High frequency multi-level inverter

Information

  • Patent Grant
  • 11742777
  • Patent Number
    11,742,777
  • Date Filed
    Tuesday, November 29, 2022
    2 years ago
  • Date Issued
    Tuesday, August 29, 2023
    a year ago
Abstract
A multi-level inverter having at least two banks, each bank containing a plurality of low voltage MOSFET transistors. A processor configured to switch the plurality of low voltage MOSFET transistors in each bank to switch at multiple times during each cycle.
Description
BACKGROUND

Despite many years of research, the search for a more cost-effective inverter implementation (either single phase or three phases) has thus far has been elusive. Some attempts utilize high voltage switches (e.g. 600V IGBTs) in a topology that is aimed at reducing switching losses and/or the size of passive components (mainly magnetics). See, for example, “Multilevel inverters: A survey of Topologies, Control and Applications”. These inverters, which are aimed at reducing switching losses typically include high voltage switches (e.g. 600V IGBTs) that switch at a frequency around ×10 of the line frequency (50 Hz) or up to 16 kHz. The IGBT switching losses are considerable at this range of frequencies and even at the low end of these frequencies. Further, the low frequency switching causes the choke to approach or exceed 20% of the overall cost of the inverter. Alternative research has sought to use even more advanced switch technology (e.g., Silcon Carbide and/or Galium Nitride) in order to increase frequency and reduce the size of passive components. This research can reduce switching losses to some extent as well but only at the high cost of the advanced switch technology. Despite extensive research, these inverter topologies offer only limited improvements and cannot achieve the cost reduction and efficiencies needed for efficient inverter technologies.


There remains a need for a low cost, high efficiency inverter technology.


SUMMARY

The following summary is for illustrative purposes only, and is not intended to limit or constrain the detailed description.


Embodiments herein may employ a multi-level inverter (e.g., a single phase and/or three phase inverters) with a specialized control system which enables low cost inverters with a high efficiency. In some embodiments discussed herein, a multi-level inverter may be utilized where the output of the inverter (before filtering) has several voltage steps thereby reducing the stress on the magnetics of the inverter and improving the output voltage shaping which allows further reduction in switching frequency.


In exemplary multi-level inverters (either single phase or three phase) described herein, the control system allows the use of low-voltage MOSFETs (e.g. 80V) in order to form an equivalent switch of higher voltage (e.g. using six 80V MOSFETs resulting in an equivalent 480V switch). The conduction and switching characteristics of the low voltage switching multi-level inverter are substantially and unexpectedly improved over other multi-level inverter implementations. In these embodiments, by staggering the turning on and off of the low voltage MOSFETs, a lower frequency modulation may be utilized for each of the multi-level switches, e.g., each of the MOSFETs may be switched at a moderate frequency (e.g. 200 kHz) while maintaining low switching losses compared to other switch technologies and gaining the benefits of an effective frequency of 200 kHz*N where N is the number of switches in series that are staggered in time, thereby reducing the size requirements of the passive parts according to the effective extended frequency. In some embodiments, the MOSFETs may be switched in at staggered times according to a duty cycle ratio (which may or may not change according to the sine-wave), where each MOSFET is shifted by, for example, ⅙ of the switching period (for examples with 6 MOSFETs in a series).


In accordance with embodiments discussed herein, in addition to the advantages with respect to conduction and switching losses discussed herein, these examples offer other major benefits such as the reduction of passive components (e.g., in the main choke magnetics and/or output filter). For example, due to the multi-level voltages and low cost MOSFET switches, a reduction in size and/or cost by a factor of N (e.g. 6 in the example) can be achieved. In addition, exemplary embodiments discussed herein can achieve an effective frequency within the main choke which may be N times the switching frequency (e.g. 6*200 kHz in this example). As a result, in these embodiments, the main choke can be smaller by a factor of N{circumflex over ( )}2 (e.g. 36) relative to a standard design. In embodiments described herein, the overall gain factor in the main choke size relative to a standard IGBT-based inverter system utilizing 16 kHz switching frequency may be, for example, 200 kHz/16 kHz*36=450, rendering the cost of the choke to be so small that it becomes almost negligible in multi-level inverter examples described herein. A similar calculation can be made for the output filter showing even greater advantage in reduction in cost and increases in efficiencies.


As noted above, this summary is merely a summary of some of the features described herein. It is not exhaustive, and it is not to be a limitation on the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, claims, and drawings. The present disclosure is illustrated by way of example, and not limited by, the accompanying figures in which like numerals indicate similar elements.



FIG. 1 illustrates an example multi-level inverter in accordance with embodiments herein.



FIG. 2 illustrates an algorithm for controlling the multi-level inverter in accordance with embodiments herein.



FIG. 3 illustrates an exemplary control for embodiments herein.



FIG. 4 illustrates another example of a multi-level inverter in accordance with embodiments herein.



FIG. 5 illustrates still another example of a multi-level inverter in accordance with embodiments herein.





DETAILED DESCRIPTION

In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made, without departing from the scope of the present disclosure.


Referring to FIG. 1, an exemplary multi-level inverter includes one, two, or more parallel connections each comprising a plurality of different switches located disposed across a DC voltage. The switches may be coupled to a number of capacitors and/or inductors which may be utilized to smooth a sine-wave of an AC output of the inverter. For example, a plurality of switch banks S1A-S6A, S6B-S1B, S1C-S6C, and/or S6D-S1D may be disposed in any suitable configuration such as that shown in FIG. 1. Each of the banks of MOSFET transistors may be variously configured to include two, three, four, five, six, seven, eight, nine, ten, eleven, twelve or more transistors. Referring to FIG. 2, each of the switches may be controlled by an output from a processor 10 (e.g., logic, one or more processor(s), controls, state machine, controller, microprocessor, software driven control, gate array, and/or other controller). In this embodiment, switch bank A comprises a series of FET transistors S1A-S6A (e.g., 20 v, 40 v, 60 v, 80 v, 100 v, 120 v MOSFET transistors) connected together in, for example, a source to drain configuration to form a first switching bank; switch bank B comprises a series of FET transistors S1B-S6B (e.g., 20 v, 40 v, 60 v, 80 v, 100 v, 120 v MOSFET transistors) connected together in, for example, a source to drain configuration to form a second switching bank; switch bank C comprises a series of FET transistors S1C-S6C (e.g., 20 v, 40 v, 60 v, 80 v, 100 v, 120 v MOSFET transistors) connected together in, for example, a source to drain configuration to form a third switching bank; switch bank D comprises a series of FET transistors S1D-S6D (e.g., 20 v, 40 v, 60 v, 80 v, 100 v, 120 v MOSFET transistors) connected together in, for example, a source to drain configuration to form a fourth switching bank. While six 80 volt FET transistors are used for each switch bank in this example, either more and/or less transistors can be utilized with different voltages e.g., 20 v, 40 v, 60 v, 80 v, 100 v, 120 v. For example, where 12 transistors are utilized in each switching bank, the voltages across those transistors may be adjusted to a suitable voltage such as 40 volts and the switching frequency of the transistors within one cycle may be increased from the example where only 6 transistors are utilized (e.g., switching each transistor at twice the rate).


Referring to FIG. 2, each of the MOSFETs may be controlled to switch using a high frequency (e.g. around 200 kHz in this example) while still having low switching losses compared to other switch technologies. As shown in FIG. 2, for this example, the MOSFETs are switched according to the duty cycle ratio (which changes according to the sine-wave) in the following simple manner (shown for six MOSFETs in series), where each MOSFET is shifted by ⅙ of the switching period.


In addition to the conduction and switching losses advantages discussed above, another major benefit of the embodiment shown in FIGS. 1-2 is the reduction of passive components (e.g., main choke and output filter sizes). Due to the multi-level voltages, a factor of N (e.g. 6 in the example) can be reduced in size/cost. In addition, the effective frequency within the main choke is N times the switching frequency (e.g. 6*200 kHz in this case). The result of embodiments in accordance with this example is that the main choke can be smaller by a factor of N{circumflex over ( )}2 (e.g. 36) relative to a standard design using 200 kHz. Since usual inverters use much smaller switching frequencies (e.g. 16 kHz) due to limitations of the 600V switches, the overall gain in the main choke size is 200 kHz/16 kHz*36=450 which makes it negligible while in a standard inverter it is about 20% of the size and cost of the inverter. A similar calculation can be made for the output filter showing even greater advantage.


Embodiments of the present invention switch at a higher frequency (e.g., 50 kHz, 100 kHz, 150 kHz, 200 kHz, 250 kHz, 300 kHz or even higher), and the manner in which the switches are modified in accordance with, for example, FIG. 2. The gain in accordance with inverters of the present examples gain a factor of n squared. This unusual result is achieved in part by switching only one component at a time instead of switching all of them in one cycle. Using low voltage MOSFETs, it is possible to switch all of the switches in the same output voltage cycle while still achieving comparatively low switching losses which allows further gains and efficiencies.


Usually about 20% of both size and cost of an inverter are related to the main choke. In embodiments described herein, increasing the frequency by, for example, 15 kHz and increasing the number of switches to 6 can result in an additional gain factor of 36 because of the multi-level components. In these embodiments, the cost of the main choke can be as little as one percent or even less than that of the overall inverter cost. In addition, because of switching method described herein, the inverter will be much more efficient and also the production of the output voltage will be much better which gains substantial efficiency. It means that the enclosure and the inverter can be dimensionally much lower and therefore a much smaller and cheaper enclosure can be used. The size and cost of the enclosure is reduced both because of reduction of the main choke, reduction in the filter, and because of improved efficiency, which provides a smaller and more compact enclosure.


The control shown in FIG. 2 has been demonstrated to have substantial efficiencies over conventional control circuits. For example, the control illustrated in FIG. 2 allows the switches S1A-S6A, S6B-S1B, S1C-S6C, and S6D-S1D to be switched all within one period, in this embodiment with the switching of switches in one bank to be offset as shown in FIG. 2. In these embodiments, the switches operate six times higher than other control mechanisms.


Referring to FIG. 1, an inverter is typically comprised of two halves with symmetry on each side of the inverter. In the embodiment of FIG. 1, there are 4 banks of six switches each for 24 switches which operate at a lower voltage (e.g., 80V) and a higher frequency (e.g., 200 kHz). The higher frequency switching allows staggered switching of each switch in each bank (e.g., all six switches) in one cycle, which is six times faster than conventional modulators.


For voltage, where the absolute voltage is around 350V (which may be a voltage received from a DC source such as a bank of solar panels), this voltage may be utilized to produce an AC voltage of, for example, 230V. The switching elements in each bank when coupled with the capacitors C1-C5 and C6-C10 may be switched such that the voltages across switching banks A and B and switching banks C and D may sum to a voltage of approximately 350V in this example. Because the voltage across any one switch can be much lower than 350V because the voltage is spread over each of the switch/capacitor combinations, the voltage of the switches can be much smaller (e.g., 350 divided by 6 which or around 60V). This voltage can be made lower and/or higher depending upon the number of switches in each bank.


Referring to FIG. 2, the switches may be configured to switch all during the same cycle. For example, the switches may each be switched at, for example, 200 kHz. This allows each switch to turn “on” for a predetermined period such as 1/200 kHz or around 5 microseconds, during which time each switch turns on and off. In a conventional multi-level inverter, only one switch will switch at one cycle of one of the 16 kHz. However, in embodiments described herein, the low voltage MOSFETs may be switched at a much higher rate (e.g., 200 kHz) and additionally all of the switches in one bank may be switched during the same period. This example effectively increases the speed to 6 times the switching period, without actually increasing the switching frequency. Further, the design is scalable in that it can be increased more and more by adding more transistors to the switching banks; the multi-level switching in each bank allows the switching to increase in frequency without driving the MOSFET faster (e.g., six times faster).


This is an advantage of multi-level inverters in the examples herein in that you can switch six, eight, ten, twelve, or more times faster depending on the number MOSFETs in a series in each switching bank. One advantage associated with certain embodiments, is that it is possible to switch 6, 8, 10, 12, or more times faster by switching all of the MOSFETs during the same period, without actually switching any one of the MOSFETs faster than the original speed. This is a structural advantage cannot be achieved in inverters today because the switching ability of conventional designs cannot achieve this result. By controlling the control switches to operate in accordance with FIG. 2, it is possible to super charge a multi-level inverter to switch all the switches during the same cycle time and thus achieve an effective frequency of, for example, six times higher without actually switching any of the switches (e.g., MOSFETs) at a higher frequency.


Because of the higher switching frequency in accordance with the present embodiments, in addition to a smaller choke, the capacitors between the switches will be smaller. This is part of the size and cost reduction. Additionally, the inductors L1 and L2 are also made smaller. In general, there are many components that shrink by going to a higher frequency, which is being increased, also by the factor of 36.


