The present invention relates generally to vehicle brake assemblies, and in particular, to a high friction brake assembly incorporating a plurality of backing plate extensions through a friction material matrix, to be utilized in vehicle parking brakes and vehicle emergency braking systems on vehicle equipped with a separate typical, full service brake system (disc or drum) at each of its four wheels.
Vehicle drum type friction brakes commonly include a vehicle brake shoe assembly carrying a frictional matrix which is brought into contact with an inner cylindrical surface of a rotating brake drum to generate a frictional force and correspondingly slow, stop, or hold the vehicle in a stationary or parked position. Disc brake systems include a caliper assembly having opposing friction pads which are brought into contact with a rotor disc.
Variations between the friction surface of the brake assembly and the surface of the rotating brake member (drum or disc) can alter the frictional effectiveness of a friction brake during its initial instances of use. For example, if the friction level generated by a friction brake is too low due to regions of the frictional matrix which are not in contact with the opposing friction surface of the brake drum or rotor, the brake will not function to the required level of static effectiveness, i.e. parking brake capability. One method commonly utilized to overcome this type of static friction problem is to bring the vehicle to a stop a number of times using only the parking brake or emergency brake, thereby generating excessive frictional forces on those portions of the brake assembly in contact with the rotating brake drum or rotor, and wearing or abrading them into closer conformance with the surface of the rotating brake drum or rotor. Such methods are prone to neglect by the average operator. If performed in an improper manner, these methods can lead to premature failure or excessive wear on the brake components.
Alternatively, frictional braking forces can be increased in vehicle friction brakes by producing a rough or sandblasted friction surface on the brake drum or rotor which is engaged by the brake shoe or pad assembly. This process, while increasing the frictional braking forces in the initial periods, may accelerate attrition of the friction material, shortening the lifespan of the brake components such as the brake friction material matrix.
The use of backing plate extensions, nubs or teeth, which are completely contained within, and engage with, the brake friction material matrix on brake shoe and pad assemblies, has been previously employed to facilitate the attachment and interlocking of the brake friction material matrix to the backing plate. See, for example, U.S. Pat. No. 6,367,600 B1 to Arbesman and U.S. Pat. No. 6,279,222 B1.
Another example of the use of projecting nubs or teeth is seen in U.S. Pat. No. 4,569,424 to Taylor, Jr., where a brake shoe assembly is provided. A friction material matrix in the '424 Taylor, Jr. reference is molded directly onto a brake liner plate which includes a plurality of perforations forming protruding tabs. The inter-engagement between the molded friction material and the perforated areas and tabs provides an enhanced interlocking strength between these elements. The '424 Taylor, Jr. reference, specifically teaches that it is undesirable for the protruding tabs to extend so far as to reach the outer surface of the friction material matrix, and indicate that the brake shoe assembly has reached the end of a useful service life when sufficient friction matrix material has been worn away so as to expose the protruding tabs.
Accordingly, there is a need in the automotive brake systems design area for a parking brake or emergency brake assembly with enhanced static and dynamic frictional properties, and which does not require an initial wear or break-in period to improve conformance between the frictional matrix and the opposing frictional surface of the brake drum or rotor.
The invention relates to an emergency brake assembly comprising a rotating member operatively associated with a vehicular wheel. The rotating member (e.g., a wheel drum or rotor) has an engagement surface which forms the braking surface. A non-rotating brake element (e.g., either a brake shoe or pad) is positioned adjacent the rotating member and is movable between a brake applied condition in pressing contact with the engagement surface and a brake relaxed condition spaced from the engagement surface. The brake element includes a rigid backing plate and a friction material disposed on the backing plate. The friction material defines an outer surface opposing the engagement surface of the rotating member and engagable therewith in the brake applied condition. A plurality of extensions project from the backing plate through the friction material. Each of the extensions terminates in a tip proximate the outer surface of the friction material. The tips and the outer surface of the friction material are arranged in relation to the compressibility of the friction material so that they simultaneously contact the engagement surface of the rotating member (drum or rotor disc) when the brake element is moved to its brake applied condition. In this manner, both the friction material and the projections contribute to the generation of friction against the rotating member thereby enhancing the braking effectiveness of the assembly.
The subject invention overcomes the prior art problems of an emergency brake assembly which does not require an initial wear or break-in period to achieve optimal friction characteristics by assuring that both the friction material and the projections contribute to the friction mechanism when the brake assembly is placed in its brake applied condition. The projections have the ability to roughen the engagement surface (of the rotating drum or rotor disc) while the friction material forms itself to an optimal shape, thus achieving a high coefficient of friction very quickly. Thus, the emergency brake may achieve optimal friction generation even during initial use and without a break-in period.
The foregoing and other objects, features, and advantages of the invention as well as presently preferred embodiments thereof will become more apparent from the reading of the following description in connection with the accompanying drawings.
In the accompanying drawings which form part of the specification:
Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings.
