The present invention provides a high-frequency half-wave rectifier system of low-harmonicity and high-efficiency, and especially relates to a half-wave rectifier system of low-harmonicity and high-efficiency which has simple structure and less use of electronic components, which is difficult to be heated, and which output power is adjustable, and which can reduce the electromagnetic interference.
There is a significant demand for the charging of various low-power electronic devices, particularly wearable devices. This need has caused the use of inductively coupled Wireless Power Transfer (WPT) to become more and more popular in recent years. Great progress has been made in the design and application of systems operating at kHz power levels.
At the same time, for low-power applications, further increasing the voltage frequency, such as a few megahertz, will bring more spatial freedom, i.e., longer transmission distance and higher tolerance for misalignment of the coupled coils, and be expected to be used for construction a more compact and lighter WPT system.
The current common circuit configuration, as shown in
Due to the sinusoidal input voltage and current, this kind of rectifier is expected to have the benefits of low harmonic content and high efficiency rectification.
However, in this circuit configuration, there are two diodes respectively on the path of the positive half-cycle and the negative half-cycle, so when the current passes through these four diodes, the heat will be generated. If the neighboring elements are affected by the EMI, the problem of heat generation will be more obvious, and the signal reception efficiency of this model will be not very ideal.
Therefore, the circuit configuration of the above-mentioned AC rectifying circuit really exists the following problems and lackings to be improved:
The main object of the present invention is to simplify the complexity of the circuit composition and reduce the electronic components required for the transformer rectification operation.
Another main object of the present invention is to calculate and design an appropriate resonant capacitance (tuning capacitance) through an algorithm to reduce the harmonic characteristics of the circuit, reduce the heat source, increase the conversion efficiency, and improve the EMI problem.
To achieve the above-mentioned objects, the main structure of the present invention comprises: a current output device having an output end and a first flow-return end respectively at both ends for outputting alternating current; wherein the output end has a rectifying module connected in series for adjusting the output power, and the rectifying module has a resonant tuning unit connected in parallel for controlling the duty cycle of the rectifying module at a predetermined value; a first node defined in one side of the first flow-return end facing away from the current output device; a voltage regulator module; wherein one end of the voltage regulator module is connected in series with the rectifying module and the other end is connected to the first node; a load element connected in parallel with the voltage regulator module; a grounding portion set in one side of the load element; and at least one flow-return path defined between the first node and the first flow-return end for guiding the current flown out of the voltage regulator module to the current output device.
When a user uses the present invention to perform the high-frequency half-wave rectification, the AC output from the current output device flows through the output end to the rectifying module and the resonant tuning unit to set the capacitance value of the resonant tuning unit through the algorithm and control the duty cycle of the rectifying module to approach 74 nanoseconds; and thereby to achieve the progressiveness of reducing the harmonicity and electromagnetic interference.
After the current flows out of the rectifying module and the resonant tuning unit, and then flows through the voltage regulator module and the load element, the current will flow to the flow-return path through the first node, and then flow back into the current output device to achieve the half-wave AC rectification of high-frequency and low-power.
The present invention can overcome the problem that the conventional AC rectifying circuit has a large amount of diodes, a complicated circuit configuration, a large overall volume, a large heating area, but fails to provide a corresponding rectification efficiency, and so as to achieve the practical progressiveness with the above-mentioned advantages.
The following descriptions are exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following detailed description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.
The foregoing and other aspects, features, and utilities of the present invention will be best understood from the following detailed description of the preferred embodiments when read in conjunction with the accompanying drawings.
As shown in
With the aforementioned structure of the components, it can clearly be seen from the figure that this embodiment is mainly applied to a high-frequency rectification system of a megahertz level. In addition, due to the small size of the current wearable electronic device, in the high-frequency half-wave rectification system 1 of the E class AC circuit, a flow-return unit 71 is added to the flow-return path 7 of the voltage regulator module 5 and the load element 6; and so as to improve conversion efficiency of the current output device 2.