Again referring to FIGS. 2-3, the control into S1A-S6A is inverted from the control input into switches S1B-S6B (e.g., when S1A is closed, S1B is open). With respect to switches S1C-S6C, the control inputs to these switches are inverted from the control inputs to switches S1A-S6A (e.g., when S1A is closed, S1C is open). With respect to switches S1D-S6D, these switches have the same control input as those of switches S1A-S6A (e.g., when S1A is closed, S1D is closed). While the processor needs to control 24 switches, because banks A and D receive the same six control signals and banks B and C receive the opposite six control signals, it is possible to have only six output control signals input respectively to each of S1A-S6A and S1D-S6D and the inverse of these six control signals sent to S1B-S6B and S1C-S6C.


In these embodiments, S1C-S6C are inverted and S1D-S6D are not inverted with respect to the control input signal. Further, S1A-S6A are not inverted and S1B-S6B are inverted. Thus, 24 switches may be controlled with only six different control outputs from the processor. See, for example, the exemplary control structure shown in FIG. 3.


Various alternate embodiments may also be employed. For example, referring to FIG. 4, an alternate embodiment is shown which includes a single leg of multi-level MOSFETs that may be configured to generate a rectified sine-wave by performing DC/DC operation (buck) during a sine-wave cycle. In this embodiment, the output of the leg may be inverted by a low-frequency full-bridge operated at AC line frequency (50 Hz).


With this variation, the switching losses at the high-frequency are reduced by a factor of two relative to a full-bridge implementation and the conduction losses are a combination of the single multi-level leg and the slow-switching full-bridge. It is possible to reduce the conduction losses of the slow-switching full-bridge by using improved components (e.g Super-junction MOSFETs or a series-stack of low-voltage MOSFETs) while not increasing switching losses due to low switching frequency.


Another benefit of this variation is that the component cost may be further reduced since there is only one multi-level leg with all the drivers and balancing capacitors and the full-bridge components can be made much cheaper than the cost of another multi-level leg.


Again referring to FIG. 4, the output of the high frequency stage is a rectified sine-wave (e.g., whenever the sine-wave is positive, it is the same, whenever the sine-wave is negative, it's still positive). The high frequency stage may be configured to generate a sine-wave but it is always positive. The low frequency stage inverts the rectified sine-wave to positive and negative, to create a true sine-wave. The low-frequency stage may be configured to invert the signal whenever it is needed. In this embodiment, the low frequency stage has a number of switches such as four switches S10, S11, S12, S13. In this example, the positive cycle of the sine-wave can be achieved by having the top-left S10 and bottom right S11, switching to on. When the other half of the signal is processed, the control can switch on the other diagonal, e.g., the upper right switch S12 and the bottom left switch S13 to invert the signal completing a sine-wave. These switches may be controlled via a processor such as processor 10 shown in FIG. 3.


The use of MOSFETs for the first high frequency stage controlled as discussed herein in order to shape the rectified sine-wave is another example of the invention. The advantages discussed above with respect to FIGS. 1-3 can be achieved in the embodiment of FIG. 4 with only 16 switches as opposed to the 24 switches of FIG. 1. Thus, substantial advantages can be achieved and further reduced costs and components.


Still another embodiment is shown in FIG. 5. In the embodiment of FIG. 5, S1G-S6G and S6H-S1H and C17-C22 operate above as discussed with respect to FIGS. 1-3. In this embodiment, a single phase inverter adds an additional multi-level leg at the input of the inverter. In other words, the circuit of FIG. 5 may replace C1 of FIG. 1 and be connected across the 350 v input. The additional leg may be configured to act to transfer capacitive charge between the DC link capacitor (C17) and the storage capacitor (C23) in order to compensate for the low frequency pulsation, such as a low frequency pulse of around 100 Hz. Since the storage capacitor may be configured to fluctuate with full voltage swing, its size can be reduced considerably relative to the original size of C1. The size of C17 can be very small.


This type of solution for reducing the DC link capacitor C17 when implemented using multi-level topology with low-voltage MOSFETs as shown can be very efficient (0.2% losses) and therefore reduce both size and cost without a high impact on the performance.


In FIG. 5, the capacitor C17 on the input takes the difference between the output power and the input power. The input power is DC and the output power is AC. The output power is fluctuating and the DC power does not fluctuate because it is DC. Some capacitors absorb over/under power in view of sine-wave fluctuations. Usually, the input capacitor, on such an inverter is very big and can be 10 percent of the cost of the inverter. With respect to the embodiment shown in FIG. 5, instead of having a very big capacitor which is C17, using this embodiment, C17 can be very small and actually performing DC to DC conversion between C17 and C23 due to the low power MOSFETs and control switching topology discussed herein. For example, whenever there is too much power on the AC side, then C17 needs to provide more power, then it takes it from C23 and whenever there is too much power on the DC side, then C17 gives that redundant power to C23. So, everything is going back and forth between C17 and C23. But eventually it compensates for the difference between the DC power and the AC power. By using the techniques described herein of low-voltage multi-level component with the associated control, embodiments gain the ability to reduce the capacities of the input of the inverter.


In still further embodiments, the capacitor C1 of FIG. 1 can be replaced with the circuit shown in FIG. 5. Similarly, the capacitor C11 of FIG. 4 can be replaced with the circuit shown in FIG. 5. Instead of having a capacitor C1 and/or C11 as the case may be, some embodiments may replace these capacitors with the circuit of FIG. 5. With these examples, the modified FIG. 1 would now have 36 MOSFETs as opposed to 24 MOSFETs, but the very large capacitor C1 is no longer present. Similarly, for the example where FIG. 4 is modified, the circuit would have 24 MOSFETs as opposed to 12 MOSFETs, but the large capacitor C11 is no longer present. Thus, the circuit shown in FIG. 5 can serve as replacement for the capacitor on the left-hand side of FIG. 1 (C1) and/or for a replacement for the capacitor shown on the left-hand side of FIG. 4 (C11).


In still further embodiments, such as three phase embodiments, there may be more banks of MOSFET transistors. For example, referring to FIG. 1, there may be additional banks of MOSFET transistors S1E-56E and S1F-S6F and associated capacitors. These MOSFET transistors would be controlled in the same manner as the other legs and transistor banks discussed herein. In this example, instead of just two legs shown in FIG. 1, one on the left and one leg on the right, you may have three legs similarly configured.


Although example embodiments are described above, the various features and steps may be combined, divided, omitted, and/or augmented in any desired manner, depending on the specific outcome and/or application. Various alterations, modifications, and improvements will readily occur to those skilled in art. Such alterations, modifications, and improvements as are made obvious by this disclosure are intended to be part of this description though not expressly stated herein, and are intended to be within the spirit and scope of the disclosure. Accordingly, the foregoing description is by way of example only, and not limiting. This patent is limited only as defined in the following claims and equivalents thereto.

Claims
  • 1. A method comprising: providing a rectified sine-wave at a terminal by: controlling each transistor of a first bank of series connected transistors to switch at staggered times during each cycle of a switching frequency; andcontrolling each transistor of a second bank of series connected transistors to switch at staggered times during each cycle of the switching frequency, wherein the first bank is connected via the terminal to the second bank; andinverting, by a full-bridge, the rectified sine-wave to a sine-wave alternating current (AC) output signal having a first frequency, wherein the switching frequency is greater than the first frequency.
  • 2. The method of claim 1, wherein the providing the rectified sine-wave comprises switching more than three metal-oxide-semiconductor field-effect transistors (MOSFETs) connected in series in each of the first and the second banks.
  • 3. The method of claim 1, further comprising, in each of the first and the second banks, turning on any one of the series connected transistors with a time delay before turning on another one of the series connected transistors, wherein the time delay is equal to 1/N of each cycle of the switching frequency, and N is a number of the series connected transistors in each of the first and the second banks.
  • 4. The method of claim 1, further comprising, in each of the first and the second banks, switching the series connected transistors according to a duty cycle ratio which changes according to the sine-wave AC output signal.
  • 5. The method of claim 1, further comprising conducting the rectified sine-wave to the full-bridge via an inductor.
  • 6. The method of claim 1, further comprising: generating a first plurality of control signals and a second plurality of control signals, wherein each control signal of the second plurality of control signals is inverted to a respective one of the first plurality of control signals;controlling each transistor of the first bank of series connected transistors with one of the first plurality of control signals; andcontrolling each transistor of the second bank of series connected transistors with one of the second plurality of control signals.
  • 7. The method of claim 1, wherein the providing the rectified sine-wave comprises: providing direct current (DC) power across the first bank of series connected transistors and across the second banks of series connected transistors; andcharging, from the DC power, at least one capacitor connected between: a first pair of two adjacent transistors of the first bank of series connected transistors; anda second pair of two adjacent transistors of the second bank of series connected transistors.
  • 8. The method of claim 1, wherein the first frequency is 50 Hz or 60 Hz, and wherein the switching frequency is above 16 kHz.
  • 9. An apparatus comprising: a controller configured to provide a rectified sine-wave at a terminal by: controlling each transistor of a first bank of series connected transistors to switch at staggered times during each cycle of a switching frequency; andcontrolling each transistor of a second bank of series connected transistors to switch at staggered times during each cycle of the switching frequency, wherein the first bank is connected via the terminal to the second bank; anda full-bridge configured to invert the rectified sine-wave to a sine-wave AC output signal having a first frequency, wherein the switching frequency is greater than the first frequency.
  • 10. The apparatus of claim 9, wherein the series connected transistors in each of the first and second banks comprise at least three metal-oxide-semiconductor field-effect transistors (MOSFETs).
  • 11. The apparatus of claim 9, wherein in each of the first and second banks, any one of the series connected transistors is configured to turn on with a time delay before turning on another one of the series connected transistors; and wherein the time delay is equal to 1/N of each cycle of the switching frequency, and N is a number of the series connected transistors in each of the first and the second banks.
  • 12. The apparatus of claim 9, wherein the controller is further configured to, in each of the first and the second banks, switch each of the series connected transistors according to a duty cycle ratio which changes according to the sine-wave AC output signal.
  • 13. The apparatus of claim 9, wherein the controller is further configured to control the series connected transistors of the first bank and the second bank to conduct the rectified sine-wave to the full-bridge via an inductor.
  • 14. A single-phase inverter comprising: a first bank of series connected transistors;a second bank of series connected transistors;a controller configured to generate a rectified sine-wave by: switching each transistor of the first bank of series connected transistors at staggered times during each cycle of a switching frequency; andswitching each transistor of the second bank of series connected transistors at staggered times during each cycle of the switching frequency; anda full-bridge configured to invert the rectified sine-wave having a first frequency to a sine-wave alternating current (AC) output signal, wherein the switching frequency is greater than the first frequency.
  • 15. The single-phase inverter of claim 14, wherein the series connected transistors in each of the first bank and the second bank comprises at least three metal-oxide-semiconductor field-effect transistors (MOSFETs).
  • 16. The single-phase inverter of claim 14, wherein in each of the first bank and the second bank, the controller is configured to turn on any one of the series connected transistors with a time delay before turning on another of the series connected transistors, wherein the time delay is equal to 1/N of each cycle of the switching frequency of a respective one of the first bank and the second bank, and N is a number of the series connected transistors in each of the first and the second banks.
  • 17. The single-phase inverter of claim 14, wherein the controller is further configured to, in each of the first bank and the second bank, switch each of the series connected transistors according to a duty cycle ratio which changes according to the sine-wave AC output signal.
  • 18. An apparatus comprising: a single leg of a multi-level transistors configured to generate a rectified sine-wave by performing direct current to direct current (DC-to-DC) conversion operation during a sine-wave cycle, wherein the multi-level transistors comprise first and second banks, at least one flying capacitor connected between the first and the second banks, each bank comprising a plurality of transistors connected in series; anda full-bridge configured to operate at alternating current (AC) line frequency and invert the rectified sine-wave to a sine-wave.
  • 19. The apparatus of claim 18, further comprising a controller configured to: control each of the plurality of transistors of the first bank to switch at staggered times during each cycle of a switching frequency; andcontrol each of the plurality of transistors of the second bank to switch at staggered times during each cycle of the switching frequency, wherein the switching frequency is greater than the AC line frequency.
  • 20. The apparatus of claim 19, wherein the controller is configured to use a respective one of a first plurality of control signals to control each of the plurality of transistors of the first bank, wherein a respective one of the first plurality of control signals is an inverted version of a respective one of a second plurality of control signals provided to a respective transistor of the plurality of transistors of the second bank.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/329,686 filed May 25, 2021, which is a continuation of U.S. patent application Ser. No. 15/926,159 filed Mar. 20, 2018 (now U.S. Pat. No. 11,063,528), which is a continuation of U.S. patent application Ser. No. 13/826,556 filed Mar. 14, 2013 (now U.S. Pat. No. 9,941,813). The above priority applications are incorporated in their entireties herein by reference.

