec. 1996.
Shiina, S., et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR, 1993, 160: p. 1023-8.
Szot et al., “3D in vitro bioengineered tumors based on collagen I hydrogels.” Biomaterials vol. 32, pp. 7905-7912 (2011).
Talele, S., et al., “Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii”. Journal of Electrostatics, 68(3): p. 261-274 (2010).
Tekle, Ephrem, R. Dean Astumian, and P. Boon Chock, Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells, Proc. Natl. Acad. Sci., vol. 88, pp. 4230-4234, May 1991, Biochemistry.
Thompson, et al., To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International (1999), 84, 1035-1037.
Thomson et al., “Investigation of the safety of irreversible electroporation in humans,” J Vasc Interv Radiol, 22, pp. 611-621, 2011.
TUNA—Suggested Local Anesthesia Guidelines, no date available.
Verbridge et al., “Oxygen-Controlled Three-Dimensional Cultures to Analyze Tumor Angiogenesis.” Tissue Engineering, Part A vol. 16, pp. 2133-2141 (2010).
Vernier, P.T., et al., “Nanoelectropulse-driven membrane perturbation and small molecule permeabilization”, Bmc Cell Biology, 7 (2006).
Vidamed, Inc., Transurethral Needle Ablation (TUNA): Highlights from Worldwide Clinical Studies, Vidamed's Office TUNA System, 2001.
Weaver et al., “A brief overview of electroporation pulse strength-duration space: A region where additional Intracellular effects are expected.” Bioelectrochemistry vol. 87, pp. 236-243 (2012).
Weaver, Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Journal of Cellular Biochemistry, 51: 426-435, 1993.
Weaver, et al., Theory of Electroporation: A Review, Bioelectrochemistry and Bioenergetics, vol. 41, pp. 136-160, 1996.
Weaver, J. C., Electroporation of biological membranes from multicellular to nano scales, IEEE Tms. Dielectr. Electr. Insul. 10, 754-768 (2003).
Weaver, J.C., “Electroporation of cells and tissues”, IEEE Transactions on Plasma Science, 28(1): p. 24-33 (2000).
Weisstein: Cassini Ovals. From MathWorld—A. Wolfram Web Resource; Apr. 30, 2010; http://mathworld.wolfram.com/ (updated May 18, 2011).
Yang et al., “Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion.” Biophysical Journal, vol. 76, pp. 3307-3314 (1999).
Yao et al., “Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation.” IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-1549.
Zhang Y. et al., MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: preclinical feasibility studies in a rodent model. Radiology, 2010.256(2): p. 424-32.
Zimmermann, et al., Dielectric Breakdown of Cell Membranes, Biophysical Journal, vol. 14, No. 11, pp. 881-899, 1974.
Zlotta, et al., Long-Term Evaluation of Transurethral Needle Ablation of the Prostate (TUNA) for Treatment of Benign Prostatic Hyperplasia (BPH): Clinical Outcome After 5 Years. (Abstract) Presented at 2001 AUA National Meeting, Anaheim, CA—Jun. 5, 2001.
Zlotta, et al., Possible Mechanisms of Action of Transurethral Needle Ablation of the Prostate on Benign Prostatic Hyperplasia Symptoms: a Neurohistochemical Study, Reprinted from Journal of Urology, vol. 157, No. 3, Mar. 1997, pp. 894-899.
Co-Pending U.S. Appl. No. 13/332,133, Advisory Action dated Apr. 6, 2016, 3 pages.
Co-Pending U.S. Appl. No. 13/332,133, Interview Summary dated Jan. 22, 2016, 4 pages.
Issa, et al., The TUNA Procedure for BPH: Review of the Technology: The TUNA Procedure for BPH: Basic Procedure and Clinical Results, Reprinted from Infections in Urology, Jul./Aug. 1998 and Sep./Oct. 1998.
Ivanu{hacek over (s)}a, et al., MRI Macromolecular Contrast Agents as Indicators of Changed Tumor Blood Flow, Radiol. Oncol. 2001; 35(2): 139-47.
Ivorra et al., “In vivo electric impedance measurements during and after electroporation of rat live.” Bioelectrochemistry, vol. 70, pp. 287-295 (2007).
Ivorra et al., “In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.” Physics in Medicine and Biology, vol. 54, pp. 5949-5963 (2009).
Ivorra, “Bioimpedance monitoring for physicians: an overview.” Biomedical Applications Group, 35 pages (2002).
J.F. Edd and R.V. Davalos, “Mathematical modeling of irreversible electroporation for treatment planning,” Technology in Cancer Research and Treatment, 6, pp. 275-286, 2007.
