Embodiments according to the invention are related to a high frequency power divider for distributing an input signal to two or more signal outputs and a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal inputs.
A power divider/combiner circuit is widely used to divide or combine high frequency signals and an important device for wireless communication system as one of the main components in a microwave circuit. There are some possible structures for designing a radio frequency power divider (combiner). In the following, a brief introduction will be given to possible structures for the power divider.
When considering to evaluate the working bandwidth (Δf), i.e., the most meaningful parameter to evaluate how wide is the working bandwidth (Δf) of each circuit is the relative bandwidth (Δf/f0). It could be defined in many ways, by means of return-loss, amplitude or phase unbalance.
As indicated in
Considering the wideband applications, the Wilkinson divider could be a main or a first candidate. The main problems associated with the Wilkinson divider are the need of a lumped, i.e. <<λ/4 long, resistor R1A (see
Moreover, the transmission lines TL1A and TL2A should be isolated: this is in contrast with the need of small R1A. In order to minimize the coupling (which degrades S11, S22, S33, S32) a curved geometry is often used (like in this case). This is however not always possible, particularly at very high frequency (i.e., having very short transmission lines TL1A, TL2A).
Contrary to the Wilkinson divider, other power divider circuits, i.e., Rat-race, Branch-line and Gysel divider shown in
The Branch-line has moreover strong discontinuity effects on the junctions of a first port P1—a transmission line TL1C—a transmission line TL4C, a second port P2—a transmission line TL2C—a transmission line TL3C, a third port P3—a transmission line TL1C—a transmission line TL2C, resistor R1C—a transmission line TL3C—a transmission line TL4C. Also, the Gysel divider has also strong discontinuity effects on the junctions of a transmission line TL4D—a resistor R2D—a transmission line TL6D, a transmission line TL3D—a resistor R1D—a transmission line TL5D. These strong discontinuity effects on the junction is achieved due to the low characteristic impedance: Z0=R0/√2 of the transmission lines TL1C, TL3C and Z0=R0/2 of the transmission lines TL5D, TL6D and consequently large width. At high frequency, the size of those T-junctions becomes comparable with the transmission-line lengths. The circuit performances become critical, not well predictable and extremely sensitive to the manufacturing tolerances.
The Rat-race present this problem less, due to the high impedance value Z0 (and thus narrow width) of transmission lines TL1B, . . . , TL4B. The discontinuity can be further minimized by tapering the feeding lines, as shown in
Therefore, considering the above mentioned problem, e.g. working bandwidth, phase unbalance, well predictable circuit performance and tolerance range of the manufacturing, the Rat-race, i.e., rat race coupler seems to be a suitable to solve the above mentioned problems.
Accordingly, it is an object of the present invention to create a concept which facilitates the implementation of a high frequency power divider/combiner circuit by using a Rat-race coupler.
An embodiment according to the invention relates to a high frequency power divider circuit for distributing an input signal to two or more signal output ports. The high frequency divider circuit comprises a rat race coupler, wherein the rat race coupler is configured to couple an input signal provided at an input port of the rat race coupler to a first output of the rat race coupler and to a second output of the rat race coupler; a first coupling structure coupled to the first output of the rat race coupler, to couple the first output of the rat race coupler with a first signal output port; and a second coupling structure coupled to the second output of the rat race coupler, to couple the second output of the rat race coupler with a second signal output port; wherein a characteristic impedance of a first transmission line portion between the input port and the first output of the rat race coupler deviates from a nominal ring impedance of the rat race coupler in a first direction, and wherein a characteristic impedance of a second transmission line portion between the input port and the second output of the rat race coupler deviates from the nominal ring impedance of the rat race coupler in a second direction, which is opposite to the first direction.
According to the concept of the present invention, the characteristic impedance of a second transmission line portion between the input port and the second output of the rat race coupler deviates from the nominal ring impedance of the rat race coupler in a second direction, which is opposite to the first direction is larger than the nominal ring impedance, such that, at the design frequency of the rat race coupler, a larger signal power of the input signal is coupled to the first output port than to the second signal output port, and such that a signal power of the input signal coupled to the first output port decreases, to become smaller than the signal power of the input signal coupled to the second output port, when the frequency of the input signal moves away from the design frequency of the rat race coupler within an environment of the design frequency.
