The present invention relates to an apparatus and method of cutting materials utilizing a rotating cutting tool. More specifically, the invention includes a cutting process that uses the heat generated by the cutting process to more efficiently cut materials.
In the process of metal cutting, when a tool cuts a metal, heat is generated by shear stresses, plastic deformation, and friction in the cutting region. Generally this heat is distributed into three regions. One portion flows into the tool, another portion flows into the chip, and the third portion is conducted into the workpiece. The surface of the workpiece is thermally softened by this third portion of heat. The heat that flows into the workpiece is conducted from the surface into the bulk, and the rate of this heat transfer depends on the thermal properties of the workpiece.
A rotating cutting tool, such as a milling cutter, includes one or more teeth that cut material in a progressive manner. Between each cutting path of successive teeth, heat is conducted into the workpiece and is lost to the environment. For example, the heat may be conducted away into the workpiece-holding device or may be convected into the surrounding environment. Accordingly, the next tooth is unable to take advantage of the thermal softening caused by the previous tooth. There is a need in the art for an improved cutting system that cuts the thermally softened material, which requires lower specific cutting forces and results in lower power consumption, improved tool life, and improved material removal rates.
The present invention, according to one embodiment, is a cutting tool having a cylindrical body having a longitudinal axis. The cutting tool will have multiple teeth spaced equally or unequally along the circumference of the cutter. The cutting edges are formed along the flutes throughout the length of the cutter by these teeth. The cutting tool may also have features to receive indexable inserts along the flutes. The cutting tool may be made from different tool materials such as tool steels, high-speed steels, ceramics, solid carbide or indexable inserts of the aforementioned materials.
Still in one embodiment, a cutting tool is rotated such that a tooth pass frequency is at least 400 teeth-per-second or more. In one preferred embodiment, the tooth pass frequency is in the range of about 600 to about 900 teeth-per-second, wherein material is cut more efficiently by making better use of the heat left by the previous tooth. As a result, one of the advantages of the present invention is that the material can be removed at significantly higher efficiency, particularly if a workpiece material is selected from Iron, Iron alloys, Steel, Steel alloys, Titanium, Titanium alloys, Nickel, and Nickel alloys, power generation alloys, difficult to cut aerospace alloys and automotive alloys.
Further in one embodiment, a cutting tool is configured and arranged to improve the material removal rate and tool life. The number of teeth of a cutting tool is selected such that the ratio of number of teeth to diameter in millimeters is at least 0.75:1 or higher. In one embodiment, a rotating cutting tool has a diameter of about 19 mm, and a number of teeth is 21, so that the ratio of number of flutes to diameter in mm is 1.1:1, thereby significantly improving material removal rates and tool life in a cutting operation.
Additionally in one embodiment, a cutting tool is arranged and configured such that a cutting operation eliminates medium machining and/or finish machining processes, wherein all the material is removed at cutting speeds and feeds comparable to a roughing operation, and no separate finishing operation is required. A person skilled in the art would know that more amount of material is removed during roughing operation compared to medium machining, and that more amount of material is removed in medium machining operation compared to finish machining. A cutting tool of the present invention allows removing all material with the improved material removal rates by a rough machining and eliminates medium machining and finish machining. A cutting tool of the present invention can also be used only for rough machining, only for medium machining, or only for finish machining.
Still in one embodiment, high pressure coolant is used to further improve the performance of the present invention in terms of tool life and amount of material removed.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description. As will be apparent, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The HFTP regime takes advantage of the thermal properties of materials, especially stronger materials such as Iron, Iron alloys, Steel, Steel alloys, Titanium, Titanium alloys, Nickel, and Nickel alloys, power generation alloys, difficult to cut aerospace alloys and automotive alloys. According to one embodiment of the present invention, a suitable time period between successive tooth passes is calculated using the following one-dimensional heat transfer equation:
T=T
(t=0)
+[T
s
−T
(t=0)]{1−erf[X/√4αt]}
Where, T is a transient temperature, T(t=0) is an initial temperature, Ts is a temperature after the first cutting pass by the cutting tool, erf is an error function, X is a distance into the material from a top surface, α is a thermal diffusivity of the material, and t is the time between the first cut and the second cut. The result of cutting a material using the HFTP regime is a reduction in specific cutting forces, high utilization of heat, lower peak tool temperatures, higher tool life, and improved material removal rates.
This heat transfer equation is used to calculate a suitable time between successive cutting actions. In one embodiment, the time between cutting passes is from about 0.8 to about 1.2 multiplied by t in the above equation. In another embodiment, the time between cutting passes is from about 0.9 to about 1.1 multiplied by t in the above equation. In yet another embodiment, the time between cutting passes is about t, as determined by the above equation. This time is then used to determine a frequency at which the material of a workpiece is cut. The frequency of the cutting tool or cutter is defined as the number of times a material is cut in a second. Thus, frequency is the number of tooth passes per second. The cutter frequency depends on the combination of the revolutions per minute (“RPM”) of the cutting tool and the number of teeth per around its circumference.