US Referenced Citations (1232)
Number Name Date Kind
2367925 Brown Jan 1945 A
2758219 Miller Aug 1956 A
2852721 Harders et al. Sep 1958 A
3369210 Manickella Feb 1968 A
3392326 Lamberton Jul 1968 A
3496029 King et al. Feb 1970 A
3566143 Paine et al. Feb 1971 A
3581212 McMurray May 1971 A
3596229 Hohorst Jul 1971 A
3657657 Jefferson Apr 1972 A
3696286 Ule Oct 1972 A
3867643 Baker et al. Feb 1975 A
3958136 Schroeder May 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4104687 Zulaski Aug 1978 A
4129788 Chavannes Dec 1978 A
4146785 Neale Mar 1979 A
4161771 Bates Jul 1979 A
4170735 Godina et al. Oct 1979 A
4171861 Hohorst Oct 1979 A
4183079 Wachi Jan 1980 A
4257087 Cuk Mar 1981 A
4270163 Baker May 1981 A
4296461 Mallory et al. Oct 1981 A
4321581 Tappeiner et al. Mar 1982 A
4327318 Kwon et al. Apr 1982 A
4336613 Hewes Jun 1982 A
4346341 Blackbum et al. Aug 1982 A
4356542 Bruckner et al. Oct 1982 A
4363040 Inose Dec 1982 A
4367557 Stern et al. Jan 1983 A
4375662 Baker Mar 1983 A
4382382 Wang May 1983 A
4384321 Rippel May 1983 A
4394607 Lemirande Jul 1983 A
4404472 Steigerwald Sep 1983 A
4405977 Bhagwat et al. Sep 1983 A
4412142 Ragonese et al. Oct 1983 A
4452867 Conforti Jun 1984 A
4453207 Paul Jun 1984 A
4458204 Weber Jul 1984 A
4460232 Sotolongo Jul 1984 A
4470213 Thompson Sep 1984 A
4479175 Gille et al. Oct 1984 A
4481654 Daniels et al. Nov 1984 A
4488136 Hansen et al. Dec 1984 A
4526553 Guerrero Jul 1985 A
4545997 Wong et al. Oct 1985 A
4549254 Kissel Oct 1985 A
4554502 Rohatyn Nov 1985 A
4554515 Burson et al. Nov 1985 A
4564895 Glennon Jan 1986 A
4574250 Senderowicz Mar 1986 A
4580090 Bailey et al. Apr 1986 A
4591965 Dickerson May 1986 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4604567 Chetty Aug 1986 A
4608686 Barsellotti Aug 1986 A
4623753 Feldman et al. Nov 1986 A
4626983 Harada et al. Dec 1986 A
4631565 Tihanyi Dec 1986 A
4637677 Barkus Jan 1987 A
4639844 Gallios et al. Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4649334 Nakajima Mar 1987 A
4652770 Kumano Mar 1987 A
4670828 Shekhawat et al. Jun 1987 A
4683529 Bucher, II Jul 1987 A
4685040 Steigerwald et al. Aug 1987 A
4686617 Colton Aug 1987 A
4706181 Mercer Nov 1987 A
4719553 Hinckley Jan 1988 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4736151 Dishner Apr 1988 A
4772994 Harada et al. Sep 1988 A
4783728 Hoffman Nov 1988 A
4816736 Dougherty et al. Mar 1989 A
4819121 Saito et al. Apr 1989 A
RE33057 Clegg et al. Sep 1989 E
4864213 Kido Sep 1989 A
4868379 West Sep 1989 A
4873480 Lafferty Oct 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4906859 Kobayashi et al. Mar 1990 A
4910518 Kim et al. Mar 1990 A
4928056 Pease May 1990 A
4947100 Dhyanchand et al. Aug 1990 A
4951117 Kasai Aug 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5001415 Watkinson Mar 1991 A
5013990 Weber May 1991 A
5027051 Lafferty Jun 1991 A
5027059 de Montgolfier et al. Jun 1991 A
5045988 Gritter et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5093583 Mashino et al. Mar 1992 A
5138422 Fujii et al. Aug 1992 A
5143556 Matlin Sep 1992 A
5144222 Herbert Sep 1992 A
5155670 Brian Oct 1992 A
5159255 Weber Oct 1992 A
5172309 DeDoncker et al. Dec 1992 A
5191519 Kawakami Mar 1993 A
5196781 Jamieson et al. Mar 1993 A
5233509 Ghotbi Aug 1993 A
5235266 Schaffrin Aug 1993 A
5237194 Takahashi Aug 1993 A
5268832 Kandatsu Dec 1993 A
5280133 Nath Jan 1994 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5289361 Vinciarelli Feb 1994 A
5289998 Bingley et al. Mar 1994 A
5327071 Frederick et al. Jul 1994 A
5329222 Gyugyi et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5361196 Tanamachi et al. Nov 1994 A
5373433 Thomas Dec 1994 A
5379209 Goff Jan 1995 A
5381327 Yan Jan 1995 A
5402060 Erisman Mar 1995 A
5404059 Loffler Apr 1995 A
5408171 Eitzmann et al. Apr 1995 A
5412558 Sakurai et al. May 1995 A
5413313 Mutterlein et al. May 1995 A
5442358 Keeler et al. Aug 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5472614 Rossi Dec 1995 A
5475818 Molyneaux et al. Dec 1995 A
5479337 Voigt Dec 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5504415 Podrazhansky et al. Apr 1996 A
5504418 Ashley Apr 1996 A
5504449 Prentice Apr 1996 A
5508658 Nishioka et al. Apr 1996 A
5513075 Capper et al. Apr 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5539238 Malhi Jul 1996 A
5548504 Takehara Aug 1996 A
5563780 Goad Oct 1996 A
5565855 Knibbe Oct 1996 A
5566022 Segev Oct 1996 A
5576941 Nguyen et al. Nov 1996 A
5580395 Yoshioka et al. Dec 1996 A
5585749 Pace et al. Dec 1996 A
5598326 Liu et al. Jan 1997 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5625539 Nakata et al. Apr 1997 A
5625545 Hammond Apr 1997 A
5626619 Jacobson et al. May 1997 A
5631534 Lewis May 1997 A
5635864 Jones Jun 1997 A
5636107 Lu et al. Jun 1997 A
5638263 Opal et al. Jun 1997 A
5642275 Peng et al. Jun 1997 A
5644212 Takahashi Jul 1997 A
5644219 Kurokawa Jul 1997 A
5644483 Peng et al. Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5648731 Decker et al. Jul 1997 A
5659465 Flack et al. Aug 1997 A
5677833 Bingley Oct 1997 A
5684385 Guyonneau et al. Nov 1997 A
5686766 Tamechika Nov 1997 A
5703390 Itoh Dec 1997 A
5708576 Jones et al. Jan 1998 A
5719758 Nakata et al. Feb 1998 A
5722057 Wu Feb 1998 A
5726615 Bloom Mar 1998 A
5731603 Nakagawa et al. Mar 1998 A
5734565 Mueller et al. Mar 1998 A
5747967 Muljadi et al. May 1998 A
5751120 Zeitler et al. May 1998 A
5751138 Venkata et al. May 1998 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5790396 Miyazaki et al. Aug 1998 A
5793184 O'Connor Aug 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5812045 Ishikawa et al. Sep 1998 A
5814970 Schmidt Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5844439 Zortea Dec 1998 A
5847549 Dodson, III Dec 1998 A
5859772 Hilpert Jan 1999 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida et al. Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5892677 Chang Apr 1999 A
5898585 Sirichote et al. Apr 1999 A
5903138 Hwang et al. May 1999 A
5905645 Cross May 1999 A
5910892 Lyons et al. Jun 1999 A
5917722 Singh Jun 1999 A
5919314 Kim Jul 1999 A
5923100 Lukens et al. Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5929614 Coppie Jul 1999 A
5930128 Dent Jul 1999 A
5930131 Feng Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5933339 Duba et al. Aug 1999 A
5936856 Xiang Aug 1999 A
5943229 Sudhoff Aug 1999 A
5945806 Faulk Aug 1999 A
5946206 Shimizu et al. Aug 1999 A
5949668 Schweighofer Sep 1999 A
5955885 Kurokami et al. Sep 1999 A
5961739 Osborne Oct 1999 A
5963010 Hayashi et al. Oct 1999 A
5963078 Wallace Oct 1999 A
5973368 Pearce Oct 1999 A
5982646 Lyons et al. Nov 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6005788 Lipo et al. Dec 1999 A
6021052 Unger et al. Feb 2000 A
6026286 Long Feb 2000 A
6031399 Vu et al. Feb 2000 A
6031736 Takehara et al. Feb 2000 A
6031738 Lipo et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046470 Williams et al. Apr 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6058031 Lyons et al. May 2000 A
6058035 Madenokouji et al. May 2000 A
6060859 Jonokuchi May 2000 A
6064086 Nakagawa et al. May 2000 A
6075350 Peng Jun 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kem Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6083164 Oppelt et al. Jul 2000 A
6087738 Hammond Jul 2000 A
6093885 Takehara et al. Jul 2000 A
6094129 Baiatu Jul 2000 A
6101073 Takehara Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6130458 Takagi et al. Oct 2000 A
6150739 Baumgartl et al. Nov 2000 A
6151234 Oldenkamp Nov 2000 A
6160722 Thommes et al. Dec 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6175219 Imamura et al. Jan 2001 B1
6175512 Hagihara et al. Jan 2001 B1
6191456 Stoisiek et al. Feb 2001 B1
6205012 Lear Mar 2001 B1
6205042 Bixel Mar 2001 B1
RE37126 Peng et al. Apr 2001 E
6219623 Wills Apr 2001 B1
6225793 Dickmann May 2001 B1
6236580 Aiello et al. May 2001 B1
6255360 Domschke et al. Jul 2001 B1
6255804 Herniter et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262555 Hammond et al. Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6269010 Ma et al. Jul 2001 B1
6275016 Ivanov Aug 2001 B1
6281485 Siri Aug 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6301128 Jang et al. Oct 2001 B1
6301130 Aiello et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6307749 Daanen et al. Oct 2001 B1
6311137 Kurokami et al. Oct 2001 B1
6316716 Hilgrath Nov 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6331670 Takehara et al. Dec 2001 B2
6339538 Handleman Jan 2002 B1
6340851 Rinaldi et al. Jan 2002 B1
6346451 Simpson et al. Feb 2002 B1
6350944 Sherif et al. Feb 2002 B1
6351130 Preiser et al. Feb 2002 B1
6366483 Ma et al. Apr 2002 B1
6369461 Jungreis et al. Apr 2002 B1
6369462 Siri Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6396239 Benn et al. May 2002 B1
6404655 Welches Jun 2002 B1
6417644 Hammond et al. Jul 2002 B2
6422145 Gavrilovic et al. Jul 2002 B1
6424207 Johnson Jul 2002 B1
6425248 Tonomura et al. Jul 2002 B1
6429546 Ropp et al. Aug 2002 B1
6429621 Arai Aug 2002 B1
6433522 Siri Aug 2002 B1
6433978 Neiger et al. Aug 2002 B1
6441597 Lethellier Aug 2002 B1
6445599 Nguyen Sep 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6459596 Corzine Oct 2002 B1
6465910 Young et al. Oct 2002 B2
6469919 Bennett Oct 2002 B1
6472254 Cantarini et al. Oct 2002 B2
6480403 Bijlenga Nov 2002 B1
6483203 McCormack Nov 2002 B1
6493246 Suzui et al. Dec 2002 B2
6501362 Hoffman et al. Dec 2002 B1
6503649 Czajkowski et al. Jan 2003 B1
6507176 Wittenbreder, Jr. Jan 2003 B2
6509712 Landis Jan 2003 B1
6515215 Mimura Feb 2003 B1
6519165 Koike Feb 2003 B2
6519169 Asplund et al. Feb 2003 B1
6528977 Arakawa Mar 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6556330 Holcombe Apr 2003 B2
6556461 Khersonsky et al. Apr 2003 B1
6556661 Ingalsbe et al. Apr 2003 B1
6560131 vonBrethorst May 2003 B1
6577087 Su Jun 2003 B2
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6590794 Carter Jul 2003 B1
6593520 Kondo et al. Jul 2003 B2
6593521 Kobayashi Jul 2003 B2
6603672 Deng et al. Aug 2003 B1
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6621719 Steimer et al. Sep 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633824 Dollar, II Oct 2003 B2
6650031 Goldack Nov 2003 B1
6650371 Morrish et al. Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6657419 Renyolds Dec 2003 B2
6664762 Kutkut Dec 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6690796 Farris et al. Feb 2004 B1
6693327 Priefert et al. Feb 2004 B2
6693781 Kroker Feb 2004 B1
6697271 Corzine Feb 2004 B2
6700351 Blair et al. Mar 2004 B2
6709291 Wallace et al. Mar 2004 B1
6724593 Smith Apr 2004 B1
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6757185 Rojas Romero Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6768180 Salama et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6800964 Beck Oct 2004 B2
6801442 Suzui et al. Oct 2004 B2
6807069 Nieminen et al. Oct 2004 B2
6809942 Madenokouji et al. Oct 2004 B2
6810339 Wills Oct 2004 B2
6812396 Makita et al. Nov 2004 B2
6837739 Gorringe et al. Jan 2005 B2
6838611 Kondo et al. Jan 2005 B2
6838856 Raichle Jan 2005 B2
6842354 Tallam et al. Jan 2005 B1
