The invention relates to a high-frequency filter having a coaxial structure, particularly designed in the manner of a high-frequency separator (such as a duplex switch) or a band pass filter or band stop filter, respectively.
Radio systems, e.g. in the mobile radio sector, often use a common antenna for transmit and receive signals. These transmit and receive signals use different frequency ranges, and the antenna must be suitable for transmitting and receiving in both frequency ranges. A suitable frequency filtering element is required to separate the transmit and receive signals, which element is used to forward transmit signals from the transmitter to the antenna and receive signals from the antenna to the receiver. Among other devices, high-frequency filters having a coaxial structure are used today to separate the transmit and receive signals.
For example, a pair of high-frequency filters can be used which both allow a specific frequency band to pass (band pass filters). Alternatively, a pair of high-frequency filters can be used which both block a specific frequency band (band stop filters). Furthermore, a pair of high-frequency filters can be used in which one filter lets frequencies under a frequency between the transmit and receive band pass and blocks frequencies above that frequency (low pass filter) and the other filter blocks frequencies below a frequency between the transmit and receive band and lets frequencies above it pass. (high pass filter). Other combinations of the filter types just mentioned are conceivable. High-frequency filters are often produced in the form of coaxial TEM resonators. These resonators can be manufactured economically and at low cost from milled or cast parts and ensure high electrical quality and a relatively high temperature stability.
A single coaxial resonator produced using milling or casting techniques consists, for example, of a cylindrical inner conductor and a cylindrical outer conductor. It is likewise possible that the inner conductor and/or the outer conductor has a regular n-polygonal cross section in the transverse direction to the inner conductor. The inner and outer conductors are interconnected at one end across a large area by an electrically conductive layer (typically shorted by an electrically conductive bottom). Typically, air is used as a dielectric between the inner and outer conductors.
The mechanical length of such a resonator (with air as dielectric) corresponds to one fourth of its electric wavelength. The resonance frequency of the coaxial resonator is determined by its mechanical length. The longer the inner conductor, the greater the wavelength and the lower the resonance frequency. Electric coupling between the two resonators is the weaker the farther the inner conductors of two resonators are away from one another and the smaller the coupling aperture between the inner conductors.
A large number of proposals have been made to improve such resonators.
For example, EP 1 169 747 B1 proposes to improve frequency tuning by designing the inner conductor of the resonator as a hollow cylinder and by providing an axially adjustable tuning element consisting of a dielectric material inside the inner conductor. In contrast, EP 1 596 463 A1 proposes an adjustable tuning element in the inner conductor that is designed as a hollow cylinder made of a ceramic material, which however is coated with a sleeve-like or pot-shaped tuning body made of metal at its face end extending upwards beyond the inner conductor and across an area that dips deeply into the hollow cylindrical inner conductor. In addition, WO 2004/084340 A1 is referenced which represents and describes adjustable dielectric tuning elements in coaxial filters.
According to EP 1 721 359 B1, a coaxial resonator is to comprise a dielectric layer on the inner side of the cover in a recess provided there to increase its dielectric strength while having a small installed volume.
US 2006/0284708 once again proposes a hollow cylindrical inner conductor in a coaxial resonator with a hollow cylindrical ring placed onto its top annular end face that has the same dimensions as the hollow cylindrical inner conductor, wherein the hollow cylindrical ring consists of a ceramic material with a high dielectric constant. This ceramic ring having a high dielectric constant and low dielectric losses is inserted seamlessly between the open end of the inner conductor of the coaxial resonator and the bottom of the cover. In this way, smaller installed volumes can be attained at the same resonance frequency. In addition, the harmonic waves that can spread in the resonators shift towards higher frequencies.
According to U.S. Pat. No. 6,894,587 B2, both the outer conductor and the cylindrical inner conductor consist of a dielectric substrate. A conductive film for forming the inner conductor and for forming the outer conductor is provided on the respective outer layer of the dielectric material. The coaxial resonator is formed in this way. The dielectric material of the outer conductor comprises an axial hole in which the inner conductor applied onto the inner dielectric material is provided, forming a radial gap.