In accordance with embodiments of the present invention, the characteristic impedance of a third transmission line portion between the second output of the rat race coupler and a further port of the rat race coupler deviates from the nominal ring impedance in the same direction as the characteristic impedance of the first transmission line portion. In addition, the characteristic impedance of a fourth transmission line portion between the first output of the rat race coupler and a further port of the rat race coupler deviates from the nominal ring impedance in the same direction as the characteristic impedance of the second transmission line portion.
In accordance with embodiments of the present invention, a value of the characteristic impedance of the first transmission line portion differs from a value of the characteristic impedance of the third transmission line portion by no more than ±25%, or by no more than ±10% of the characteristic impedance of the first transmission line portion and the characteristic impedance of the second transmission line portion.
In accordance with embodiments of the present invention, a value of the characteristic impedance of the second transmission line portion differs from a value of the characteristic impedance of the fourth transmission line portion by no more than ±25%, or by no more than ±10% of the characteristic impedance of the second transmission line portion and the characteristic impedance of the first transmission line portion.
In accordance with embodiments of the present invention, a multiplied value of the characteristic impedance of the first transmission line portion or the characteristic impedance of the third transmission line portion with the characteristic impedance of the second transmission line portion or the characteristic impedance of the fourth transmission line portion is equal to the value of square of the nominal ring impedance within a tolerance of ±10%.
In accordance with embodiments of the present invention, the value of the characteristic impedance of the first transmission line portion or the characteristic impedance of the third transmission line portion is smaller than the value of the characteristic impedance of the second transmission line portion or the characteristic impedance of the fourth transmission line portion. In addition, the deviation range of the characteristic impedance from the nominal ring impedance is within ±20% or within ±10% of the value of the nominal ring impedance.
In accordance with embodiments of the present invention, the value of the characteristic impedance of the first and the third transmission line portion deviates between +1% and +20%, or between +1% to +10% of the value of the nominal ring impedance, and the characteristic impedance of the second and the fourth transmission line portion deviates between −1% and −20%, or between −1% to −10% of the value of the nominal ring impedance, or vice versa.
An embodiment according to the invention relates to a high frequency power divider circuit for distributing an input signal to two or more signal output ports. The high frequency power divider circuit comprises: a rat race coupler, wherein the rat race coupler is configured to couple an input signal provided at an input port of the rat race coupler to a first output of the rat race coupler and to a second output of the rat race coupler; a first coupling structure coupled to the first output of the rat race coupler, to couple the first output of the rat race coupler with a first signal output port; and a second coupling structure coupled to the second output of the rat race coupler, to couple the second output of the rat race coupler with a second signal output port; wherein the first coupling structure and the second coupling structure are adapted to provide different phase shift over frequency; wherein the first coupling structure comprises a phase shifter adapted to at least partially compensate for a frequency variation of a phase difference between signals at the first output of the rat race coupler and at the second output of the rat race coupler in an environment of a design frequency of the rat race coupler.
In accordance with embodiments of the present invention, the second coupling structure comprises a pair of coupled transmission lines, wherein a first end of a first coupled transmission line is connected with the second output of the rat race coupler, wherein a second end of the first coupled transmission line is connected to a second end of a second coupled transmission line, which is adjacent to the second end of the first coupled transmission line, and wherein the first end of the second coupled transmission line is connected to second signal output port, or constitutes the second signal output port.
In accordance with embodiments of the present invention, the first end of the first coupled transmission line is connected with the second output of the rat race coupler via a further transmission line. In addition, a characteristic impedance of further transmission line deviates from a reference impedance by no more than ±5% or by no more than ±10%. Furthermore, a product of an even mode impedance of the pair of coupled transmission lines and of an odd mode impedance of the pair of coupled transmission lines deviates from a square of the reference impedance by no more than ±5% or by no more than ±10% or by no more than ±15%.