6844739 Kasai et al. Jan 2005 B2
6850074 Adams et al. Feb 2005 B2
6850424 Baudelot et al. Feb 2005 B2
6856102 Lin et al. Feb 2005 B1
6882131 Takada et al. Apr 2005 B1
6888728 Takagi et al. May 2005 B2
6894911 Telefus et al. May 2005 B2
6897370 Kondo et al. May 2005 B2
6897784 Goehlich May 2005 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6930899 Bakran et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6933714 Fasshauer et al. Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6940735 Deng et al. Sep 2005 B2
6949843 Dubovsky Sep 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6954366 Lai et al. Oct 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6966184 Toyomura et al. Nov 2005 B2
6969967 Su Nov 2005 B2
6980655 Farris et al. Dec 2005 B2
6980783 Liu et al. Dec 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
6987444 Bub et al. Jan 2006 B2
6996741 Pittelkow et al. Feb 2006 B1
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7038430 Itabashi et al. May 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7045991 Nakamura et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7050311 Lai et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7061211 Satoh et al. Jun 2006 B2
7061214 Mayega et al. Jun 2006 B2
7064967 Ichinose et al. Jun 2006 B2
7068017 Willner et al. Jun 2006 B2
7072194 Nayar et al. Jul 2006 B2
7078883 Chapman et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7119629 Nielsen et al. Oct 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7142997 Widner Nov 2006 B1
7148669 Maksimovic et al. Dec 2006 B2
7150938 Munshi et al. Dec 2006 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7161082 Matsushita et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7183667 Colby et al. Feb 2007 B2
7190143 Wei et al. Mar 2007 B2
7193826 Crane et al. Mar 2007 B2
7193872 Siri Mar 2007 B2
7202653 Pai Apr 2007 B2
7208674 Aylaian Apr 2007 B2
7218541 Price et al. May 2007 B2
7219673 Lemak May 2007 B2
7230837 Huang et al. Jun 2007 B1
7231773 Crane et al. Jun 2007 B2
7248946 Bashaw Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7259474 Blanc Aug 2007 B2
7262979 Wai et al. Aug 2007 B2
7276886 Kinder et al. Oct 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7315052 Alter Jan 2008 B2
7319313 Dickerson et al. Jan 2008 B2
7319763 Bank et al. Jan 2008 B2
7324361 Siri Jan 2008 B2
7336004 Lai Feb 2008 B2
7336056 Dening Feb 2008 B1
7339287 Jepsen et al. Mar 2008 B2
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7361952 Miura et al. Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372709 Mazumder et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7375994 Andreycak May 2008 B2
7385300 Huff et al. Jun 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keung Jun 2008 B2
7388348 Mattichak Jun 2008 B2
7394237 Chou et al. Jul 2008 B2
7398012 Koellner Jul 2008 B2
7405117 Zuniga et al. Jul 2008 B2
7412056 Farris et al. Aug 2008 B2
7414870 Rottger et al. Aug 2008 B2
7420354 Cutler Sep 2008 B2
7420815 Love Sep 2008 B2
7432691 Cutler Oct 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7443052 Wendt et al. Oct 2008 B2
7443152 Utsunomiya Oct 2008 B2
7445178 McCoskey et al. Nov 2008 B2
7450401 Iida Nov 2008 B2
7456510 Ito et al. Nov 2008 B2
7456523 Kobayashi Nov 2008 B2
7463500 West Dec 2008 B2
7466566 Fukumoto Dec 2008 B2
7471014 Lum et al. Dec 2008 B2
7471524 Batarseh et al. Dec 2008 B1
7471532 Salama et al. Dec 2008 B1
7479774 Wai et al. Jan 2009 B2
7482238 Sung Jan 2009 B2
7492898 Farris et al. Feb 2009 B2
7495419 Ju Feb 2009 B1
7495938 Wu et al. Feb 2009 B2
7499291 Han Mar 2009 B2
7504811 Watanabe et al. Mar 2009 B2
7518346 Prexl et al. Apr 2009 B2
7538451 Nomoto May 2009 B2
7558087 Meysenc et al. Jul 2009 B2
7560915 Ito et al. Jul 2009 B2
7573732 Teichmann et al. Aug 2009 B2
7589437 Henne et al. Sep 2009 B2
7595616 Prexl et al. Sep 2009 B2
7598714 Stanley Oct 2009 B2
7599200 Tomonaga Oct 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7623663 Farris et al. Nov 2009 B2
7626834 Chisenga et al. Dec 2009 B2
7633284 Ingram et al. Dec 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7649434 Xu et al. Jan 2010 B2
7663268 Wen et al. Feb 2010 B2
7667342 Matsumoto et al. Feb 2010 B2
7679941 Raju et al. Mar 2010 B2
7701083 Savage Apr 2010 B2
7709727 Roehrig et al. May 2010 B2
7710082 Escobar Valderrama et al. May 2010 B2
7719140 Ledenev et al. May 2010 B2
7719864 Kernahan et al. May 2010 B2
7723865 Kitanaka May 2010 B2
7733069 Toyomura et al. Jun 2010 B2
7733178 Delano et al. Jun 2010 B1
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7768350 Srinivasan et al. Aug 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787270 NadimpalliRaju et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7796409 Knott Sep 2010 B2
7800348 Zargari Sep 2010 B2
7804282 Bertele Sep 2010 B2
7807919 Powell et al. Oct 2010 B2
7808125 Sachdeva et al. Oct 2010 B1
7812701 Lee et al. Oct 2010 B2
7821225 Chou et al. Oct 2010 B2
7830681 Abolhassani et al. Nov 2010 B2
7834579 Nojima Nov 2010 B2
7839022 Wolfs Nov 2010 B2
7839023 Jacobson et al. Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7864497 Quardt et al. Jan 2011 B2
7868599 Rahman et al. Jan 2011 B2
7872528 Bockelman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7883808 Norimatsu et al. Feb 2011 B2
7884278 Powell et al. Feb 2011 B2
7890080 Wu et al. Feb 2011 B2
7893022 Zhang et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7898112 Powell et al. Mar 2011 B2
7900361 Adest et al. Mar 2011 B2
7906870 Ohm Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7920393 Bendre et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7932693 Lee et al. Apr 2011 B2
7940537 Abolhassani et al. May 2011 B2
7944191 Xu May 2011 B2
7945413 Krein May 2011 B2
7948217 Oohara et al. May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
7961817 Dong et al. Jun 2011 B2
7969126 Stanley Jun 2011 B2
7969133 Zhang et al. Jun 2011 B2
7986535 Jacobson et al. Jul 2011 B2
8003885 Richter et al. Aug 2011 B2
8004113 Sander et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8004866 Bucella et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018331 Jang Sep 2011 B2
8018748 Leonard Sep 2011 B2
8026639 Sachdeva et al. Sep 2011 B1
8026763 Dawson et al. Sep 2011 B2
8031495 Sachdeva et al. Oct 2011 B2
8039730 Hadar et al. Oct 2011 B2
8045346 Abolhassani et al. Oct 2011 B2
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8067855 Mumtaz et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8089780 Mochikawa et al. Jan 2012 B2
8089785 Rodriguez Jan 2012 B2
8090548 Abdennadher et al. Jan 2012 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102074 Hadar et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8130501 Ledezma et al. Mar 2012 B2
8138631 Allen et al. Mar 2012 B2
8138914 Wong et al. Mar 2012 B2
8144490 El-Barbari et al. Mar 2012 B2
8144491 Bendre et al. Mar 2012 B2
8158877 Klein et al. Apr 2012 B2
8169108 Dupuis et al. May 2012 B2
8174138 Castelli Dezza et al. May 2012 B2
8179147 Dargatz et al. May 2012 B2
8184460 O'Brien et al. May 2012 B2
8194856 Farris et al. Jun 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8212408 Fishman Jul 2012 B2
8212409 Bettenwort et al. Jul 2012 B2
8223515 Abolhassani et al. Jul 2012 B2
8230257 Wilson Jul 2012 B2
8232948 Yin et al. Jul 2012 B2
8233625 Farris et al. Jul 2012 B2
8271599 Eizips et al. Sep 2012 B2
8274172 Hadar et al. Sep 2012 B2
8279640 Abolhassani et al. Oct 2012 B2
8279644 Zhang et al. Oct 2012 B2
8284021 Farris et al. Oct 2012 B2
8289742 Adest et al. Oct 2012 B2
8294306 Kumar et al. Oct 2012 B2
8304932 Ledenev et al. Nov 2012 B2
8310101 Amaratunga et al. Nov 2012 B2
8314375 Arditi et al. Nov 2012 B2
8314602 Hosini et al. Nov 2012 B2
8319471 Adest et al. Nov 2012 B2
8325059 Rozenboim Dec 2012 B2
8344548 Stern Jan 2013 B2
8344551 Nielsen Jan 2013 B2
8369113 Rodriguez Feb 2013 B2
8374009 Feng et al. Feb 2013 B2
8385091 Nielsen Feb 2013 B2
8391031 Garrity Mar 2013 B2
8391032 Garrity et al. Mar 2013 B2
8400796 Dofnas et al. Mar 2013 B2
8405248 Mumtaz et al. Mar 2013 B2
8405349 Kikinis et al. Mar 2013 B2
8405367 Chisenga et al. Mar 2013 B2
8410889 Garrity et al. Apr 2013 B2
8411474 Roesner et al. Apr 2013 B2
8415552 Hadar et al. Apr 2013 B2
8415937 Hester Apr 2013 B2
8427010 Bose et al. Apr 2013 B2
8436592 Saitoh May 2013 B2
8441820 Shen et al. May 2013 B2
8461809 Rodriguez Jun 2013 B2
8471514 Zargari et al. Jun 2013 B2
8471604 Permuy et al. Jun 2013 B2
8472220 Garrity et al. Jun 2013 B2
8472221 Lee Jun 2013 B1
8473250 Adest et al. Jun 2013 B2
8476689 Chang Jul 2013 B2
8482156 Spanoche et al. Jul 2013 B2
8492710 Fuhrer et al. Jul 2013 B2
8493754 Wambsganss et al. Jul 2013 B1
8498137 Joseph Jul 2013 B2
8509032 Rakib Aug 2013 B2
8526205 Garrity Sep 2013 B2
8531055 Adest et al. Sep 2013 B2
8542512 Garrity Sep 2013 B2
8547717 Kshirsagar Oct 2013 B2
8558405 Brogan et al. Oct 2013 B2
8559193 Mazumder Oct 2013 B2
8570005 Lubomirsky Oct 2013 B2
8570017 Perichon et al. Oct 2013 B2
8570776 Kolar et al. Oct 2013 B2
8581441 Rotzoll et al. Nov 2013 B2
8587141 Bjerknes et al. Nov 2013 B2
8599588 Adest et al. Dec 2013 B2
8619446 Liu et al. Dec 2013 B2
8624443 Mumtaz Jan 2014 B2
8642879 Gilmore et al. Feb 2014 B2
8653689 Rozenboim Feb 2014 B2
8664796 Nielsen Mar 2014 B2
8669675 Capp et al. Mar 2014 B2
8670255 Gong et al. Mar 2014 B2
8674548 Mumtaz Mar 2014 B2
8674668 Chisenga et al. Mar 2014 B2
8686333 Arditi et al. Apr 2014 B2
8751053 Hadar et al. Jun 2014 B2
8773236 Makhota et al. Jul 2014 B2
8811047 Rodriguez Aug 2014 B2
8823212 Garrity et al. Sep 2014 B2
8823218 Hadar et al. Sep 2014 B2
8841916 Avrutsky Sep 2014 B2
8853886 Avrutsky et al. Oct 2014 B2
8854019 Levesque et al. Oct 2014 B1
8854193 Makhota et al. Oct 2014 B2
8860241 Hadar et al. Oct 2014 B2
8860246 Hadar et al. Oct 2014 B2
8867248 Wang et al. Oct 2014 B2
8917156 Garrity et al. Dec 2014 B2
8922061 Arditi Dec 2014 B2
8933321 Hadar et al. Jan 2015 B2
8934269 Garrity Jan 2015 B2
8937822 Dent Jan 2015 B2
9735703 Dent Aug 2017 B2
10128774 Dent Nov 2018 B2
10135361 Dent Nov 2018 B2
10666161 Dent May 2020 B2
10784710 Dent Sep 2020 B2
20010023703 Kondo et al. Sep 2001 A1
20010032664 Takehara et al. Oct 2001 A1
20010034982 Nagao et al. Nov 2001 A1
20010035180 Kimura et al. Nov 2001 A1
20010048605 Kurokami et al. Dec 2001 A1
20010050102 Matsumi et al. Dec 2001 A1
20010054881 Watanabe Dec 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020014262 Matsushita et al. Feb 2002 A1
20020034083 Ayyanar et al. Mar 2002 A1
20020038667 Kondo et al. Apr 2002 A1
20020041505 Suzui et al. Apr 2002 A1
20020044473 Toyomura et al. Apr 2002 A1
20020047309 Droppo et al. Apr 2002 A1
20020056089 Houston May 2002 A1
20020063552 Arakawa May 2002 A1
20020078991 Nagao et al. Jun 2002 A1
20020080027 Conley Jun 2002 A1
20020085397 Suzui et al. Jul 2002 A1
20020113689 Gehlot et al. Aug 2002 A1
20020118559 Kurokami et al. Aug 2002 A1
20020149950 Takebayashi Oct 2002 A1
20020162585 Sugawara et al. Nov 2002 A1
20020165458 Carter et al. Nov 2002 A1
20020177401 Judd et al. Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20020180408 McDaniel et al. Dec 2002 A1
20030002303 Riggio et al. Jan 2003 A1