Jarm et al., “Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases.” Expert Rev Anticancer Ther. vol. 10, pp. 729-746 (2010).
Jaroszeski, et al., In Vivo Gene Delivery by Electroporation, Advanced Drug Delivery Review, vol. 35, pp. 131-137, 1999.
Jensen et al., “Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18FFDG-microPET or external caliper.” BMC medical Imaging vol. 8:16, 9 Pages (2008).
Jossinet et al., Electrical Impedance Endo-Tomography: Imaging Tissue From Inside, IEEE Transactions on Medical Imaging, vol. 21, No. 6, Jun. 2002, pp. 560-565.
Kingham et al., “Ablation of perivascular hepatic malignant tumors with irreversible electroporation.” Journal of the American College of Surgeons, 2012. 215(3), p. 379-387.
Kinosita and Tsong, “Formation and resealing of pores of controlled sizes in human erythrocyte membrane.” Nature, vol. 268 (1977) pp. 438-441.
Kinosita and Tsong, “Voltage-induced pore formation and hemolysis of human erythrocytes.” Biochimica et Biophysica Acta (BBA)—Biomembranes, 471 (1977) pp. 227-242.
Kinosita et al., “Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope.” Biophysical Journal, vol. 53, pp. 1015-1019 (1988).
Kinosita, et al., Flemolysis of Human Erythrocytes by a Transient Electric Field, Proc. Natl. Acad. Sci. USA, vol. 74, No. 5, pp. 1923-1927, 1977.
Kirson et al., “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors.” Proceedings of the National Academy of Sciences vol. 104, pp. 10152-10157 (2007).
Kotnik and Miklavcic, “Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields.” Biophysical Journal, vol. 90(2), pp. 480-491 (2006).
Kotnik, T. and D. Miklavcic, “Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields”, Bioelectromagnetics, 21(5): p. 385-394 (2000).
Kotnik, T., et al., “Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination”, Bioelectrochemistry, 54(1): p. 91-5 (2001).
Kotnik, T., et al., “Role of pulse shape in cell membrane electropermeabilization”, Biochimica Et Biophysica Acta-Biomembranes, 1614(2): p. 193-200 (2003).
Labeed et al., “Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis.” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1760, pp. 922-929 (2006).
Lackovic, I., et al., “Three-dimensional Finite-element Analysis of Joule Heating in Electrochemotherapy and in vivo Gene Electrotransfer”, Ieee Transactions on Dielectrics and Electrical Insulation, 16(5): p. 1338-1347 (2009).
Laufer et al., “Electrical impedance characterization of normal and cancerous human hepatic tissue.” Physiological Measurement, vol. 31, pp. 995-1009 (2010).
Lebar et al., “Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.” IEEE Transactions on NanoBioscience, vol. 1 (2002) pp. 116-120.
Lee, E. W. et al. Advanced Hepatic Ablation Technique for Creating Complete Cell Death : Irreversible Electroporation Radiology 255, 426-433, doi:10.1148/radiol.10090337 (2010).
Lee, E.W., et al., “Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation”, Technol Cancer Res Treat 6: 287-294 (2007).
Li, W., et al., “The Effects of Irreversible Electroporation (IRE) on Nerves” PloS One, Apr. 2011, 6(4), e18831.
Liu, et al., Measurement of Pharyngeal Transit Time by Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 197-200.
Long, G., et al., “Targeted Tissue Ablation With Nanosecond Pulses”. IEEE Transactions on Biomedical Engineering, 58(8) (2011).
Lundqvist, et al., Altering the Biochemical State of Individual Cultured Cells and Organelles with Ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 10356-10360, Sep. 1998.
Lurquin, Gene Transfer by Electroporation, Molecular Biotechnology, vol. 7, 1997.
Lynn, et al., A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, The Journal of General Physiology, vol. 26, 179-193, 1942.
M. Marty et al., “Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study,” European Journal of Cancer Supplements, 4, pp. 3-13, 2006.
Ma{hacek over (c)}ek Lebar and Miklav{hacek over (c)}i{hacek over (c)}, “Cell electropermeabilization to small molecules in vitro: control by pulse parameters.” Radiology and Oncology, vol. 35(3), pp. 193-202 (2001).
Mahmood, F., et al., “Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments”, Journal of Membrane Biology 240: 131-138 (2011).
Mahnic-Kalamiza, et al., “Educational application for visualization and analysis of electric field strength in multiple electrode electroporation,” BMC Med Educ, vol. 12:102, 13 pages, 2012.