In accordance with embodiments of the present invention, an electrical length of the coupled transmission lines of the pair of coupled transmission lines deviates from a fourth of a wavelength at a design centre frequency of the rat race coupler by no more than ±5%, or by no more than ±10%, e.g. in other words, the coupled transmission lines are lambda/4 transmission lines at a design centre frequency of the rat race coupler within a tolerance of ±5% or ±10%.
In accordance with embodiments of the present invention, a length of the further transmission line is chosen to decouple stray fields of the pair of coupled transmission lines from the rat race coupler. In addition, an electrical length of a transmission line forming the first coupling structure is equal to an electrical length of the further transmission line plus half a wavelength, with a tolerance of ±a tenth of a wavelength.
An embodiment according to the invention relates to a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal input ports. The high frequency power combiner circuit comprises: a rat race coupler, wherein the rat race coupler is configured to provide an output signal at an output port of the rat race coupler on the basis of a signal at a first input of the rat race coupler and on the basis of a signal at a second input of the rat race coupler; a first coupling structure coupled to the first input of the rat race coupler, to couple the first input of the rat race coupler with a first signal input port; and a second coupling structure coupled to the second input of the rat race coupler, to couple the second input of the rat race coupler with a second signal input port; wherein a characteristic impedance of a first transmission line portion between the output port and the first input of the rat race coupler deviates from a nominal ring impedance of the rat race coupler in a first direction, and wherein a characteristic impedance of a second transmission line portion between the output port and the second input of the rat race coupler deviates from the nominal ring impedance of the rat race coupler in a second direction, which is opposite to the first direction.
An embodiment according to the invention relates to a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal input ports. The high frequency power combiner circuit comprises: a rat race coupler, wherein the rat race coupler is configured to provide an output signal at an output port of the rat race coupler on the basis of a signal at a first input of the rat race coupler and on the basis of a signal at a second input of the rat race coupler; a first coupling structure coupled to the first input of the rat race coupler, to couple the first input of the rat race coupler with a first signal input port; and a second coupling structure coupled to the second input of the rat race coupler, to couple the second input of the rat race coupler with a second signal input port; wherein the first coupling structure and the second coupling structure are adapted to provide different phase shift over frequency; wherein the first coupling structure comprises a phase shifter adapted to at least partially compensate for a difference of frequency variations of transmission characteristics from the first input of the rat race coupler to the output port, and from the second input of the rat race coupler to the output port, which affect a combination of signals at the first input of the rat race coupler and at the second input of the rat race coupler, in an environment of a design frequency of the rat race coupler.
In accordance with embodiments of the present invention, a high frequency power divider circuit for distributing an input signal to two or more signal output ports includes a rat race coupler configured to couple an input signal provided at an input port thereof to a first output and to a second output thereof, a first coupling structure coupled to the first output of the rat race coupler and configured to couple the first output of the rat race coupler with a first signal output port, and a second coupling structure coupled to the second output of the rat race coupler and configured to couple the second output of the rat race coupler with a second signal output port, wherein a characteristic impedance of a first transmission line portion between the input port and the first output of the rat race coupler deviates from a nominal ring impedance of the rat race coupler in a first direction. A characteristic impedance of a second transmission line portion between the input port and the second output of the rat race coupler deviates from the nominal ring impedance of the rat race coupler in a second direction, which is opposite to the first direction.
Embodiments in accordance with the present invention include the above and further include wherein a characteristic impedance of a third transmission line portion between the second output of the rat race coupler and another port of the rat race coupler deviates from the nominal ring impedance in the same direction as the characteristic impedance of the first transmission line portion.
Embodiments in accordance with the present invention include the above and further include, wherein a characteristic impedance of a fourth transmission line portion between the first output of the rat race coupler and yet another port of the rat race coupler deviates from the nominal ring impedance in the same direction as the characteristic impedance of the second transmission line portion.
Embodiments in accordance with the present invention include the above and further include wherein the characteristic impedance of the first transmission line portion differs from the characteristic impedance of the third transmission line portion by no more than ±25% of the characteristic impedance of the first transmission line portion and the characteristic impedance of the second transmission line portion.
