The present application claims priority to the Chinese Patent Application No. 201911045255.9, filed with the China National Intellectual Property Administration (CNIPA) on Oct. 30, 2019, and entitled “HIGH-FREQUENCY UNCONTROLLED RECTIFIER-BASED DC TRANSMISSION SYSTEM FOR OFFSHORE WIND FARM”, the entire contents of which are incorporated herein by reference.
The present disclosure relates to the technical field of power transmission and distribution in electric power systems, and more particularly to a high-frequency uncontrolled rectifier-based DC transmission system for an offshore wind farm.
In recent years, China's renewable energy industries led by wind power have ushered in a golden period of development by benefiting from a series of policies. At present, wind power generation has grown with a share of over 7% in China's total installed power generation capacity and become the third biggest source of electric power, next only to thermal power and hydropower. Compared with onshore wind power, offshore wind power has numerous advantages: (1) commonly strong wind power at sea; (2) long generation duration of offshore wind power and high equipment utilization ratio; and (3) possible power peak shaving and valley filling according to regular rules of offshore wind power being conducive. Therefore, offshore wind power is expected to become a new driving force for the development of China's wind power industry.
Increasingly explicit policies on offshore wind power, continuous optimization of construction costs and gradually maturing supporting industries all contribute to the accelerated development of China's offshore wind power. In 2018, the development of China's offshore wind power was further sped up, resulting in 436 newly installed generator sets, with the new installed capacity of 1.655 million kilowatts in a year-on-year growth rate of 42.7%, and the cumulative installed capacity of 4.445 million kilowatts. At present, most of completed offshore wind farms are near the shore. In future, it is desirable to develop offshore wind power toward the sea far away from the shore. On the one hand, near-shore wind power is more liable to be restricted by increasingly environment ecology and thus limited in development space; and on the other hand, the farther away from the shore, the wider the range on the sea, hence richer wind energy resources and more stable wind velocity. By developing deep sea far away from the shore, richer wind energy resources can be fully utilized, and shoreline and sea-route resources can be saved, thereby reducing or avoiding negative influence on coastal industrial production and the lives of residents.
Most of the inshore wind farms under operation at present transmit the generated power with alternating current (AC) systems, and long-distance large capacity wind power transmission with AC systems is generally considered as having the following problems: (1) high construction costs of AC lines and great power losses as compared with transmission based on a direct current (DC) system; (2) actually infeasible long-distance AC transmission due to obvious capacitance effect in submarine cable lines; and (3) direct influence of AC network fault, if occurring, on the operation of the wind farms, which would be adverse to the reliability of the AC networks and the wind farms. According to existing research achievements, in case of a distance of over 90 km far away from the shore and the wind farm capacity of more than 100 MW, high-voltage DC connection of the wind farm to the grid would be a suitable scheme.
So far, almost all of the produced offshore wind power is transmitted with voltage source converter-based HVDC (VSC-HVDC) systems. To further reduce the cost of a wind power transmission system far away from the shore, the research on low-cost converters has attracted more and more attention from academic and industrial circles in recent years. Offshore wind power transmission system can be Line commutated converter-based HVDC systems with additional reactive power compensators, or hybrid DC power transmission systems, or can be built with diode rectifier bridges. The existing low-cost converters mainly have the following problems: (1) the rated frequency of an offshore AC system may be about 50 Hz, and both the step-up transformer on the offshore step-up platform and the converter transformer in the offshore rectifier station have relatively large volumes; and (2) the low-cost converters need to be installed with additional reactive power compensator and AC filters, which further increase the size and weight of the offshore converter station. Therefore, there is rarely a consensus on the existence of a low-cost converter solution capable of completely replacing the conventional VSC-HVDC system.
Until now, most of the disclosed documents basically focus only on the study of control strategies for various offshore wind power transmission system. Hence, it is quite necessary to study low-cost converter based offshore wind power transmission system so as to further bring the technical advantages of the offshore wind power transmission system into full play.
An objective of the present disclosure is to provide a high-frequency uncontrolled rectifier-based DC transmission system for an offshore wind farm. According to this scheme, the rated frequency of the offshore AC system is increased to a level far above 50 Hz, so that transformers, reactive power components and AC filters on the offshore platform can be reduced in size and weight, allowing for a great reduction in construction costs and demonstrating great application potentials in actual engineering.
The technical solution of the present disclosure is as follows:
A high-frequency uncontrolled rectifier-based DC transmission system for an offshore wind farm includes a direct current (DC) system and an offshore alternating current (AC) system, where the DC system includes an offshore converter station and an onshore converter station; the offshore AC system includes wind turbines, AC submarine cables, and offshore step-up stations;
Optionally, the DC system has a symmetrical monopolar structure, and a grounding device is installed only at a valve side of a converter transformer of the onshore converter station.
Optionally, the wind turbine is a wind turbine based on a permanent magnet synchronous generator with full-scale power converters.
Optionally, the offshore converter station includes a first AC bus, first converter transformers, first converters, an AC filter, and two first smoothing reactors;
Optionally, the AC filter is mounted on the first AC bus; the AC filter is a single tuned, double tuned or triple tuned filter, or in a capacitor-only form; and the total reactive power of all the AC filters at a rated fundamental voltage is 10% of rated DC power of the offshore converter station.