20030038615 Elbanhawy Feb 2003 A1
20030043611 Bockle Mar 2003 A1
20030047207 Aylaian Mar 2003 A1
20030058593 Bertele et al. Mar 2003 A1
20030058662 Baudelot et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030066555 Hui et al. Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030085621 Potega May 2003 A1
20030090233 Browe May 2003 A1
20030094931 Renyolds May 2003 A1
20030156439 Ohmichi et al. Aug 2003 A1
20030164695 Fasshauer et al. Sep 2003 A1
20030185026 Matsuda et al. Oct 2003 A1
20030193821 Krieger et al. Oct 2003 A1
20030201674 Droppo et al. Oct 2003 A1
20030212440 Boveja Nov 2003 A1
20030214274 Lethellier Nov 2003 A1
20030223257 Onoe Dec 2003 A1
20040004402 Kippley Jan 2004 A1
20040022081 Erickson et al. Feb 2004 A1
20040024937 Duncan et al. Feb 2004 A1
20040041548 Perry Mar 2004 A1
20040056768 Matsushita et al. Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040076028 Achleitner et al. Apr 2004 A1
20040117676 Kobayashi et al. Jun 2004 A1
20040118446 Toyomura Jun 2004 A1
20040123894 Erban Jul 2004 A1
20040124816 DeLepaut Jul 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040144043 Stevenson et al. Jul 2004 A1
20040164718 McDaniel et al. Aug 2004 A1
20040165408 West et al. Aug 2004 A1
20040167676 Mizumaki Aug 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040170038 Ichinose et al. Sep 2004 A1
20040189432 Yan et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040207366 Sung Oct 2004 A1
20040211458 Gui et al. Oct 2004 A1
20040223351 Kurokami et al. Nov 2004 A1
20040233685 Matsuo et al. Nov 2004 A1
20040246226 Moon Dec 2004 A1
20040258141 Tustison et al. Dec 2004 A1
20040264225 Bhavaraju et al. Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050006958 Dubovsky Jan 2005 A1
20050017656 Takahashi et al. Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050017701 Hsu Jan 2005 A1
20050030772 Phadke Feb 2005 A1
20050040800 Sutardja Feb 2005 A1
20050041442 Balakrishnan Feb 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068012 Cutler Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050105306 Deng et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050110454 Tsai et al. May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050127853 Su Jun 2005 A1
20050135031 Colby et al. Jun 2005 A1
20050139258 Liu et al. Jun 2005 A1
20050139259 Steigerwald et al. Jun 2005 A1
20050140335 Lee et al. Jun 2005 A1
20050141248 Mazumder et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050179420 Satoh et al. Aug 2005 A1
20050194937 Jacobs Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050213272 Kobayashi Sep 2005 A1
20050225090 Wobben Oct 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050242795 Al-Kuran et al. Nov 2005 A1
20050257827 Gaudiana et al. Nov 2005 A1
20050269988 Thrap Dec 2005 A1
20050275386 Jepsen et al. Dec 2005 A1
20050275527 Kates Dec 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060043792 Hjort et al. Mar 2006 A1
20060044018 Chang Mar 2006 A1
20060044857 Lemak Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060103360 Cutler May 2006 A9
20060108979 Daniel et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060162772 Presher et al. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060164065 Hoouk et al. Jul 2006 A1
20060171182 Siri et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060176029 McGinty et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060176036 Flatness et al. Aug 2006 A1
20060176716 Balakrishnan et al. Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060197112 Uchihara et al. Sep 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060222916 Norimatsu et al. Oct 2006 A1
20060225781 Locher Oct 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060231132 Neussner Oct 2006 A1
20060232220 Melis Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20060261751 Okabe et al. Nov 2006 A1
20060290317 McNulty et al. Dec 2006 A1
20070001653 Xu Jan 2007 A1
20070013349 Bassett Jan 2007 A1
20070019613 Frezzolini Jan 2007 A1
20070024257 Boldo Feb 2007 A1
20070027644 Bettenwort et al. Feb 2007 A1
20070030068 Motonobu et al. Feb 2007 A1
20070035975 Dickerson et al. Feb 2007 A1
20070040540 Cutler Feb 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070103108 Capp et al. May 2007 A1
20070107767 Hayden et al. May 2007 A1
20070119718 Gibson et al. May 2007 A1
20070121648 Hahn May 2007 A1
20070133241 Mumtaz et al. Jun 2007 A1
20070133421 Young Jun 2007 A1
20070147075 Bang Jun 2007 A1
20070158185 Andelman et al. Jul 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070209656 Lee Sep 2007 A1
20070211888 Corcoran et al. Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070235071 Work et al. Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070271006 Golden et al. Nov 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070273351 Matan Nov 2007 A1
20070290636 Beck et al. Dec 2007 A1
20070290656 Lee Tai Keung Dec 2007 A1
20070296383 Xu et al. Dec 2007 A1
20080021707 Bou-Ghazale et al. Jan 2008 A1
20080024098 Hojo Jan 2008 A1
20080036440 Garmer Feb 2008 A1
20080055941 Victor et al. Mar 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080111529 Shah et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080121272 Besser et al. May 2008 A1
20080122449 Besser et al. May 2008 A1
20080122518 Besser et al. May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080149167 Liu Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080191560 Besser et al. Aug 2008 A1
20080191675 Besser et al. Aug 2008 A1
20080198523 Schmidt et al. Aug 2008 A1
20080205096 Lai et al. Aug 2008 A1
20080218152 Bo Sep 2008 A1
20080224652 Zhu et al. Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080238372 Cintra et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080264470 Masuda et al. Oct 2008 A1
20080266919 Mallwitz Oct 2008 A1
20080291707 Fang Nov 2008 A1
20080294472 Yamada Nov 2008 A1
20080303503 Wolfs Dec 2008 A1
20080304296 NadimpalliRaju et al. Dec 2008 A1
20080304298 Toba et al. Dec 2008 A1
20090012917 Thompson et al. Jan 2009 A1
20090014050 Haaf Jan 2009 A1
20090020151 Fornage Jan 2009 A1
20090021877 Fornage et al. Jan 2009 A1
20090039852 Fishelov et al. Feb 2009 A1
20090066357 Fornage Mar 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090069950 Kurokami et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090080226 Fornage Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090101191 Beck et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090114263 Powell et al. May 2009 A1
20090120485 Kikinis May 2009 A1
20090121549 Leonard May 2009 A1
20090133736 Powell et al. May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090150005 Hadar et al. Jun 2009 A1
20090179662 Moulton et al. Jul 2009 A1
20090182532 Stoeber et al. Jul 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090189456 Skutt Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090195081 Quardt et al. Aug 2009 A1
20090196764 Fogarty et al. Aug 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090207543 Boniface et al. Aug 2009 A1
20090217965 Dougal et al. Sep 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090234692 Powell et al. Sep 2009 A1
20090237042 Glovinski Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090278496 Nakao et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090283129 Foss Nov 2009 A1
20090283130 Gilmore et al. Nov 2009 A1
20090284232 Zhang et al. Nov 2009 A1
20090284998 Zhang et al. Nov 2009 A1
20090295225 Asplund et al. Dec 2009 A1
20090322494 Lee Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100002349 La Scala et al. Jan 2010 A1
20100013452 Tang et al. Jan 2010 A1
20100026097 Avrutsky et al. Feb 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100057267 Liu et al. Mar 2010 A1
20100060000 Scholte-Wassink Mar 2010 A1
20100060235 Dommaschk et al. Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100115093 Rice May 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100127570 Hadar et al. May 2010 A1
20100127571 Hadar et al. May 2010 A1
20100132757 He et al. Jun 2010 A1
20100132758 Gilmore Jun 2010 A1
20100133911 Williams et al. Jun 2010 A1
20100139734 Hadar et al. Jun 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100191383 Gaul Jul 2010 A1
20100207764 Muhlberger et al. Aug 2010 A1
20100207770 Thiemann Aug 2010 A1
20100208501 Matan et al. Aug 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100229915 Ledenev et al. Sep 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100264736 Mumtaz et al. Oct 2010 A1
20100266875 Somogye et al. Oct 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100286836 Shaver, II et al. Nov 2010 A1
20100288327 Lisi et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100295680 Dumps Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20100309692 Chisenga et al. Dec 2010 A1
20100321148 Gevorkian Dec 2010 A1
20100326809 Lang et al. Dec 2010 A1
20100327657 Kuran Dec 2010 A1
20100327659 Lisi et al. Dec 2010 A1
20100332047 Arditi et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110012430 Cheng et al. Jan 2011 A1
20110013438 Frisch et al. Jan 2011 A1
20110025130 Hadar et al. Feb 2011 A1
20110031946 Egan et al. Feb 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110045802 Bland et al. Feb 2011 A1
20110049990 Amaratunga et al. Mar 2011 A1
20110050190 Avrutsky Mar 2011 A1
20110056533 Kuan Mar 2011 A1
20110061705 Croft et al. Mar 2011 A1
20110061713 Powell et al. Mar 2011 A1
20110062784 Wolfs Mar 2011 A1
20110065161 Kwasinski et al. Mar 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110083733 Marroquin et al. Apr 2011 A1
20110084553 Adest et al. Apr 2011 A1
20110110136 Lacarnoy May 2011 A1
20110114154 Lichy et al. May 2011 A1
20110115295 Moon et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110132424 Rakib Jun 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110139213 Lee Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110161722 Makhota et al. Jun 2011 A1
20110172842 Makhota et al. Jul 2011 A1
20110173276 Eizips et al. Jul 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110210610 Mitsuoka et al. Sep 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110210612 Leutwein Sep 2011 A1
20110215866 Dawson et al. Sep 2011 A1
20110218687 Hadar et al. Sep 2011 A1
20110227411 Arditi Sep 2011 A1
20110232714 Bhavaraju et al. Sep 2011 A1
20110245989 Makhota et al. Oct 2011 A1
20110246338 Eich Oct 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110273302 Fornage et al. Nov 2011 A1
20110280052 Al-Haddad Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110301772 Zuercher et al. Dec 2011 A1
20110304204 Avrutsky et al. Dec 2011 A1
20110304213 Avrutsky et al. Dec 2011 A1
20110304215 Avrutsky et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120033463 Rodriguez Feb 2012 A1
20120039099 Rodriguez Feb 2012 A1
20120043818 Stratakos et al. Feb 2012 A1
20120044014 Stratakos et al. Feb 2012 A1
20120048325 Matsuo et al. Mar 2012 A1
20120056483 Capp et al. Mar 2012 A1
20120068555 Aiello et al. Mar 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120087159 Chapman et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
20120106210 Xu et al. May 2012 A1
20120112545 Aiello et al. May 2012 A1