Practically speaking, the current output device 2 outputs a current from the output end 21 and then flows to the rectifying module 3 connected in series therewith, and is connected to the flow-return unit 71 at the second flow-return end 711 in the middle. However, in a megahertz high-frequency circuit, the flow-return unit 71 (inductor) is a high-impedance element, and the current flows to the rectifying module 3 and the resonant tuning unit 4 connected in parallel with each other, wherein the resonant tuning unit 4 can be used to control the duty cycle of the rectifying module 3 to make it close to 74 nanoseconds (ns) (typically it is ideally 48 to 81 nanoseconds (ns) in duty cycle D. In this way, the output power of the rectifying module 3 can be effectively adjusted, and the resonance module 8 can be used to assist the operation of the resonant tuning unit 4 to reduce electromagnetic interference meanwhile. When the current flows through the voltage regulator module 5 and the load element 6 and flows to the flow-return path 7, some part of the current can be routed back to the second flow-return end 711 through the first node P1 and the flow-return unit 71, and again it is tuned by the rectifying module 3 and the resonant tuning unit 4 to increase the overall power conversion efficiency, and the rest of the current is returned to the current output device 2 via the first flow-return end 22.
Wherein, the capacitance value algorithm of the resonance module 8 is as follows:
Zrec=Rrec+jXrec, and Crx=1/ω(ωLrx+Xrec),
Wherein, the resistance value of the load element 6 is Zrec=Rrec+jXrec(Rrec (Rrec is the real load value, jXrec is the imaginary load value), Crx is the capacitance value of the resonance module 8, and Lrx is the inductance of the wireless receiving unit 23.
As shown in
Where ω is the resonance frequency, Lrx is the inductance value of the wireless receiving unit 23a, the resistance value of the load element 6a is RL=Zrec=Rrec+jXrec (Rrec is the real load value, jXrec is the imaginary load value), Cr is the capacitance of the resonant tuning unit 4a, The value D is the duty cycle of the rectifier module 3a, rDr is the internal impedance of the rectifier module 3a, and Φrec is the initial phase of the input sinusoidal current.
As shown in
In this way, using the first resonance unit 81b, the second resonance unit 82b, and the third resonance unit 83b to more accurately calculate the effective capacitance value of the resonance module 8b, and so as to further improve the work of a auxiliary resonant tuning unit 4b; and at the same time, the electromagnetic interference problem can be reduced, and the problem of low mutual inductance (insufficient success ratio) can also be solved when the mutual inductance is low (K<0.07, where K represents the ratio of the actual mutual inductance of two coils to the maximum mutual inductance).
The capacitance value of the resonance module 8b needs to be calculated based on the input load marked at Zm in the figure, and the algorithm is as follows:
Where ω is the resonant frequency, the resistance value of the load element 6b is Zrec=Rrec+jXrec (Rrec is the real load value, jXrec is the imaginary load value), Cmns is the capacitance value of the second resonance unit 82b, and Cmnp is the third resonance unit 83b.
Number | Name | Date | Kind |
---|---|---|---|
9948198 | Imai | Apr 2018 | B2 |
10211737 | Costa | Feb 2019 | B1 |
20070171680 | Perreault | Jul 2007 | A1 |
20140132231 | Tsai | May 2014 | A1 |
20140247625 | Hosotani | Sep 2014 | A1 |
20140268899 | Hosotani | Sep 2014 | A1 |
20140313788 | Okubo | Oct 2014 | A1 |
20150055374 | Yamashita | Feb 2015 | A1 |
20160241128 | Imai | Aug 2016 | A1 |
20160241163 | Imai | Aug 2016 | A1 |
20160322910 | Kovacevic | Nov 2016 | A1 |
20160352235 | Imai | Dec 2016 | A1 |
20170085189 | Madsen | Mar 2017 | A1 |
20170237302 | Sorge | Aug 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200044556 A1 | Feb 2020 | US |