Malpica et al., “Grading ovarian serous carcinoma using a two-tier system.” The American Journal of Surgical Pathology, vol. 28, pp. 496-504 (2004).
Maor et al., The Effect of Irreversible Electroporation on Blood Vessels, Tech. in Cancer Res. and Treatment, vol. 6, No. 4, Aug. 2007, pp. 307-312.
Maor, E., A. Ivorra, and B. Rubinsky, Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation, PLoS ONE, 2009, 4(3): p. e4757.
Maor, E., A. Ivorra, J. Leor, and B. Rubinsky, Irreversible electroporation attenuates neointimal formation after angioplasty, IEEE Trans Biomed Eng, Sep. 2008, 55(9): p. 2268-74.
Marszalek et al., “Schwan equation and transmembrane potential induced by alternating electric field.” Biophysical Journal, vol. 58, pp. 1053-1058 (1990).
Martin, n.R.C.G., et al., “Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma.” Journal of the American College of Surgeons, 2012. 215(3): p. 361-369.
Miklavcic et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83, 2000.
Miklav{hacek over (c)}i{hacek over (c)}, et al., The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues, Biophysical Journal, vol. 74, May 1998, pp. 2152-2158.
Miller, L., et al., Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment 4 (2005) 699-706.
Mir et al., “Mechanisms of Electrochemotherapy” Advanced Drug Delivery Reviews 35:107-118 (1999).
Mir, et al., Effective Treatment of Cutaneous and Subcutaneous Malignant Tumours by Electrochemotherapy, British Journal of Cancer, vol. 77, No. 12, pp. 2336-2342, 1998.
Mir, et al., Electrochemotherapy Potentiation of Antitumour Effect of Bleomycin by Local Electric Pulses, European Journal of Cancer, vol. 27, No. 1, pp. 68-72, 1991.
Mir, et al., Electrochemotherapy, a Novel Antitumor Treatment: First Clinical Trial, C.R. Acad. Sci. Paris, Ser. III, vol. 313, pp. 613-618, 1991.
Mir, L.M. and Orlowski, S., The basis of electrochemotherapy, in Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000, Humana Press, p. 99-118.
Co-pending U.S. Appl. No. 13/332,133, Non-Final Office Action dated Nov. 22, 2016, 8 pages.
PCT IPRP for PCT/US15/30429 (WO2015175570), dated Nov. 15, 2016.
Co-pending U.S. Appl. No. 15/423,986, filed Feb. 3, 2017.
Co-pending U.S. Appl. No. 15/424,335, filed Feb. 3, 2017.
Co-Pending U.S. Appl. No. 14/808,679, Restriction Requirement dated Mar. 19, 2018, 7 pages.
Co-Pending U.S. Appl. No. 14/808,679, Final Office Action dated Jan. 11, 2019, 12 pages.
Co-Pending U.S. Appl. No. 14/808,679, Preliminary Amendment, filed Jul. 27, 2015, 9 pages.
Co-Pending U.S. Appl. No. 14/808,679, Response to Mar. 19, 2018 Restriction Requirement dated May 21, 2018, 2 pages.
Co-Pending U.S. Appl. No. 14/808,679, Response to Sep. 10, 2018 Non-Final Office Action dated Dec. 10, 2018, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Final Office Action dated Aug. 30, 2016, 11 pages.
Co-Pending U.S. Appl. No. 14/017,210, Non-Final Office Action dated Dec. 15, 2016, 8 pages.
Co-Pending U.S. Appl. No. 14/017,210, Non-Final Office Action dated Sep. 8, 2015, 8 pages.
Co-Pending U.S. Appl. No. 14/017,210, Notice of Allowance (after Dec. 12, 2018 RCE) dated Jan. 9, 2019, 5 pages.
Co-Pending U.S. Appl. No. 14/017,210, Petition dated Dec. 11, 2015, 5 pages.
Co-Pending U.S. Appl. No. 14/017,210, Petition Decision dated Aug. 12, 2016, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Petition Decision dated Aug. 2, 2016, 5 pages.
Co-Pending U.S. Appl. No. 14/017,210, RCE dated Nov. 30, 2016, 13 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Non-Final Office Action dated Mar. 8, 2016, 16 pages.
Co-pending U.S. Appl. No. 15/843,888, filed Dec. 15, 2017.
Co-pending U.S. Appl. No. 15/881,414, filed Jan. 26, 2018.
Co-Pending Application U.S. Appl. No. 13/332,133, Appeal Brief and Appendices filed Aug. 15, 2017, 26 pages.