U.S. Pat. No. 4,268,809 describes a filter using coaxial resonators. According to this preliminary publication, a dielectric layer is proposed that jointly covers all free face ends of the inner conductors. Opposite to the inner conductors, a conductive structure is formed on this dielectric layer that is mechanically and galvanically connected to the inner conductor using electrically conductive screws that penetrate the dielectric layer. The conductive structures formed on the dielectric layer end at a spacing from one another, which causes capacitive coupling.
JP S58172003 A discloses a resonator with a housing and an inner resonator conductor which terminates opposite the housing bottom at a distance from the opposite housing wall and is coated with a dielectric layer on its free end face and optionally on the adjacent circumferential section of the inner resonator conductor. This dielectric layer can have an εr value of 37. The inner resonator conductor comprises an inner conductor head which is coated with said dielectric material, wherein the head has a diameter that is about triple the diameter of the section of the inner resonator conductor located below it. The dielectric layer itself has a thickness that is at least in the order of magnitude of the thickness of the inner resonator conductor in the section below the inner resonator conductor head which has a greater diameter.
A cavity filter is also disclosed in US 2009/167464 A1. A resonator chamber comprises an inner resonator conductor with an axial hole, which conductor terminates at a distance opposite the housing cover. The circumferential wall of the inner resonator conductor which is equipped with the axial hole as well as a small remaining material section on the free end face of the inner resonator conductor are coated with an insulating layer. It is preferred that this layer is made of rubber wherein rubber is known to have an ε value of εr=3.
We also make reference to the prepublication CN 201 946 731 U. This specification also describes an inner resonator conductor, wherein said inner resonator conductor having an axial hole comprises a circumferential flange on its free end on which an annular dielectric material is provided. The thickness of this dielectric material parallel to the direction in which the hollow inner resonator conductor extends is a multiple of the material thickness of the inner resonator conductor.
A filter is also known from JP 2002 016411 A. This one however is not a coaxial cavity resonator but a dielectric filter. It is known that dielectric filters do not have an inner conductor like the high-frequency filters having a coaxial structure.
A resonator element consisting of a dielectric material (whose axial height is less than its diameter) is fastened to the housing bottom made of metal. Unlike prior art solutions in which the resonator element is fastened using a plastic material, JP 2002 016411 A teaches the use of a threaded rod which is inserted into a blind hole on the bottom side of the dielectric resonator element and then the dielectric resonator element that is fastened to the threaded rod is screwed to the stop into a hole with a female thread in the housing bottom of the housing of the filter arrangement. The resonator element itself is to have an overall diameter in the order of magnitude of about 0.6 mm to 0.7 mm.
Although smaller filter dimensions are frequently desired, they are either not feasible at all or difficult to achieve. In addition to the maximum permissible insertion loss, one of the factors limiting smaller footprints of the filter assemblies is their maximum rating. The rating of coaxial filters is typically determined by the distance from the free end of the inner conductor to the typically grounded cover and/or the side walls, the tuning elements, etc. A greater distance results in higher potential ratings. Specific minimum distances must be kept depending on the required minimum ratings to prevent destructive microwave breakdowns inside the filter. It is therefore not possible to reduce the size of the filter assemblies any further.
In contrast, it is the object of this invention to provide a generally improved coaxial resonator, particularly for use as a high-frequency filter, that can have a comparatively small installation size even if more complex inner conductor types are used.
This object is achieved, according to the invention, by the features listed in claim 1. Advantageous embodiments of the invention are described in the dependent claims.
By maintaining the proposal from prior art of a complete or partial enclosure or coating of the free ends of the inner conductor with a dielectric material whose dielectric constant is greater than 1.2, particularly greater than 2, proposed by the invention, the minimum distances between the cover, the walls and the tuning elements can be reduced even with more complex inner conductor types, since the rating is considerably increased.