Embodiments in accordance with the present invention include the above and further include wherein the characteristic impedance of the second transmission line portion differs from the characteristic impedance of the fourth transmission line portion by no more than ±25% of the characteristic impedance of the second transmission line portion and the characteristic impedance of the first transmission line portion.
Embodiments in accordance with the present invention include the above and further include wherein a multiplied value of the characteristic impedance of the first transmission line portion with the characteristic impedance of the second transmission line portion is equal to the square of the nominal ring impedance within a tolerance of ±10%.
Embodiments in accordance with the present invention include the above and further include wherein the characteristic impedance of the first transmission line portion is smaller than the characteristic impedance of the second transmission line portion.
Embodiments in accordance with the present invention include the above and further include wherein the deviation range of the characteristic impedance from the nominal ring impedance is within ±20% of the nominal ring impedance.
Embodiments in accordance with the present invention include the above and further include wherein the characteristic impedance of the first and the third transmission line portions deviate between +1% and +20% of the nominal ring impedance, and the characteristic impedance of the second and the fourth transmission line portions deviate between −1% and −20% of the nominal ring impedance.
In accordance with embodiments of the present invention, a high frequency power divider circuit for distributing an input signal to two or more signal output ports includes a rat race coupler configured to couple an input signal provided at an input port thereof to a first output to a second output thereof, a first coupling structure coupled to the first output for coupling the first output with a first signal output port, and a second coupling structure coupled to the second output for coupling the second output with a second signal output port, wherein the first coupling structure and the second coupling structure are adapted to provide different phase shift over frequency. The first coupling structure includes a phase shifter adapted to at least partially compensate for a frequency variation of a phase difference between signals at the first output of the rat race coupler and at the second output of the rat race coupler in a system configured to operate at a design frequency of the rat race coupler.
Embodiments in accordance with the present invention include the above and further include wherein the second coupling structure includes a pair of coupled transmission lines, wherein a first end of a first coupled transmission line is coupled with the second output of the rat race coupler, wherein a second end of the first coupled transmission line is coupled to a second end of a second coupled transmission line, which is adjacent to the second end of the first coupled transmission line. The first end of the second coupled transmission line is coupled to the second signal output port.
Embodiments in accordance with the present invention include the above and further include wherein the first end of the first coupled transmission line is coupled with the second output of the rat race coupler via a further transmission line.
Embodiments in accordance with the present invention include the above and further include wherein a characteristic impedance of further transmission line deviates from a reference impedance by no more than ±5%.
Embodiments in accordance with the present invention include the above and further include wherein a product of an even mode impedance of the pair of coupled transmission lines and of an odd mode impedance of the pair of coupled transmission lines deviates from a square of the reference impedance by no more than ±5%.
Embodiments in accordance with the present invention include the above and further include wherein an electrical length of the coupled transmission lines of the pair of coupled transmission lines deviates from a fourth of a wavelength at a design centre frequency of the rat race coupler by no more than ±5%.
Embodiments in accordance with the present invention include the above and further include wherein a length of the further transmission line is selected to decouple stray fields of the pair of coupled transmission lines from the rat race coupler.
Embodiments in accordance with the present invention include the above and further include wherein an electrical length of a transmission line forming the first coupling structure is equal to an electrical length of the further transmission line plus half a wavelength, with a tolerance of ±a tenth of a wavelength.
In accordance with embodiments of the present invention, a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal input ports includes a rat race coupler configured to provide an output signal at an output port thereof on the basis of a signal at a first input thereof and on the basis of a signal at a second input thereof, a first coupling structure coupled to the first input thereof, to couple the first input thereof with a first signal input port, and a second coupling structure coupled to the second input thereof, to couple the second input thereof with a second signal input port, wherein a characteristic impedance of a first transmission line portion between the output port and the first input thereof deviates from a nominal ring impedance thereof in a first direction. A characteristic impedance of a second transmission line portion between the output port and the second input thereof deviates from the nominal ring impedance thereof in a second direction, which is opposite to the first direction.
