The present invention relates to high-gross manufacturing method for magnesium alloy object and high-gross magnesium alloy structure for casing of electronic device.
The casing/shell of the electronic devices may include a plurality of structural elements. For example, the laptop computer may include display and main body. The display may include upper cover and display main body, while the main body may include keyboard cover and bottom structure. The above mentioned main body and keyboard cover may contain any suitable material.
The casing/shell of the electronic devices, such as casing of portable electronic devices, may be in frequent contact with other objects such as table, user hand, ground, magnesium alloy object such that the casing/shell of the electronic devices may have deformation. The casing/shell may be damaged, the cover paint of the casing/shell may be worn out and the protection layer may be broken due to collision or rub. The metallic object on casing/shell of the electronic devices may be rust-eaten such that it cannot provide protection function and is not appealing for consumer for appearance.
The object of the present invention is to provide magnesium alloy object with corrosion protection after high-gross treatment.
According to a first aspect of the present invention, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; sprays paint on the MAO-treated or coating-treated layer to enhance appearance and protect the magnesium alloy object; CNC high-gross cuts away part of the paint layer/oxide film (passivation layer) to expose metallic main body of the magnesium alloy object such that the exposed metallic main body has high gross surface; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies ED/UV protective paint to the exposed surface obtained in previous two steps to achieve corrosion protection.
According to a second aspect of the present invention, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; uses laser to remove the MAO-treated or coating-treated protection layer on the surface of the magnesium alloy object and expose the metallic surface of the magnesium alloy object; performs conversion coating treatment for the laser-treated metallic surface to passivate the magnesium alloy object; sprays conductive paint on the laser-treated and passivated surface; sprays paint to enhance appearance and protect the magnesium alloy object; cuts away part of the magnesium alloy object to expose metallic main body such that the metallic main body has high gross; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies ED/UV protective paint to the exposed surface obtained in previous two steps to achieve corrosion protection.
According to a third aspect of the present invention, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; sprays paint on the MAO-treated or coating-treated layer to enhance appearance and protect the magnesium alloy object; CNC high-gross cuts away part of the paint layer/oxide film (passivated layer) to expose metallic main body such that the exposed metallic main body has high gross surface; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies UV protective paint to all of the magnesium alloy object to achieve corrosion protection.
According to a fourth aspect of the present invention, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; sprays conductive paint on the MAO-treated or coating-treated layer; sprays paint on the conductive painted surface to enhance appearance and protect the magnesium alloy object; CNC high-gross cuts away part of the paint layer/oxide film (passivated layer) to expose metallic main body such that the exposed metallic main body has high-gross surface and the high gross surface is also electrically conductive; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies ED protective paint to protect the high-gross surface to achieve corrosion protection.
The magnesium alloy object according to the present invention is subject to micro-arc oxidation (MAO) or conversion coating treatment, painted with conductive paint, subject to CNC high-gross treatment and then painted with protective paint, and can achieve corrosion protection. Moreover, the high-gross surface of the magnesium alloy object is passivated and the passivated surface still has metallic gross. The magnesium alloy object is added with conductive layer to increase the ED coverage area and to enhance corrosion protection ability.
Reference will now be made to the drawing figures to describe the present disclosure in detail. It will be understood that the drawing figures and exemplified example of present disclosure are not limited to the details thereof.
According to the first embodiment, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; sprays paint on the MAO-treated or coating-treated layer to enhance appearance and protect the magnesium alloy object; CNC high-gross cuts away part of the paint layer/oxide film (passivation layer) to expose metallic main body of the magnesium alloy object such that the exposed metallic main body has high gross surface; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies ED/UV protective paint to the exposed surface obtained in previous two steps to achieve corrosion protection.
The magnesium alloy object is, for example, magnesium alloy object substrate.
According to the second embodiment, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; uses laser to remove the MAO-treated or coating-treated protection layer on the surface of the magnesium alloy object and expose the metallic surface of the magnesium alloy object; performs conversion coating treatment for the laser-treated metallic surface to passivate the magnesium alloy object; sprays conductive paint on the laser-treated and passivated surface; sprays paint to enhance appearance and protect the magnesium alloy object; cuts away part of the magnesium alloy object to expose metallic main body such that the metallic main body has high gross; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies ED/UV protective paint to the exposed surface obtained in previous two steps to achieve corrosion protection.
According to the third embodiment, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; sprays paint on the MAO-treated or coating-treated layer to enhance appearance and protect the magnesium alloy object; CNC high-gross cuts away part of the paint layer/oxide film (passivated layer) to expose metallic main body such that the exposed metallic main body has high gross surface; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies UV protective paint to all of the magnesium alloy object to achieve corrosion protection.