Co-Pending U.S. Appl. No. 13/332,133, Examiner's Answer to Appeal Brief dated Oct. 5, 2017, 16 pages.
Co-Pending U.S. Appl. No. 13/332,133, Final Office Action dated Mar. 15, 2017, 17 pages.
Co-Pending U.S. Appl. No. 13/332,133, Response to Nov. 22, 2016 Non-Final Office Action filed Feb. 21, 2017, 14 pages.
Garcia, Paulo A., Robert E. Neal II and Rafael V. Davalos, Chapter 3, Non-Thermal Irreversible Electroporation for Tissue Ablation, In: Electroporation in Laboratory and Clinical Investigations ISBN 978-1-61668-327-6 Editors: Enrico R Spugnini and Alfonso Baldi, 2010, 22 pages.
Kotnik et al., “Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis”, Bioelectrochemistry and Bioenergetics,vol. 43, Issue 2, 1997, pp. 285-291.
Neal RE II, et al. (2013) Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice. PLoS ONE 8(5): e64559. https://doi.org/10.1371/journal.pone.0064559.
Wimmer, Thomas, et al., “Planning Irreversible Electroporation (IRE) in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?”, Cardiovasc Intervent Radiol. Feb. 2015; 38(1): 182-190. doi:10.1007/s00270-014-0905-2.
Co-Pending U.S. Appl. No. 12/757,901, File History 2018.
Co-Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Sep. 10, 2018, 12 pages.
Co-pending U.S. Appl. No. 15/881,414 Amendment and Petition for Priority Claim dated Jul. 26, 2018, 26 pages.
Co-pending U.S. Appl. No. 15/881,414, filed Apr. 26, 2018 Non-Final Office Action, 8 pages.
Co-pending U.S. Appl. No. 15/881,414 Notice of Allowance dated Oct. 24, 2018, 7 pages.
Co-pending U.S. Appl. No. 16/177,745, filed Nov. 1, 2018.
Co-Pending U.S. Appl. No. 14/017,210, Acceptance of 312 Amendment dated Sep. 12, 2018, 1 page.
Co-Pending U.S. Appl. No. 14/017,210, AFCP dated Aug. 13, 2018, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Final Office Action dated Apr. 11, 2018, 10 pages.
Co-Pending U.S. Appl. No. 14/017,210, Final Office Action dated May 1, 2017, 11 pages.
Co-Pending U.S. Appl. No. 14/017,210, Non-Final Office Action dated Oct. 25, 2017, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Notice of Allowance dated Sep. 12, 2018, 7 pages.
Co-Pending U.S. Appl. No. 14/017,210, RCE dated Aug. 1, 2017, 13 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Dec. 15, 2016 Non-Final Office Action dated Mar. 20, 2017, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Oct. 25, 2017 Non-Final Office Action dated Jan. 25, 2018, 11 pages.
Co-Pending U.S. Appl. No. 14/627,046, Amendment dated Jun. 29, 2017, 8 pages.
Co-Pending U.S. 14/627,046, Final Office Action dated Sep. 14, 2017, 11 pages.
Co-Pending U.S. Appl. No. 14/627,046, Interview Summary dated dated Apr. 27, 2018, 3 pages.
Co-Pending U.S. Appl. No. 14/627,046, Non-Final Office Action dated Feb. 15, 2018, 12 pages.
Co-Pending U.S. Appl. No. 14/627,046, Non-Final Office Action dated Mar. 29, 2017, 9 pages.
Co-Pending U.S. 14/627,046, Notice of Allowance dated Sep. 19, 2018, 7 pages.
Co-Pending U.S. Appl. No. 14/627,046, Response to Sep. 14, 2017 Final Office Action dated Dec. 14, 2017, 7 pages.
Co-Pending U.S. Appl. No. 14/627,046, Rule 132 Affidavit and Response to Feb. 15, 2018 Non-Final Office Action, dated Jun. 15, 2018, 13 pages.
Co-pending U.S. Appl. No. 16/152,743, filed Oct. 5, 2018.
Co-Pending U.S. Appl. No. 15/310,114, NFOA dated Mar. 6, 2019, 13 pages.
Related Publications (1)
Number Date Country
20160287314 A1 Oct 2016 US
Provisional Applications (3)
Number Date Country
61424872 Dec 2010 US
61285618 Dec 2009 US
61167997 Apr 2009 US
Divisions (1)
Number Date Country
Parent 13332133 Dec 2011 US
Child 15186653 US
Continuation in Parts (1)
Number Date Country
Parent 12757901 Apr 2010 US
Child 13332133 US