A cutting edge 514 is formed by all outermost points on a flute 512, which are on the cylindrical surface. As known in the art, a face mill will also have cutting edges along points on flute running in radial direction on end face. The angle of helix which is defined by an angle between cutting edge 514 and central axis, may vary from 0 to 60 degrees. For example, the cutting tool in
The cutting tool 500 material may be any of the tool materials in general, including, for example, high speed steels, solid carbide, ceramics, tool steel or indexable inserts of the aforementioned materials. The cutting tool 500 may also be impregnated with different materials including, for example silicon carbide, aluminum oxide, diamond, cubic boron nitride, garnet, zirconia or similar abrasive materials. In one embodiment, the cutting tool 500 may have an edge preparation depending on the use. The edge preparations that can be used include a T-land, a sharp-edge radius, or a ground and honed edge. The tool 500 material may have a coating on it. The tool 500 may also have an air blow option for ease in chip removal and a coolant option for keeping the tool temperatures low.
The shank 504 is designed so that it is capable of insertion and securing into a spindle. Thus, the shank 504 could be of any shape and design suitable for a particular milling machine. The shank 504 designs may include a taper, a V-flange, or straight. As it is known in the art, face mill does not have a shank. The shank 504 material may be similar to the tool 500 or may be different. For example, the shank 504 and the tool 500 may be made up of different materials and welded together to make a uniform single-body tool.
In another embodiment of the present invention, a cutting tool is rotated such that a tooth pass frequency is at least 400 teeth-per-second or more. In one preferred embodiment, the tooth pass frequency is in the range of about 600 to about 900 teeth-per-second, wherein material is cut more efficiently by making better use of the heat left by the previous tooth. One of the resulting advantages is that the material can be removed at significantly higher efficiency, particularly if a workpiece material is selected from Iron, Iron alloys, Steel, Steel alloys, Titanium, Titanium alloys, Nickel, and Nickel alloys, power generation alloys, difficult to cut aerospace alloys and automotive alloys.
In further another embodiment, a cutting tool is configured and arranged to improve the material removal rate and tool life. The number of teeth of a cutting tool is selected such that the ratio of number of teeth to diameter in millimeters is at least 0.75:1 or higher. In one preferred embodiment, a rotating cutting tool has a diameter of about 19 mm, and a number of teeth is 21, so that the ratio of number of flutes to diameter in mm is 1.1:1, thereby significantly improving material removal rates and tool life in a cutting operation.
In still another embodiment, a cutting tool is arranged and configured such that a cutting operation eliminates medium machining and/or finish machining processes, wherein all the material is removed at cutting speeds and feeds comparable to a roughing operation, and no separate finishing operation is required. Instead of performing machining operations in three steps which involves rough machining, medium machining and finish machining, wherein more amount of material is removed during roughing operation compared to medium machining, and more amount of material is removed in medium machining operation compared to finish machining. A cutting tool of the present invention allows removing all material with the improved material removal rates by a rough machining and eliminates medium machining and finish machining. A cutting tool of the present invention can also be used only for rough machining, only for medium machining, or only for finish machining. In a preferred embodiment, the tool per this invention is used for machining in a way that the material removal rates are about 65 cubic centimeters per minute per centimeter of flute length or higher (65 Cubic Centemeters/Min-Centemeter).
In a rough machining operation according to the present invention, the cutting tool makes a first cut in the material using a first tooth of the cutting tool, such that an amount of heat is conducted into the material. Then, the cutting tool makes a second cut in the material using a second tooth of the cutting tool before the heat dissipates from the material. The heat softens the material and allows the second tooth to more easily cut the material.
In yet another embodiment, high pressure coolant is used to further improve the performance of the present invention in terms of tool life and amount of material removed.
It is also appreciated by a person skilled in the art that during machining of materials made of aluminum and aluminum alloys, higher cutting speeds of the order of 1800 meters-per-minute (and rotational speeds of up to 40000 revolutions per minute) or higher can be easily achieved without affecting tool life. For machining aluminum and aluminum alloys, upper limit of speeds and feeds is from machine capability. Cutting frequencies to the order of 400 and above can be easily achieved at such higher rotational speeds. Accordingly, it is not the intention of this invention to include aluminum and aluminum alloys into the group of workpiece materials.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application is a Continuation-In-Part (CIP) patent application of U.S. patent application, Ser. No. 10/408,891, filed on Apr. 8, 2003, which claims priority of U.S. provisional patent application No. 60/370,777 filed Apr. 8, 2002; this application is also related to U.S. patent application, Ser. No. 10/408,966, filed on Apr. 8, 2003, which claims priority of U.S. provisional patent application No. 60/370,777 filed Apr. 8, 2002; the entire subject matters of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60370777 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10896783 | Jul 2004 | US |
Child | 11951553 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10408891 | Apr 2003 | US |
Child | 10896783 | US |