20120113554 Paoletti et al. May 2012 A1
20120119584 Hadar et al. May 2012 A1
20120120691 Armschat et al. May 2012 A1
20120146420 Wolfs Jun 2012 A1
20120161528 Mumtaz et al. Jun 2012 A1
20120161858 Permuy et al. Jun 2012 A1
20120163057 Permuy et al. Jun 2012 A1
20120174961 Larson et al. Jul 2012 A1
20120199172 Avrutsky Aug 2012 A1
20120200163 Ito et al. Aug 2012 A1
20120205981 Varma et al. Aug 2012 A1
20120215367 Eizips et al. Aug 2012 A1
20120217943 Haddad Aug 2012 A1
20120217973 Avrutsky Aug 2012 A1
20120218785 Li et al. Aug 2012 A1
20120218795 Mihalache Aug 2012 A1
20120223583 Cooley et al. Sep 2012 A1
20120229264 Bosch et al. Sep 2012 A1
20120240490 Gangemi Sep 2012 A1
20120253533 Eizips et al. Oct 2012 A1
20120253541 Arditi et al. Oct 2012 A1
20120255591 Arditi et al. Oct 2012 A1
20130002215 Ikeda et al. Jan 2013 A1
20130014384 Xue et al. Jan 2013 A1
20130026839 Grana Jan 2013 A1
20130026840 Arditi et al. Jan 2013 A1
20130026842 Arditi et al. Jan 2013 A1
20130026843 Arditi et al. Jan 2013 A1
20130033907 Zhou et al. Feb 2013 A1
20130044527 Vracar et al. Feb 2013 A1
20130051094 Bendre et al. Feb 2013 A1
20130094262 Avrutsky Apr 2013 A1
20130128629 Clare et al. May 2013 A1
20130128636 Trainer et al. May 2013 A1
20130134790 Amaratunga et al. May 2013 A1
20130154716 Degener et al. Jun 2013 A1
20130163292 Basic et al. Jun 2013 A1
20130181533 Capp et al. Jul 2013 A1
20130188406 Pouliquen et al. Jul 2013 A1
20130192657 Hadar et al. Aug 2013 A1
20130208514 Trainer et al. Aug 2013 A1
20130208521 Trainer et al. Aug 2013 A1
20130221678 Zhang et al. Aug 2013 A1
20130222144 Hadar et al. Aug 2013 A1
20130223651 Hoyerby Aug 2013 A1
20130229834 Garrity et al. Sep 2013 A1
20130229842 Garrity Sep 2013 A1
20130234518 Mumtaz et al. Sep 2013 A1
20130235626 Jang et al. Sep 2013 A1
20130235637 Rodriguez Sep 2013 A1
20130249322 Zhang et al. Sep 2013 A1
20130264876 Paakkinen Oct 2013 A1
20130272045 Soeiro et al. Oct 2013 A1
20130279210 Chisenga et al. Oct 2013 A1
20130279211 Green et al. Oct 2013 A1
20130294126 Garrity et al. Nov 2013 A1
20130307556 Ledenev et al. Nov 2013 A1
20130314957 Gupta et al. Nov 2013 A1
20130322142 Raju Dec 2013 A1
20130332093 Adest et al. Dec 2013 A1
20130343106 Perreault et al. Dec 2013 A1
20130343107 Perreault Dec 2013 A1
20140003101 Tang et al. Jan 2014 A1
20140022738 Hiller et al. Jan 2014 A1
20140046500 Varma Feb 2014 A1
20140049230 Weyh Feb 2014 A1
20140097808 Clark et al. Apr 2014 A1
20140106470 Kopacka et al. Apr 2014 A1
20140118158 Parra et al. May 2014 A1
20140125241 Elferich et al. May 2014 A1
20140167715 Wu et al. Jun 2014 A1
20140191583 Chisenga et al. Jul 2014 A1
20140198542 Swamy Jul 2014 A1
20140198547 Heo et al. Jul 2014 A1
20140198548 Zhang et al. Jul 2014 A1
20140232364 Thomas et al. Aug 2014 A1
20140246915 Mumtaz Sep 2014 A1
20140246927 Mumtaz Sep 2014 A1
20140252859 Chisenga et al. Sep 2014 A1
20140265579 Mumtaz Sep 2014 A1
20140293667 Schroeder et al. Oct 2014 A1
20140300413 Hoyerby et al. Oct 2014 A1
20140306543 Garrity et al. Oct 2014 A1
20140327313 Arditi et al. Nov 2014 A1
20150009734 Stahl et al. Jan 2015 A1
20150022006 Garrity et al. Jan 2015 A1
20150028683 Hadar et al. Jan 2015 A1
20150028692 Makhota et al. Jan 2015 A1
20150258608 Chow et al. Sep 2015 A1
20150280608 Yoscovich et al. Oct 2015 A1
20160365731 Dent Dec 2016 A9
20170310242 Kifuji et al. Oct 2017 A1
20180026550 Dent Jan 2018 A1
20200028447 Dent Jan 2020 A1
20200059166 Dent Feb 2020 A1
20200412165 Dent Dec 2020 A1
Foreign Referenced Citations (576)
Number Date Country
2073800 Sep 2000 AU
2005262278 Jan 2006 AU
1183574 Mar 1985 CA
2063243 Dec 1991 CA
2301657 Mar 1999 CA
2394761 Jun 2001 CA
2658087 Jun 2001 CA
2443450 Mar 2005 CA
2572452 Jan 2006 CA
2613038 Jan 2007 CA
2704605 May 2009 CA
2305016 Jan 1999 CN
1262552 Aug 2000 CN
1064487 Apr 2001 CN
1309451 Aug 2001 CN
1086259 Jun 2002 CN
1362655 Aug 2002 CN
2514538 Oct 2002 CN
1122905 Oct 2003 CN
1185782 Jan 2005 CN
2672938 Jan 2005 CN
1625037 Jun 2005 CN
1245795 Mar 2006 CN
1787717 Jun 2006 CN
1841254 Oct 2006 CN
1841823 Oct 2006 CN
1892239 Jan 2007 CN
1902809 Jan 2007 CN
1929276 Mar 2007 CN
1930925 Mar 2007 CN
101030752 Sep 2007 CN
101050770 Oct 2007 CN
100371843 Feb 2008 CN
101136129 Mar 2008 CN
100426175 Oct 2008 CN
101291129 Oct 2008 CN
100431253 Nov 2008 CN
201203438 Mar 2009 CN
101488271 Jul 2009 CN
101488668 Jul 2009 CN
101523230 Sep 2009 CN
101527504 Sep 2009 CN
101546964 Sep 2009 CN
201332382 Oct 2009 CN
101692579 Apr 2010 CN
101795057 Aug 2010 CN
101902143 Dec 2010 CN
101917016 Dec 2010 CN
101944839 Jan 2011 CN
101953060 Jan 2011 CN
102013691 Apr 2011 CN
102223099 Oct 2011 CN
202103601 Jan 2012 CN
102355152 Feb 2012 CN
102511121 Jun 2012 CN
102545681 Jul 2012 CN
102594192 Jul 2012 CN
202333835 Jul 2012 CN
102624267 Aug 2012 CN
102629836 Aug 2012 CN
102651612 Aug 2012 CN
102664514 Sep 2012 CN
102684204 Sep 2012 CN
202444420 Sep 2012 CN
102709941 Oct 2012 CN
102723734 Oct 2012 CN
102739080 Oct 2012 CN
102763316 Oct 2012 CN
102856881 Jan 2013 CN
102868290 Jan 2013 CN
102891602 Jan 2013 CN
102959843 Mar 2013 CN
102983002 Mar 2013 CN
103001519 Mar 2013 CN
202798507 Mar 2013 CN
103066573 Apr 2013 CN
103066878 Apr 2013 CN
103107720 May 2013 CN
103116665 May 2013 CN
103123664 May 2013 CN
103176470 Jun 2013 CN
202997660 Jun 2013 CN
103199681 Jul 2013 CN
103208929 Jul 2013 CN
103219738 Jul 2013 CN
103219896 Jul 2013 CN
103236800 Aug 2013 CN
103248112 Aug 2013 CN
103280952 Sep 2013 CN
103296885 Sep 2013 CN
103311947 Sep 2013 CN
103312209 Sep 2013 CN
103312246 Sep 2013 CN
103412528 Nov 2013 CN
103441512 Dec 2013 CN
103457501 Dec 2013 CN
103518300 Jan 2014 CN
203398807 Jan 2014 CN
203399000 Jan 2014 CN
103595284 Feb 2014 CN
103607107 Feb 2014 CN
103633870 Mar 2014 CN
103701145 Apr 2014 CN
103701350 Apr 2014 CN
103731035 Apr 2014 CN
103762873 Apr 2014 CN
103762881 Apr 2014 CN
3236071 Jan 1984 DE
3525630 Jan 1987 DE
3729000 Mar 1989 DE
4019710 Jan 1992 DE
4032569 Apr 1992 DE
4232356 Mar 1994 DE
4325436 Feb 1995 DE
4328511 Mar 1995 DE
19515786 Nov 1995 DE
19502762 Aug 1996 DE
19538946 Apr 1997 DE
19609189 Sep 1997 DE
19618882 Nov 1997 DE
19701897 Jul 1998 DE
19718046 Nov 1998 DE
19732218 Mar 1999 DE
19737286 Mar 1999 DE
19838230 Feb 2000 DE
19846818 Apr 2000 DE
19904561 Aug 2000 DE
19928809 Jan 2001 DE
019937410 Feb 2001 DE
19961705 Jul 2001 DE
10064039 Dec 2001 DE
10060108 Jun 2002 DE
10103031 Jul 2002 DE
10103431 Aug 2002 DE
10136147 Feb 2003 DE
10222621 Nov 2003 DE
202004001246 Apr 2004 DE
10345302 Apr 2005 DE
102004043478 Apr 2005 DE
69734495 Jul 2006 DE
69735169 Aug 2006 DE
102005018173 Oct 2006 DE
102005020937 Nov 2006 DE
102005030907 Jan 2007 DE
102005032864 Jan 2007 DE
102006023563 Nov 2007 DE
102006026073 Dec 2007 DE
102007050031 Apr 2009 DE
102008057874 May 2010 DE
102010010782 Sep 2011 DE
112010002784 Aug 2012 DE
102012202173 Aug 2013 DE
102012202187 Aug 2013 DE
102012005974 Sep 2013 DE
0010811 May 1980 EP
0027405 Apr 1981 EP
0074848 Mar 1983 EP
169673 Jan 1986 EP
0178757 Apr 1986 EP
0206253 Dec 1986 EP
0231211 Aug 1987 EP
0293219 Nov 1988 EP
0340006 Nov 1989 EP
419093 Mar 1991 EP
420295 Apr 1991 EP
0521467 Jan 1993 EP
0576271 Dec 1993 EP
0577334 Jan 1994 EP
0580341 Jan 1994 EP
604777 Jul 1994 EP
0628901 Dec 1994 EP
0642199 Mar 1995 EP
0670915 Sep 1995 EP
756178 Jan 1997 EP
0756372 Jan 1997 EP
0780750 Jun 1997 EP
0809293 Nov 1997 EP
827254 Mar 1998 EP
0895146 Feb 1999 EP
0906660 Apr 1999 EP
0913918 May 1999 EP
0947905 Oct 1999 EP
1012886 Jun 2000 EP
1024575 Aug 2000 EP
1034465 Sep 2000 EP
1035640 Sep 2000 EP
1039620 Sep 2000 EP
1039621 Sep 2000 EP
1047179 Oct 2000 EP
1113570 Jul 2001 EP
1130770 Sep 2001 EP
1143594 Oct 2001 EP
1187291 Mar 2002 EP
1235339 Aug 2002 EP
1239573 Sep 2002 EP
1239576 Sep 2002 EP
1254505 Nov 2002 EP
1271742 Jan 2003 EP
1330009 Jul 2003 EP
1339153 Aug 2003 EP
1369983 Dec 2003 EP
1376706 Jan 2004 EP
1388774 Feb 2004 EP
1400988 Mar 2004 EP
1407534 Apr 2004 EP
1418482 May 2004 EP
1420976 May 2004 EP
1429393 Jun 2004 EP
1442473 Aug 2004 EP
1447561 Aug 2004 EP
1457857 Sep 2004 EP
1463188 Sep 2004 EP
1475882 Nov 2004 EP
1503490 Feb 2005 EP
1521345 Apr 2005 EP
1526633 Apr 2005 EP
1531542 May 2005 EP
1531545 May 2005 EP
1532727 May 2005 EP
1552563 Jul 2005 EP
1562281 Aug 2005 EP
1580862 Sep 2005 EP
1603212 Dec 2005 EP
1610571 Dec 2005 EP
1623495 Feb 2006 EP
1657557 May 2006 EP
1657797 May 2006 EP
1657809 May 2006 EP
1691246 Aug 2006 EP
1706937 Oct 2006 EP
1708070 Oct 2006 EP
1713168 Oct 2006 EP
1716272 Nov 2006 EP
1728413 Dec 2006 EP
1750193 Feb 2007 EP
1766490 Mar 2007 EP
1782146 May 2007 EP
1785800 May 2007 EP
1842121 Oct 2007 EP
1859362 Nov 2007 EP
1887675 Feb 2008 EP
1901419 Mar 2008 EP
1902349 Mar 2008 EP
1911101 Apr 2008 EP
1051799 Jul 2008 EP
2048679 Apr 2009 EP
2061088 May 2009 EP
2092625 Aug 2009 EP
2092631 Aug 2009 EP
2110939 Oct 2009 EP
2135348 Dec 2009 EP
2144133 Jan 2010 EP
2160828 Mar 2010 EP
2178200 Apr 2010 EP
2206159 Jul 2010 EP
2232690 Sep 2010 EP
2256579 Dec 2010 EP
2312739 Apr 2011 EP
2315328 Apr 2011 EP
2321894 May 2011 EP
2372893 Oct 2011 EP
2374190 Oct 2011 EP
2393178 Dec 2011 EP
2408081 Jan 2012 EP
2478610 Jul 2012 EP
2495766 Sep 2012 EP
2495858 Sep 2012 EP
2533299 Dec 2012 EP
2533412 Dec 2012 EP
2549635 Jan 2013 EP
2560276 Feb 2013 EP
2561596 Feb 2013 EP
2562776 Feb 2013 EP
2568589 Mar 2013 EP
2568591 Mar 2013 EP
2590312 May 2013 EP
2596980 May 2013 EP
2621045 Jul 2013 EP
2621076 Jul 2013 EP
2650999 Oct 2013 EP
2654201 Oct 2013 EP
2666222 Nov 2013 EP
2677653 Dec 2013 EP
2681835 Jan 2014 EP
2693622 Feb 2014 EP
2722979 Apr 2014 EP
2738933 Jun 2014 EP
2779251 Sep 2014 EP
2779410 Sep 2014 EP
2882084 Jul 2015 EP
2651024 May 2017 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2796216 Jan 2001 FR
2819653 Jul 2002 FR
1211885 Nov 1970 GB
1261838 Jan 1972 GB
1571681 Jul 1980 GB
1597508 Sep 1981 GB
2327208 Jan 1999 GB
2339465 Jan 2000 GB
2376801 Dec 2002 GB
2399463 Sep 2004 GB
2399465 Sep 2004 GB
2415841 Jan 2006 GB
2419968 May 2006 GB
2421847 Jul 2006 GB
2476508 Jun 2011 GB
2480015 Dec 2011 GB
2482653 Feb 2012 GB
2483317 Mar 2012 GB
2485527 May 2012 GB
2486408 Jun 2012 GB
2487368 Jul 2012 GB
2497275 Jun 2013 GB
2498365 Jul 2013 GB
2498790 Jul 2013 GB
2498791 Jul 2013 GB
2499991 Sep 2013 GB
61065320 Apr 1986 JP
H01311874 Dec 1989 JP
H04219982 Aug 1992 JP
H04364378 Dec 1992 JP
8009557 Jan 1996 JP
H0897460 Apr 1996 JP
H08116628 May 1996 JP
H08185235 Jul 1996 JP
H08227324 Sep 1996 JP
H08316517 Nov 1996 JP
H08317664 Nov 1996 JP
H094692 Jan 1997 JP
H09148611 Jun 1997 JP
H09275644 Oct 1997 JP
2676789 Nov 1997 JP
H1017445 Jan 1998 JP
H1075580 Mar 1998 JP
H10201086 Jul 1998 JP
H10285966 Oct 1998 JP
H1110353 Jan 1999 JP
11041832 Feb 1999 JP
H1146457 Feb 1999 JP
11103538 Apr 1999 JP
2892183 May 1999 JP
11206038 Jul 1999 JP
H11266545 Sep 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
2000020150 Jan 2000 JP
3015512 Mar 2000 JP
2000160789 Jun 2000 JP
2000166097 Jun 2000 JP
2000174307 Jun 2000 JP
2000232791 Aug 2000 JP
2000232793 Aug 2000 JP
2000316282 Nov 2000 JP
2000324852 Nov 2000 JP
2000339044 Dec 2000 JP
2000341974 Dec 2000 JP
2000347753 Dec 2000 JP
2000358330 Dec 2000 JP
2001060120 Mar 2001 JP
2001075662 Mar 2001 JP
2001178145 Jun 2001 JP