In accordance with embodiments of the present invention, a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal input ports includes a rat race coupler, wherein the rat race coupler is configured to provide an output signal at an output port of the rat race coupler on the basis of signals at a first input at a signal at a second input thereof, a first coupling structure coupled to the first input of the rat race coupler, for coupling the first input of the rat race coupler with a first signal input port, and a second coupling structure coupled to the second input of the rat race coupler, for coupling the second input of the rat race coupler with a second signal input port, wherein the first coupling structure and the second coupling structure are adapted to provide different phase shift over frequency. The first coupling structure includes a phase shifter adapted to at least partially compensate for a difference of frequency variations of transmission characteristics from the first input of the rat race coupler to the output port, and from the second input of the rat race coupler to the output port in a system configured to operated at a design frequency of the rat race coupler.
Embodiments in accordance with the present invention include the above and further include wherein the second coupling structure includes a pair of coupled transmission lines, wherein a first end of a first coupled transmission line is coupled with the second output of the rat race coupler, wherein a second end of the first coupled transmission line is coupled to a second end of a second coupled transmission line, which is adjacent to the second end of the first coupled transmission line. A characteristic impedance of the first and second transmission lines varies by no more that ±25%.
Embodiments according to the invention will subsequently be described taking reference to the enclosed figures.
FIGS. 6A1 and 6A2 show modification examples of the Branch-line according to the prior art shown in
As shown in
The characteristic impedance of a third transmission line portion, TL3B, between the second output of the Rat-race coupler and a further port, e.g., terminated port, of the Rat-race coupler deviates from the nominal ring impedance in the same direction as the characteristic impedance of the first transmission line portion TL1B. The characteristic impedance of a fourth transmission line portion, TL4B, between the first output of the rat race coupler and a further port, e.g. terminated port, of the rat race coupler deviates from the nominal ring impedance in the same direction as the characteristic impedance of the second transmission line portion TL2B.
In addition, as shown in
As a modification, a value of the characteristic impedance of the first transmission line portion TL1B differs from a value of the characteristic impedance of the third transmission line portion TL3B by no more than ±25%, or by no more than ±10% of the characteristic impedance of the first transmission line portion TL1B and the characteristic impedance of the second transmission line portion TL2B. Furthermore, a value of the characteristic impedance of the second transmission line portion TL2B differs from a value of the characteristic impedance of the fourth transmission line portion TL4B by no more than ±25%, or by no more than ±10% of the characteristic impedance of the second transmission line portion TL2B and the characteristic impedance of the first transmission line portion TL1B.
In addition, a multiplied value of the characteristic impedance of the first transmission line portion TL1B or the characteristic impedance of the third transmission line portion TL3B with the characteristic impedance of the second transmission line portion TL2B or the characteristic impedance of the fourth transmission line portion TL4B is equal to the value of square of the nominal ring impedance within a tolerance of ±10%. The value of the characteristic impedance of the first transmission line portion TL1B or the characteristic impedance of the third transmission line portion TL3B is smaller than the value of the characteristic impedance of the second transmission line portion TL2B or the characteristic impedance of the fourth transmission line portion TL4B.
Furthermore, the deviation range of the characteristic impedance from the nominal ring impedance is within ±20% or within ±10% of the value of the nominal ring impedance. That is, the value of the characteristic impedance of the first and the third transmission line portion deviates between +1% and +20%, or between +1% to +10% of the value of the nominal ring impedance, and the characteristic impedance of the second and the fourth transmission line portion deviates between −1% and −20%, or between −1% to −10% of the value of the nominal ring impedance, or vice versa.
As a further embodiment, the Rat-race is inherently unsymmetrical (see
That is, a high frequency power divider circuit for distributing an input signal to two or more signal output ports according to the embodiment is shown in
In addition, the second coupling structure comprises a pair of coupled transmission lines TL6B, TL5B, wherein a first end of a first coupled transmission line TL5B is connected e.g. via TL8B with the second output of the rat race coupler, wherein a second end of the first coupled transmission line is connected to a second end of a second coupled transmission line, which is adjacent to the second end of the first coupled transmission line, and wherein the first end of the second coupled transmission line TL6B is connected to second signal output port, or constitutes the second signal output port P3. The first end of the first coupled transmission line TL5B is connected, e.g. via TL8B, with the second output of the rat race coupler via a further transmission line TL8B.