Optionally, the first converter is a three-phase six-pulse uncontrolled rectifier bridge, each arm of which is composed of a plurality of diodes connected in series and parallel;
Optionally, the onshore converter station includes a second AC bus, a second converter transformer, a second converter, and two second smoothing reactors;
Optionally, a control system is used to perform constant power control on a grid side converter of the wind turbine; the control system includes four parts: a power controller, an outer-loop controller, an inner-loop controller, and a trigger link, where each of the power controller, the outer-loop controller, the inner-loop controller and the trigger link has d-axis and q-axis control dimensions;
Compared with the prior art, the present disclosure has the following advantages:
The present disclosure will be further illustrated below with reference to the accompanying drawings.
The technical solutions in embodiments of the present disclosure will be described in detail with reference to the accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are merely a part of rather than all the embodiments of the present disclosure. All other embodiments derived from the embodiments in the present disclosure by a person of ordinary skill in the art without creative work shall fall within the protection scope of the present disclosure.
As shown in
The DC system includes an offshore converter station 1 and an onshore converter station 2 that are connected by DC submarine cables. The DC system has a symmetrical monopolar structure, i.e., no additional DC grounding electrode is installed in the DC system, and instead, a grounding device is installed at the valve side of a converter transformer of the onshore converter station 2.
The offshore converter station 1 is comprised of a first AC bus 1-1, first converter transformers 1-2, first converters 1-3, AC filters 1-4, and first smoothing reactors 1-5. The first AC bus 1-1, serving as the AC bus for the converter station, is connected to the AC terminals of the first converters 1-3 by means of the first converter transformers 1-2. Typically, it is desirable to install two first converters 1-3 for the installed offshore converter station 1, one positive and one negative, where the DC side high voltage terminal of the positive converter is connected to the positive DC submarine cable by means of one first smoothing reactor 1-5, while the DC side low voltage terminal of the positive converter is connected to the DC side high voltage terminal of the negative converter. The DC side high voltage terminal of the negative converter is connected to the negative DC submarine cable by means of the other first smoothing reactor 1-5. The rated frequency of the offshore converter station 1 is chosen to be 150 Hz.
The AC filters 1-4 of the offshore converter station 1 are directly installed on the first AC bus 1-1 and can be single tuned, double tuned or triple tuned filters, or in a capacitor-only form, as shown in
The first converter 1-3 of the offshore converter station 1 is a three-phase six-pulse uncontrolled rectifier bridge, and each arm of the first converter 1-3 is composed of a number of cascaded diodes, as shown in
The onshore converter station 2 is comprised of a second AC bus 2-1, a second converter transformer 2-2, a second converter 2-3, and two second smoothing reactors 2-4. The second AC bus 2-1 is connected to the AC terminal of the second converter 2-3 by means of the second converter transformer 2-2. The DC side high voltage terminal of the second converter 2-3 is connected to the positive DC submarine cable by means of one second smoothing reactor 2-4, while the DC side low voltage terminal of the second converter 2-3 is connected to the negative DC submarine cable by means of the other second smoothing reactor 2-4. The second converter 2-3 is a modular multilevel converter (MMC), the topology of which is as shown in
The offshore AC system mainly includes wind turbines 3, AC submarine cables, and offshore step-up stations 4. Three wind turbines 3 are used as an equivalent wind farm connected to the low voltage side of each offshore step-up station 4. The high voltage sides of the offshore step-up stations 4 are connected to the first AC bus 1-1 of the offshore converter station 1 by means of the AC submarine cables. The rated frequency of the offshore AC system is chosen to be 150 Hz. The wind turbine is a wind turbine based on a permanent magnet synchronous generator with full-scale power converters, as shown in
The wind turbine is subject to constant power control, as shown in
The system parameters in this embodiment are as shown in Table 1:
A corresponding simulation platform was built in Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC) to simulate three-phase metallic short-circuit fault at the first AC bus 1-1 of the offshore converter station 1. It was assumed that the fault occurred at the fifth second during simulation, with simulation results of critical electrical quantities of the offshore converter station 1 shown in
While the embodiments of the present disclosure are described in detail above with reference to the accompanying drawings, the present disclosure is not limited to the described embodiments, and various variations can be made by those of ordinary skill in the art in the context of their knowledge without departing from the spirit of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201911045255.9 | Oct 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/107725 | 8/7/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/082601 | 5/6/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20100156189 | Fishman | Jun 2010 | A1 |
20130200714 | Pan | Aug 2013 | A1 |
20140092650 | Alston | Apr 2014 | A1 |
20150333525 | Choi | Nov 2015 | A1 |
20160013653 | Dorn | Jan 2016 | A1 |
20190067949 | Maruyama | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
1776988 | May 2006 | CN |
110829479 | Feb 2020 | CN |
3820013 | Jun 2022 | EP |
Entry |
---|
International Search Report dated Sep. 27, 2020 issued for PCT/CN2020/107725. |
Chinese Office Action dated Oct. 10, 2020 issued to CN201911045255.9. |
Sheng hui Cui et al., Onshore AC Grid Low Voltage Ride-Through (LVRT) of Diode-Rectifier Units based HVDC Transmission System for Offshore Wind Farms,2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) 22.8, pp. 934-938, Aug. 22, 2019. |
L. Abrahamsson et al., HVDC Feeder Solution for Electric Railways [From the Internet] http://www.doc88.com/p-3117608126609.html, Jan. 22, 2016. |
Soledad Bernal Perez et al., Efficiency and Fault Ride-Through Performance of a Diode-Rectifier- and VSC-Inverter-Based HVDC Link for Offshore Wind Farms, IEEE Transactions on Industrial Electronics, vol. 60, No. 6, pp. 2401-2409, Jun. 2013. |
Number | Date | Country | |
---|---|---|---|
20220252046 A1 | Aug 2022 | US |