The enclosure can be achieved using one or more mounted molded parts. It has also proven favorable to extrusion-coat the inner conductor or the essential parts thereof fully or partially with a respective plastic material that has the desired or suitable dielectric values.
The maximum rating can be controlled via the thickness of the dielectric layer. The thicker the layer, the higher the potential ratings. Thinner layers mean smaller dielectric losses and therefore a lower insertion loss for the filter.
In principle, the maximum rating can be influenced by the selection of the dielectric material and its specific properties.
The solution according to the invention primarily makes it possible that the invention can be implemented in the smallest space. It is envisaged in the scope of the invention that the respective dielectric coating comprises particularly thin layers or that the sheathing material is or includes a very specific material, namely multiple cyclic olefin copolymers (COC). The effects are particularly favorable if both variants mentioned above are implemented jointly.
One of the major advantages of the invention therefore is that the volume of the resonator chamber, that is, the installation size of the filter assemblies, can be reduced, resulting in lower overall construction costs. At the same time, the invention permits a higher rating of the filters in a generally simple manufacturing process. Particularly the mounted or extrusion-coated inner conductors form an independent part. The full-area or partial coating or full-area or partial encasing with a respective dielectric material, at least in the area of the free end of the inner conductor, can be provided for any conceivable types of inner conductors.
It is also favorable that the inner conductors used for the resonators of the invention may consist of metal as well as of a dielectric material such as ceramic. One or several or all inner conductors of a respective high-frequency filter can be extrusion-coated. Both originally molded-on inner conductors as well as insertable inner conductors, which can be turned, screwed, pressed into the resonator bottom or otherwise mechanically fastened and galvanically connected, can be encased by casting or pouring. This also results in simple handling since the inner conductor extrusion-coated with the respective sheathing material forms an independent component.
As mentioned above, molded plastic parts can be produced separately rather than provided as molded-on layers and then mounted onto the inner conductor. Molded parts can be provided with respective holders and locking mechanisms which are designed in the shape of fingers and resting, for example, predominantly in radial direction on the inner wall of the housing or the walls and/or are attached with one or several finger-like spacers on the inner or bottom side of the cover.
The advantages according to the invention, that is, a reduction of the installation size, an increase in rating and an improvement of the dielectric strength of each of the resonators can be implemented by the following features of the invention, either alone or particularly in combination:
Advantageous details of the invention can be derived from the exemplary embodiments explained below with reference to the drawings. Wherein:
The resonator shown, that is, the coaxial filter, includes an outer conductor housing 1 with an outer conductor 1′, an inner conductor 3 arranged concentrically and coaxially with it, and a bottom or housing bottom 5 where the electrically conductive outer conductor 1 and the electrically conductive inner conductor 3 are galvanically connected.
The resonator shown in
The inner conductor 3 shown in the drawings can be integral with the outer conductor housing 1, that is, particularly be connected to the bottom 5, or attached and fastened there and galvanically connected to the bottom as a separate component. This can for example be achieved using respective screws which are for example screwed into a female thread in the inner conductor 3 through a hole in the housing bottom, or using a nut seated there.
In the embodiment shown, the inner conductor 3 ends as usual underneath the housing cover 7, such that there is a spacing or gap space A between the top end face 3a of the inner conductor 3 and the bottom or inner side 7a of the cover 7.
Unlike the representation in
It is also known that said adjusting element 9 that can enter into and exit from the resonator space 19 at various lengths via the cover 7 may have a diameter and diametric shape designed for engaging in a respective axial hole 3c ending at the end face 3a in the inner conductor 3. Said adjusting elements 9 may consist of metal or a dielectric material, for example. We make reference to known solutions in this respect.