Furthermore, a characteristic impedance of further transmission line deviates from a reference impedance, e.g. 50Ω, by no more than ±5% or by no more than ±10%. In addition, a product of an even mode impedance Z0E of the pair of coupled transmission lines and of an odd mode impedance Z0O of the pair of coupled transmission lines deviates from a square of the reference impedance by no more than ±5% or by no more than ±10% or by no more than ±15%.
As a modification, an electrical length of the coupled transmission lines of the pair of coupled transmission lines deviates from a fourth of a wavelength at a design centre frequency of the rat race coupler by no more than ±5%, or by no more than ±10%, in other words, the coupled transmission lines are lambda/4 transmission lines at a design centre frequency of the rat race coupler within a tolerance of ±5% or ±10%. In addition, a length of the further transmission line TL8B is chosen to decouple stray fields of the pair of coupled transmission lines from the rat race coupler. Furthermore, an electrical length of a transmission line forming the first coupling structure is equal to an electrical length of the further transmission line TL8B plus half a wavelength, with a tolerance of ±a tenth of a wavelength.
The above mentioned embodiments are related to the high frequency power divider. However, the same structure is used as a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal input ports. For example, the combiner circuit comprises a rat race coupler, wherein the rat race coupler is configured to provide an output signal at an output port, e.g. P1, of the rat race coupler on the basis of a signal at a first input of the rat race coupler, e.g. a location where TL7B is connected to the rat race coupler ring, and on the basis of a signal at a second input of the rat race coupler, e.g. a location where TL8B is connected to the rat race coupler ring; a first coupling structure TL7B coupled to the first input of the rat race coupler, to couple the first input of the rat race coupler with a first signal input port P2; and a second coupling structure, e.g. configured by TL8B, TL5B, TL6B, coupled to the second input of the rat race coupler, to couple the second input of the rat race coupler with a second signal input port P3; wherein a characteristic impedance, e.g. Z0=1/KGB*sqrt(2)*R0 of a first transmission line portion TL1B between the output port P1 and the first input of the rat race coupler deviates from a nominal ring impedance, e.g. sqrt(2)*R0 of the rat race coupler in a first direction, e.g. is smaller than the nominal ring impedance, and wherein a characteristic impedance, e.g. Z0=KGB*sqrt(2)*R0 of a second transmission line portion TL2B between the output port P1 and the second input of the rat race coupler deviates from the nominal ring impedance, e.g. sqrt(2)*R0 of the rat race coupler in a second direction, which is opposite to the first direction, e.g. is larger than the nominal ring impedance.
As a further example of a high frequency power combiner circuit for obtaining an output signal on the basis of input signals from two or more signal input ports, the combiner circuit comprises: a rat race coupler, wherein the rat race coupler is configured to provide an output signal at an output port, e.g. P1, of the rat race coupler on the basis of a signal at a first input of the rat race coupler, e.g. a location where TL7B is connected to the rat race coupler ring, and on the basis of a signal at a second input of the rat race coupler, e.g. a location where TL8B is connected to the rat race coupler ring; a first coupling structure TL7B coupled to the first input of the rat race coupler, to couple the first input of the rat race coupler with a first signal input port P2; and a second coupling structure, e.g. configured by TL8B, TL5B, TL6B, coupled to the second input of the rat race coupler, to couple the second input of the rat race coupler with a second signal input port P3; wherein the first coupling structure and the second coupling structure are adapted to provide different phase shift over frequency; wherein the first coupling structure comprises a phase shifter adapted to at least partially compensate for a difference of frequency variations of transmission characteristics from the first input of the rat race coupler to the output port, and from the second input of the rat race coupler to the output port, e.g. which affect a combination of signals at the first input of the rat race coupler and at the second input of the rat race coupler, in an environment of a design frequency of the rat race coupler.
The present application is a Continuation of and claims priority to co-pending, commonly owned PCT Application Number PCT/EP2020/051536 to Applicant Advantest Corporation, filed 22 Jan. 2020, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2020/051536 | Jan 2020 | US |
Child | 17735958 | US |