2001189476 Jul 2001 JP
2001224142 Aug 2001 JP
2001250964 Sep 2001 JP
2002073184 Mar 2002 JP
2002238246 Aug 2002 JP
2002270876 Sep 2002 JP
2002300735 Oct 2002 JP
2002339591 Nov 2002 JP
2002354677 Dec 2002 JP
2003102134 Apr 2003 JP
2003124492 Apr 2003 JP
2003134661 May 2003 JP
2003134667 May 2003 JP
2003289674 Oct 2003 JP
2004055603 Feb 2004 JP
2004111754 Apr 2004 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2004-334704 Nov 2004 JP
2004312994 Nov 2004 JP
3656531 Jun 2005 JP
2005192314 Jul 2005 JP
2005251039 Sep 2005 JP
2006041440 Feb 2006 JP
2007058845 Mar 2007 JP
2010-146047 Jul 2010 JP
2010-220364 Sep 2010 JP
2010245532 Oct 2010 JP
2011-072118 Apr 2011 JP
2011-130517 Jun 2011 JP
2012-060735 Mar 2012 JP
2012-065428 Mar 2012 JP
2012511299 May 2012 JP
2012-257451 Dec 2012 JP
2013-055830 Mar 2013 JP
2013-526247 Jun 2013 JP
2013-258790 Dec 2013 JP
2014-003821 Jan 2014 JP
2014-050135 Mar 2014 JP
20010044490 Jun 2001 KR
20040086088 Oct 2004 KR
100468127 Jan 2005 KR
200402282 Nov 2005 KR
100725755 May 2007 KR
100912892 Aug 2009 KR
1011483 Sep 2000 NL
8202134 Jun 1982 WO
1982002134 Jun 1982 WO
1984003402 Aug 1984 WO
1988004801 Jun 1988 WO
1992007418 Apr 1992 WO
1993013587 Jul 1993 WO
1996007130 Mar 1996 WO
1996013093 May 1996 WO
1998023021 May 1998 WO
1999028801 Jun 1999 WO
0000839 Jan 2000 WO
0021178 Apr 2000 WO
0075947 Dec 2000 WO
0077522 Dec 2000 WO
01047095 Jun 2001 WO
0213364 Feb 2002 WO
0231517 Apr 2002 WO
02056126 Jul 2002 WO
02078164 Oct 2002 WO
02093655 Nov 2002 WO
03012569 Feb 2003 WO
2003012569 Feb 2003 WO
2003050938 Jun 2003 WO
2003071655 Aug 2003 WO
03084041 Oct 2003 WO
2004001942 Dec 2003 WO
2004006342 Jan 2004 WO
2004008619 Jan 2004 WO
2004023278 Mar 2004 WO
2004053993 Jun 2004 WO
2004090993 Oct 2004 WO
2004098261 Nov 2004 WO
2004100344 Nov 2004 WO
2004100348 Nov 2004 WO
2004107543 Dec 2004 WO
2005015584 Feb 2005 WO
2005027300 Mar 2005 WO
2005053189 Jun 2005 WO
2005069096 Jul 2005 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2005089030 Sep 2005 WO
2005112551 Dec 2005 WO
2005119609 Dec 2005 WO
2005124498 Dec 2005 WO
2006002380 Jan 2006 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006011071 Feb 2006 WO
2006011359 Feb 2006 WO
2006013600 Feb 2006 WO
2006027744 Mar 2006 WO
2006048688 May 2006 WO
2006048689 May 2006 WO
2006071436 Jul 2006 WO
2006078685 Jul 2006 WO
2006079503 Aug 2006 WO
2006089778 Aug 2006 WO
2006110613 Oct 2006 WO
2007006564 Jan 2007 WO
2007007360 Jan 2007 WO
2007010326 Jan 2007 WO
2007048421 May 2007 WO
2007072517 Jun 2007 WO
2007073951 Jul 2007 WO
2007080429 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2007124518 Nov 2007 WO
2008008528 Jan 2008 WO
2008026207 Mar 2008 WO
2008041983 Apr 2008 WO
2008077473 Jul 2008 WO
2008097591 Aug 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009006879 Jan 2009 WO
2009007782 Jan 2009 WO
2009012008 Jan 2009 WO
2009020917 Feb 2009 WO
2009046533 Apr 2009 WO
2009051221 Apr 2009 WO
2009051222 Apr 2009 WO
2009051853 Apr 2009 WO
2009056957 May 2009 WO
2009059028 May 2009 WO
2009064683 May 2009 WO
2009072075 Jun 2009 WO
2009073867 Jun 2009 WO
2009072077 Jun 2009 WO
2009073868 Jun 2009 WO
2009073995 Jun 2009 WO
2009114341 Sep 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009136358 Nov 2009 WO
2009155392 Dec 2009 WO
2010002960 Jan 2010 WO
2010014116 Feb 2010 WO
2010037393 Apr 2010 WO
2010051645 May 2010 WO
2010062662 Jun 2010 WO
2010065043 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010091025 Aug 2010 WO
2010094012 Aug 2010 WO
2010134057 Nov 2010 WO
20100134057 Nov 2010 WO
2011005339 Jan 2011 WO
2011011711 Jan 2011 WO
2011014275 Feb 2011 WO
2011017721 Feb 2011 WO
2011023732 Mar 2011 WO
2011028456 Mar 2011 WO
2011028457 Mar 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
2011085259 Jul 2011 WO
2011-093269 Aug 2011 WO
2011114816 Sep 2011 WO
2011119587 Sep 2011 WO
2011133843 Oct 2011 WO
2011133928 Oct 2011 WO
2011151672 Dec 2011 WO
2012010053 Jan 2012 WO
2012010054 Jan 2012 WO
2012024984 Mar 2012 WO
2012099176 Jul 2012 WO
2012118654 Sep 2012 WO
2012122689 Sep 2012 WO
2012126160 Sep 2012 WO
2012140008 Oct 2012 WO
2012144662 Oct 2012 WO
2013005498 Jan 2013 WO
2013015921 Jan 2013 WO
2013017353 Feb 2013 WO
2013086445 Jun 2013 WO
2013089425 Jun 2013 WO
2013091675 Jun 2013 WO
1998023021 Jul 2013 WO
2013110371 Aug 2013 WO
2013120664 Aug 2013 WO
2013126660 Aug 2013 WO
2013130563 Sep 2013 WO
2013136377 Sep 2013 WO
2013137749 Sep 2013 WO
2013143037 Oct 2013 WO
2013167189 Nov 2013 WO
2013177303 Nov 2013 WO
2013185825 Dec 2013 WO
2014004065 Jan 2014 WO
2014006200 Jan 2014 WO
2014007432 Jan 2014 WO
2014024185 Feb 2014 WO
2014030202 Feb 2014 WO
2014042118 Mar 2014 WO
2014047733 Apr 2014 WO
2014082221 Jun 2014 WO
2014082655 Jun 2014 WO
2014082657 Jun 2014 WO
2014104839 Jul 2014 WO
2015120023 Aug 2015 WO
Non-Patent Literature Citations (255)
Entry
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System”, IEEE 1998.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Giorgio Spiazzi at eL, “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE 2000.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Gridinteractive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2.
D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática /12 a Sep. 16, 2010, Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—dated Mar. 26, 2013.
Supplementary European Search Report—EP08857456—dated Dec. 6, 2013.
Extended European Search Report—EP14151651.8—dated Feb. 25, 2014.
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Ost. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6.
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http:ijscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/THESIS.PDF, [retrieved on Mar. 5, 2013].
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6.
Third party observation—EP07874025.5—Mailing date: Aug. 6, 2011.
Meynard, T. A., and Henry Foch. “Multi-level conversion: high voltage choppers and voltage-source inverters.” Power Electronics Specialists Conference, 1992. PESC'92 Record., 23rd Annual IEEE. IEEE, 1992.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications.
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea.
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and The National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: ⇄39 035.395.306-433, Sep. 2007.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The University of Queensland, Sep. 28, 2003.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002.
Extended European Search Report—EP 13152967.9—dated Aug. 28, 2014.
Extended European Search Report—EP 14159696—dated Jun. 20, 2014.
Gow Ja A et al.: “A Modular DC-DC Converter and Maximum Power Tracking Controller Formedium to Large Scale Photovoltaic Generating Plant”8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026.
Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666.
Matsuo H et al: “Novel Solar Cell Power Supply System Using the Miltiple-input DC-DC Converter” 20<SUP>th</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec International Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384.
Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239.
Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking”IEEE Transactions an industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209.
I. Weiss et al.: “A new PV system technology-the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,Uk cited in the application.
Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004.
Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html, 2003.
Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002.
Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004.
Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001.
Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003.
Definition of “remove” from Webster's Third New International Dictionary, Unabridged, 1993.
Definition of “removable” from Webster's Third New International Dictionary, Unabridged, 1993.
Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/2001 0331044156/http://www.solar4power.com/solar-power-basics.html, Mar. 31, 2001.
International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, dated Aug. 18, 2005.
Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005.
Wikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004.
Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997.
L. Zhang and S.J. Watkins, “Capacitor voltage balancing in multilevel flying capacitor inverters by rule-based switching patter selection”, IET Electr. Power Appl., pp. 339-347, May 2007.
Adrian Schiop, Petre Scortaru, “Simulink Model of Flying Capacitor Multilevel Inverter”, pp. 203-208, Aug. 2008.
Costa-Castello R et al.: “High-Performance Control of a Single-Phase Shunt Active Filter”, IEEE Transactions on Control Systems Technology, IEEE Service Center, New York, NY, US, vol. 17, No. 6, Nov. 1, 2009 (Nov. 1, 2009), pp. 1318-1329, XP011268607, ISSN: 1063-6536, DOI: 10.1109/TCST.2008.2007494.
Cai Wen et al: “An Active Low-Frequency Ripple Control Method Based on the Virtual Capacitor Concept for BIPV Systems”, IEEE Transactions on Power Electronics, Institute of Electrical and Electronics Engineers, USA, vol. 29, No. 4, Jun. 26, 2013 (Jun. 26, 2013), pp. 1733-17 45, XP011529990, ISSN: 0885-8993, DOI: 10.1109/TPEL.2013.2271247 [retrieved on Oct. 15, 2013].
Aug. 2, 2021—European Office Action—App. No 17203127.0.
Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct. 5, 2005.
Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003.
Philips Semiconductors, Data Sheet PSMN005-55B; PSMN005-55P N-channel logic trenchMOS transistor, Oct. 1999, Product specification, pp. 1-11.
International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Application No. PCT/US13/27965, International Preliminary Examination Report, dated Sep. 2, 2014.
International Patent Application PCT/US13/027965, International Search Report and Written Opinion, dated Jun. 2, 2013.
International Application No. PCT/US12/44045, International Preliminary Examination Report, dated Jan. 28, 2014.
International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, dated Jan. 2, 2013.
International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, dated May 4, 2010.
Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009.
International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, dated Oct. 27, 2010.
Lowe, Electronics Basis: What is a Latch Circuit, http://www.dummies.com/how-to/content/electronics-basics-what-is-a-latch-circuit html, from Electronics All-in-One for Dummies, Feb. 2012, downloaded Jul. 13, 2014.
International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, dated Aug. 8, 2011.
International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, dated Nov. 24, 2011.
J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48.
International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, dated Jun. 24, 2009.
International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, dated Apr. 22, 2011.
International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, dated Jan. 13, 2012.