When the threaded plate is rotated, e.g. by inserting a suitable tool into a pivoting or drive attachment 13 which is freely accessible from its bottom side, the adjusting or tuning element 9′ that is extending beyond the upper end face 3a of the inner conductor 3 can be set to different lengths beyond the end face 3a of the inner conductor 3 as indicated by the arrow 15, whereby the resonance frequency of the coaxial filter can be set.
Said inner conductor 3 can be connected in one piece, optionally integrally and thus galvanically with the housing bottom and the outer conductor walls. Such a resonator can for example be produced by milling from a metal block, however it has been noted that the inner conductor 3 can for example be connected mechanically and galvanically to the bottom later, for example by using screws.
As can be seen from the figures, this embodiment is an inner conductor that is subsequently mechanically anchored and galvanically connected on the housing bottom—which however is not of key importance.
The embodiment shown includes that the inner conductor 3 comprises an inner conductor end face 3a which extends in radial direction beyond the outer diameter of the inner conductor 3, namely by forming a disk-shaped inner conductor extension area 33; however this is not strictly necessary for the invention. This inner conductor extension area 33 comprises an outer diameter 3e which typically is 1.01 time to 4 times the other outer diameter 3d of the inner conductor 3, for example 1.75 to 2.25 times that outer diameter. The thickness 35 of said inner conductor extension area 33 can also be varied selectively. It can be in the range from 0.5 mm to 6 mm, for example greater than 1 mm, 1.5 mm, 2 mm, or 2.5 mm. It can also be smaller than 5.5 mm, 5 mm, 4.5 mm, 4 mm, or 3.5 mm. Values around 3 mm are often suitable.
The end face 3a formed in this way with its associated end face area 3′a can be fully or partially coated, to a partial height, with a suitable dielectric material, starting from the end face 3a towards the bottom 5. In other words, a respective sheathing material 21 is provided which is provided, disposed, mounted, extrusion-coated, or sprayed on(to) the locations formed in
It can be seen from the representation according to
Said sheathing material 21 or said layered sheathing material 21 can be applied to the locations mentioned on the respective inner conductor such that a shoulder 25 is formed in accordance with the layer thickness at the locations where the sheathing ends, for example on the bottom side 3h of the disk-shaped extension area 33.
However, the embodiment according to
In contrast,
In the exemplary embodiment shown, the inner conductor hole 3c is drilled forming a shoulder 3j at its bottom end, creating a tapering borehole diameter. This design makes it possible to anchor the inner conductor mechanically and connect it galvanically to the bottom 5 using nuts and screws.
Minor modifications were made in the embodiment according to
Likewise, bevels 3l or 3m, respectively, preferably 45° bevels, are cut into the upper circumferential edge 33a and the bottom circumferential edge 33b of the inner conductor extension section 33, allowing a transition from one boundary surface to the next at the inner conductor extension area 33 at an angle of 135° each. In general, all bevels can be formed at any desired angle. Various designs of radii or curves are also conceivable instead of bevels.
Furthermore, the outgoing shoulder of the sheathing material 21 provided on the bottom side 3h of the disk-shaped inner conductor extension area 33 (which can also be called an extension plateau 33) has a slanted bevel 3n. In the exemplary embodiment shown, it is set at a 45° angle to the orientation of the extension area 33, such that the resulting opening angle α between opposite terminating bevels 3n is 90°, as shown in
An inner conductor 3 according to the invention that is designed in this manner can be produced by respective processing of the inner conductor material and subsequent casting or pouring a respective sheathing material 21 within the scope of the invention around it, namely on an already prefabricated resonator whose inner conductor, bottom and outer housing walls are made, for example, of a one-piece metal block. Likewise, the inner conductor can be extrusion-coated separately and subsequently connected to the bottom of the resonator, e.g. using a screwed connection. In this case, the sheathing material 21 consists of a molded-on sheathing layer 21a.