The following detailed description illustrates the invention by way of example and not by way of limitation. The description clearly enables one skilled in the art to make and use the invention, describes several embodiments, adaptations, variations, alternatives, and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
Turning to
For example, the attachment points 14 may consist of a raised web 18 extending circumferentially along the lower surface 16, one or more protruding threaded bosses (not shown), or bores (not shown) through which retaining pins are placed. The brake shoe platform 12 further includes an upper surface 20 configured to receive a brake friction material matrix 22. The radially outermost surface of the brake friction material matrix 22 defines an outer friction surface 24.
As can be seen in
Preferably, as shown in
Those of ordinary skill in the art will readily recognize that a variety of methods may be employed to form and secure the projecting extensions 100 to the brake shoe platform 12, to achieve the desired result of the projecting extensions passing radially outward through the friction material matrix 22. For example, individual extensions 100 could be manufactured separate from the brake shoe platform 12, and welded or secured to the brake shoe platform.
Those of ordinary skill in the art will further recognize that the projecting extensions 100 need not be limited to the triangular configuration shown in
Preferably, as seen in
In a first alternative configuration, the projecting extensions 100 may be symmetrically disposed about the circumferential centerline CL of the cylindrically curved brake shoe platform 12. For example, as seen in
In a second alternative configuration, the projecting extensions 100 may be randomly disposed on of the cylindrically curved brake shoe platform 12.
As seen in
Operation of the vehicle braking system when the vehicle is in motion, i.e. application of an emergency brake, results in the outer friction surface 24 and projecting extensions 100 being moved into rotational or sliding contact with the opposing friction surface 26. This results in a dynamic frictional force at the contacting friction surfaces and projecting extensions 100, acting to reduce the relative rotation between the brake drum 30 and the brake shoe assembly 10.
According to another aspect, the invention can be used with particular effectiveness to counteract the problem of emergency brakes not adequately generating enough friction due to their infrequency of use. In particular, when a brake element is newly installed, its fit relative to the rotating member 30, i.e., the brake drum or brake rotor, is poor which results in a lower than calculated coefficient of friction. In a vehicle's normal braking system arranged about the four wheels, this is not an issue because the surfaces will quickly wear into each other after only the first few stops. However, emergency and parking brakes do not enjoy the benefit of running in periods to establish a “healthy” wear surface. They are often outfitted only on a single wheel, usually a rear wheel, and may never be deployed except in a true emergency situation when optimal performance is most needed. Even in routine parking conditions, the emergency brake may not have the holding power necessary to maintain the vehicle in a stationary condition on steep inclines, particularly in new vehicles when the emergency brake has not seen much use.
In
The tips 110 and the outer surface 24 of the friction material 22 are arranged in relation to the compressibility of the friction material 22 such that the tips 110 and the outer surface 24 simultaneously contact the engagement surface 28 of the rotating drum member 30 when the brake element 10 is moved to the brake applied condition (
In the process, the friction material is compressed so that the outer surface 24 of the friction material 22 is displaced relative to the tips 110 as the brake element moves toward the brake applied condition. This occurs because the friction material 22 is more readily compressible that the projections 100 such that the friction material 22 undergoes greater deformation (under axial, or normal, stress) than the tips 110 in the course of the brake element 10 moving between the brake relaxed and brake applied conditions. And, in an extreme example, the more highly compressible friction material 22 can be used to advantage when, as in
The invention of
In view of the above, it will be seen that the objectives of the invention are achieved and other advantageous results are obtained. As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This is a Continuation-In-Part of U.S. Ser. No. 10/336,080, filed Jan. 3, 2002, now U.S. Pat. No. 6,860,368.
Number | Name | Date | Kind |
---|---|---|---|
1202529 | Jones | Oct 1916 | A |
1336752 | Muller | Apr 1920 | A |
1532141 | Kenyon | Apr 1925 | A |
1592273 | Kelly | Jul 1926 | A |
1781074 | Norton | Nov 1930 | A |
1880750 | Brackett | Oct 1932 | A |
2218680 | Kempel | Oct 1940 | A |
2879866 | Newell | Mar 1959 | A |
3473631 | Schmid | Oct 1969 | A |
3941222 | Newstead | Mar 1976 | A |
3986585 | Toplis et al. | Oct 1976 | A |
4473140 | Komori | Sep 1984 | A |
4569424 | Taylor, Jr. | Feb 1986 | A |
4799579 | Myers et al. | Jan 1989 | A |
4924583 | Hummel et al. | May 1990 | A |
4991697 | Hummel et al. | Feb 1991 | A |
5141083 | Burgoon | Aug 1992 | A |
5355986 | Biswas | Oct 1994 | A |
5695026 | Redgrave et al. | Dec 1997 | A |
5732800 | Spigener | Mar 1998 | A |
6109399 | Crawford et al. | Aug 2000 | A |
6167992 | Torpey et al. | Jan 2001 | B1 |
6241058 | Shute et al. | Jun 2001 | B1 |
6279222 | Bunker et al. | Aug 2001 | B1 |
6367600 | Arbesman | Apr 2002 | B1 |
6464047 | Arbesman | Oct 2002 | B1 |
20010045330 | Chiang et al. | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
21185 | Dec 2001 | RU |
579943 | Nov 1977 | SU |
1780527 | Dec 1992 | SU |
Number | Date | Country | |
---|---|---|---|
20050139439 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10336080 | Jan 2003 | US |
Child | 11037721 | US |