International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, dated Oct. 24, 2011.
European Patent Application No. 09829487.9, Extended Search Report, dated Apr. 21, 2011.
International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, dated Jun. 17, 2010.
International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, dated Aug. 23, 2010.
International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, dated Mar. 31, 2011.
Exell et al., The Design and Development of a Solar Powered Refrigerator'1, [retrieved on Feb. 13, 2013], Retrieved from the Internet <URL: http://www.appropedia.org/The_Design_and_Development_of_a_Solar_Powered_Refrigerator>, pp. 1-64.
“Development of Water-Lithium Bromide Low-Temperature Absorption Refridgerating Machine”, 2002 Energy & Environment on Database on Noteworthy contributions for Science and Technology (Japan), Research Data (No. 1748) [online], [retrieved on Aug. 29, 2012]. Retrieved from the Internet: <URL: http://dbnstl.nii.ac.jp/english/detail/1748>, pp. 1-4.
Dictionary.com, “air conditioning” [online], [retrieved on Aug. 28, 2012], Retrieved from the Internet: <URL: http://dictionary.reference com/browse/air+conditioning?s=t>, pp. 1-3.
International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, dated Nov. 12, 2010.
International Patent Application No. PCT/US08/75127, International Search Report and Written Opinion, dated Apr. 28, 2009.
International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, dated Oct. 1, 2009.
European Patent Application No. 08845104.2, Extended Search Report, dated Jul. 31, 2014.
European Patent Application No. 11772811.3, Extended Search Report, dated Dec. 15, 2014.
International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, dated Jun. 25, 2009.
Bhatnagar et al., Silicon Carbide High Voltage (400 V) Shottky Barrier Diodes, IEEE Electron Device Letters, vol. 13 (10) p. 501-503 Oct. 10, 1992.
Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200.
Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999 IECON'99 Proceedings The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999.
Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE.
Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems-an overview.” Power Electronics Specialists Conference, 2002 pesc 02. 2002 IEEE 33rd Annual. vol. 4. IEEE, 2002.
Marra, Enes Goncalves, and Jose Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883.
Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579) IEEE-Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document.
International Search Report for corresponding PCT/GB2005/050198 completed Jun. 28, 2006 by C. Wirner of the EPO.
Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA.
Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65.
Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797.
Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd.
Kimball, et al.: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477.
Martins, et al.: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3.
International Search Report for corresponding PCT/GB2005/050197, completed Dec. 20, 2005 by K-R Zettler of the EPO.
Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE.
Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist Conference, Month Unknown, 2002, pp. 1483-1488, vol. 3, IEEE.
Written Opinion of PCT/GB2005/050197, dated Feb. 14, 2006, Enecsys Limited.
Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE.
International Search Report for corresponding PCT/GB2004/001965, completed Aug. 16, 2004 by A. Roider.
Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998.
Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60.
Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy.
Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE.
Zhang et al., “Capacitor voltage balancing in multilevel flying capacitor inverters by rule-based switching pattern selection”, May 2007, p. 339-347.
Partial European Search Report—EP Appl. 14159869—dated Sep. 14, 2015.
Liu et al. “A Compact Power Converter for High Current and Low Voltage Applications”, Industrial Electronics Society, 39th Annual Conference of the IEE, Nov. 2013, p. 140-144.
European Search Report—EP Appl. 15160896.5—dated Oct. 23, 2015.
European Extended Search Report—EP Appl. 14159869.8—dated Jan. 12, 2016.
Su, Gui-Jia: “Multilevel DC-Link Inverter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 41, No. 3, May 2, 2005, pp. 848-854, XP11132530.
Jun. 26, 2017—Chinese Office Action—CN 201410094169.8.
2008—“Simulink Model of Flying Capacitor Multilevel Inverter”—Adrian Schiop, et al.—11th International Conference on Optimization of Electrical and Electronic Equipment.
Jul. 14, 2017—Chinese Office Action—CN 201510133812.8.
Feb. 13, 2017—EP Search Report EP App 17203127.
2012—Konstantinou et al., “The Seven-level Flying Capacitor based ANPC Converter for Grid Intergration of Utility-Scale PV Systems” 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG) p. 592-597.
Oct. 2012—Pulikanti et al., “DC-Link Voltage Ripple Compensation for Multilevel Active-Neutral-Point-Clamped Converters Operated with SHE-PWM” IEEE Transactions on Power Deliver, vol. 27, No. 4 p. 2176-2184.
2008—Winkelnkemper et al., “Control of a 6MVA Hybrid Converter for a Permanent Magnet Synchronous Generator for Windpower” Proceedings of the 2008 International Conference on Electrical Machines p. 2-6.
Dec. 5-8, 2011—Muneshima et al., “A New Time-Sharing Charge 5L Inverter” IEEE PEDs 2011 p. 115-120.
Sep. 20-24, 2009—Li et al., “An Optimum PWM Strategy for 5-Level Active NPC (ANPC) Converter Based on Real-time Solution for THD Minimization” p. 1976-1982.
Mar. 14-17, 2010—Kieferndorft, et. al., “A New Medium Voltage Drive System Based on ANPC-5L Technology” p. 643-649.
2012—Pulikanti et al., “Generalisation of flying capacitor-based active-neutral-point-clamped multilevel converter using voltage-level modulation” IET Power Electron, 2012, vol. 5, Issue 4, p. 456-466.
Sep. 15-19, 2013—Wang et al., “Capacitor Voltage Balancing of Five-Level ANPC Converter based on Zero-Sequence Voltage Injection Using PS-PWM” p. 4035-4040.
Sep. 13, 2013—Notice of Opposition, EP App No. 15160896.5.
Mar. 26, 2014—Yoscovich, et al. “Multi-level Inverter” U.S. Appl. No. 61/970,788.
Sep. 13, 2014—Yoscovich, et al., “Multi-level Inverter” U.S. Appl. No. 14/485,6825.
Boiler, Optimale Ansteuerung von Mittelspannungswechselrichtern, Diss Uni Wuppertal, Nov. 11, 2011.
Choi, Capacitor Voltage Balancing of Flying Capacitor Multilevel Converters by Space Vector PWM, Jul. 2012.
Cramer, Modulorientierter Stromrichter Geht In Serienfertigung , SPVSE, 1994.
Cramer, String-Wechselrichter Machen Solarstrom Billiger, Elektronik, Sep. 1996.
Engler, Begleitende Untersuchungen zur Entwicklung eines Multi-String-Wechselrichters, SPVSE, Mar. 2002.
Feng, A Novel Voltage Balancing Control Method For Flying Capacitor Multilevel Converters, IEEE, 2003.
Feng, Modified phase-shifted PWM control for flying capacitor multilevel converters. IEEE Transactions on Power Electronics, 2007.
Fishelov, Immer Maximale Leistung, Elektronik, 2010.
Geipel, Untersuchungen zur Entwicklung modulorientierter Stromrichter fur netzgekoppelte Photovoltaik-Anlagen, SPVSE, 1995.
Ghias, Voltage Balancing Method for the Multilevel Flying Capacitor Converter Using Phase-Shifted PWM, Dec. 2012.
Hu, Active Power Filtering by a Flying-Capacitor Multilevel Inverter with Capacitor Voltage Balance, IEEE, 2008.
Kang, A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter, Jun. 2005.
Khazraei, A Generalized Capacitor Voltage Balancing Scheme for Flying Capacitor Multilevel Converters, IEEE, 2010.
Khazraei, Active Capacitor Voltage Balancing in Single-Phase Flying-Capacitor Multilevel Power Converters, IEEE, Feb. 2012.
Mcgrath, Analytical Modelling of Voltage Balance Dynamics for a Flying Capacitor Multilevel Converter, 2007.
Niebauer, Solarenergie Optimal Nutzen, Elektronik, 1996.
Schettler, Selbst Gefuhrte pulswechselrichtemit Gleichspannungskreis Fur den Einsatz in Hochspannungsnetzen zur Sicherung der Energiequoitlat mittals Wirk-und Blindleistun, Pulswechselrichter, VDI, 2004.
Shukla, Improved Multilevel Hysteresis Current Regulation and Capacitor Voltage Balancing Schemes for Flying Capacitor Multilevel Inverter, IEEE, Mar. 2008.
Zhang, Three-phase four-leg flying-capacitor multi-level inverter-based active power filter for unbalanced current operation, 2013.
Wang et al., Self-precharge of floating capacitors in a five-level ANPC inverter, Proceedings of The 7th International Power Electronics and Motion Control Conference, 1776-1780, Jun. 2012.
Janik et al., Universal precharging method for de-link and flying capacitors of four-level Flying Capacitor Converter, 6322-6327, 2013.
Mar. 5, 2020—CN Office Action—CN 201811175971.4.
Dec. 18, 2020—CN Office Action—CN 201910798978.X.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. Oh Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085,1SXU301197B0201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and lEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
PRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
SR for PCT/IB2008/055095 dated Apr. 30, 2009.
SR for PCT/IL07/01064 dated Mar. 25, 2008.
PRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
PRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
PRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009.
Extended European Search Report—EP12176089.6—dated Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, May 13, 1996; May 13, 1996-May 17, 1996, May 13, 1996 ( May 13, 1996), pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—dated Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—dated Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—dated May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—dated May 22, 2012.
Extended European Search Report—EP 08878650.4—dated Mar. 28, 2013.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
GB Combined Search and Examination Report—GB1203763.6—dated Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, 1998, PESC 98.
1999—Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4; Added to Lund University Publications on Jun. 4, 2012.
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, JoséRodriguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solar Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Sep. 7-9. 1999—Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Sep. 16-19, 1996—Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Oct. 3-7, 1999—Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
Informal Comments to the International Search Report dated Dec. 3, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18 (3), Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011.
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, Achim, Woyte, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Related Publications (1)
Number Date Country
20230188054 A1 Jun 2023 US
Continuations (3)
Number Date Country
Parent 17329686 May 2021 US
Child 18070871 US
Parent 15926159 Mar 2018 US
Child 17329686 US
Parent 13826556 Mar 2013 US
Child 15926159 US