It is likewise possible to produce the respective sheathing material 21 separately, e.g. by casting, and mount it subsequently onto the inner conductor 3. In this case the sheathing material 21 is present in the form of a molded part 21b, particularly a molded plastic part 21b, generally a dielectric molded part 21b, which can be designed in one or in several parts, that is, in one piece or multiple pieces, and then mounted onto the inner conductor.
The following
The variant in
In the variant according to
The exemplary embodiment according to
The variant shown in
In the variant shown in
The exemplary embodiments shown in
For example, in the variants according to
A second sheathing material 21″ is then cast onto this layer 21′ of the sheathing material 21, e.g. at a lower partial height, starting from the top end face 3a in the end face area, on the circumferential edge, and at a partial height on the outer circumference and in the area of the inner hole 3c.
In the variant according to
It can also be seen in some of these figures that, when using a sheathing material 21 in the form of a molded part, said molded part can be mounted, for example through the extension area 33 in the manner of a snap or tilt closure depending on the design of the inner conductor, particularly when the inner conductor comprises undercuts.
Said sheathing material 21, e.g. in the form of a first and/or second sheathing material 21, has a dielectric constant εr which is greater than 1.2. Preferred values for the dielectric constant εr are greater than 1.3, particularly greater than 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0.
As explained above, said sheathing material 21, 21′, 21″ consists of a dielectric material. Typical and preferred dielectric materials to be considered within the scope of the invention are so-called cyclic olefin copolymers (COC).
The layer thickness of the sheathing material 21, in a multi-layer structure also with respect to the thickness of each layer, can be selected within different ranges. The thickness of the sheathing material 21 can at least be 0.05 mm, particularly more than 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm and more, while its preferred thickness is 3 mm and less.
Unlike partially crystalline polyolefins such as polyethylene and polypropylene, these cyclic olefin copolymers are materials that are amorphous and therefore transparent. Cyclic olefin copolymers are characterized by good thermoplastic fluidity, high stiffness, strength and hardness as well as low density and high transparency paired with good resistance to acids and lyes.
The filters or the coaxial resonator explained here can be used in many applications, particularly in the mobile radio sector, for example as coaxial band pass filters, coaxial band stop filters, asymmetrical band stop filters, high pass filters, duplexers, combiners, and/or low pass filters.
Typical applications are in the mobile radio sector at frequency ranges from 380 MHz to 4,000 MHz. Of particular significance in the mobile radio sector are, for example, the frequency ranges above 700 MHz, 800 MHz, 900 MHz, 1,500 MHz, 1,700 MHz, 1,800 MHz, 1,900 MHz, 2,000 MHz, 2,100 MHz, 2,500 MHz, 2,600 MHz, or above 3,500 MHz. Also of importance are narrowly defined frequency ranges under 3,500 MHz, particularly under 2,700 MHz, 2,600 MHz, 2,500 MHz, 2,200 MHz, 2,100 MHz, 2,000 MHz, 1,900 MHz, 1,800 MHz, 1,700 MHz, 1,500 MHz, 900 MHz, 800 MHz and particularly under 700 MHz, typically up to 300 MHz.
The exemplary embodiments described can be used to implement a coaxial resonator and filter or filter assemblies which achieve a higher rating and dielectric strength of each resonator and filter compared to prior art solutions by enclosing the inner conductor fully or partially, particularly in the region of its free end face and the adjacent areas with a dielectric material.
Filters with higher maximum transmitting powers can implemented in this way.
At a constant required rating, enclosing the inner conductor with said dielectric material according to the invention allows smaller distances of the inner conductor to the side walls and/or the housing cover and/or the tuning elements 9, 9′ provided inside the resonators.
This allows the design of filters with smaller dimensions that still have the same rating.
The invention further reduces the installation size and ultimately contributes to a reduction of the costs.
The dielectric material used or proposed within the scope of the invention permits a great tuning range or great frequency deviation.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 001 917.9 | Feb 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/000226 | 2/5/2015 | WO | 00 |