According to the fourth embodiment, the present invention provides a high-gross manufacturing method for magnesium alloy object. The method provides a magnesium alloy object; performs micro-arc oxidation (MAO) or conversion coating treatment to form oxide film on the surface of the magnesium alloy object to enhance corrosion protection function; sprays conductive paint on the MAO-treated or coating-treated layer; sprays paint on the conductive painted surface to enhance appearance and protect the magnesium alloy object; CNC high-gross cuts away part of the paint layer/oxide film (passivated layer) to expose metallic main body such that the exposed metallic main body has high-gross surface and the high gross surface is also electrically conductive; uses specific conversion coating solution such as phosphate, zirconate, organic/inorganic oxane mixed solution to passivate the activity of the magnesium alloy object and maintain high gross; applies ED protective paint to protect the high-gross surface to achieve corrosion protection.
The magnesium alloy object according to the present invention is subject to micro-arc oxidation (MAO) or conversion coating treatment, painted with conductive paint, subject to CNC high-gross treatment and then painted with protective paint, and can achieve corrosion protection.
Micro-arc oxidation (MAO) is also referred to as plasma electrolytic oxidation and can form oxide coating on conductive material such as metallic material. The “metallic material” is referred to as pure metal, metal alloy, intermetallic or compound containing metal. The metallic material may include aluminum, magnesium, titanium and so on. MAO adopts high electric potential to discharge and the resulting plasma may change the structure property of the oxide layer.
MAO establishes minute discharge on the surface of the metallic material dipped in electrolyte. MAO treatment forms relatively thick and substantially crystallized oxide coating. The thickness of the coating layer is, for example, tens or hundreds of micrometer, but it is not limited to specific values. For example, in compliance of various application or arts, the MAO coating may have larger or smaller thickness. The resulting MAO oxide coating is compact and/or extensible and has relatively high hardness, which is in contrary to the oxide layer formed by anode oxidation.
On contrary to deposition treatment, MAO is chemical conversion technique. The oxide layer formed by MAO process is resulted from the oxidation of the lower metallic layer, which is not oxide layer formed by deposited layer on object. In comparison with deposition processing (such as spraying), MAO coating layer has higher adhesion to the lower layer metal material.
Conversion coating treatment obtains coating with metal compound by chemically treating or electro-chemically treating metal surface, and has function of corrosion protection, paint bonding, metal coloring, and chemical polishing etc. There are many kinds of conversion coating treatment such as chromate treatment, phosphate treatment, non- chromium-based treatment, metal coloring, and chemical polishing etc. The conversion coating treatment has advantages of good corrosion protection, good bonding, good electric insulation, non-binding to molten metal and so on. The conversion coating treatment is widely used for treatment of steel, aluminum, zinc, stainless steel, copper and magnesium.
Computer Numerical Control (CNC) uses computer to compile the NC program input to memory of the control system and uses shift control system to drive motor through driver. CNC treatment is used to cut and process the designed component. The computer-controlled machine is usually called as CNC directly. Taking diamond knife as example, it uses natural diamond knife to process soft metals such as aluminum alloy and copper alloy to obtain fine resolution lathing with optical mirror. The optical metal mirror has high reflection rate after processing by diamond knife. The recent development of super-fine CNC lathe provide better non-spherical mirror contour. Besides, the metal surface has high gross effect and has excellent metallic quality after cutting by diamond knife.
As the development of high-performance and high-precision CNC machine and excellent diamond knife, the CNC high gross processing has fast progress. The grinding process is replaced by milling (lathing) process for more mature process. CNC high-gross process uses diamond high-gross knife on precise CNC processing equipment and uses cutting parameters and skill to achieve shining processing face. The material which can be processed by CNC high-gross processing includes acrylic, organic glass, copper alloy, copper piece, aluminum alloy, aluminum object, copper object, magnesium alloy, and zinc alloy and so on.
Electro-coating (ED) utilizes external electric field to deposit pigment in electrophoresis solution to surface of the magnesium alloy object. ED has the advantages of water-soluble, non-toxic, easy to automatic control and so on, and is extensively applied to automobile, building materials, hardware and home electronic appliance. The principle of ED is described as follows. The resin in the cathode electrophoresis coating has alkaline base group and forms salt soluble to water after reacted with acid. After applying DC current, the acid negative ions move toward anode and the resin ions (with the pigment particles wrapped therein) with positive charge moves toward cathode and then deposit on the cathode. This is the principle of ED and therefore it is also referred to as plating-painting. ED is a complicated electrochemistry reaction and includes four reactions (electrophoresis, electro-plating, electrolyze and electroosmosis) occurring at the same time.
The electro-coating (ED) has advantages of plentiful, uniform, smooth and shining coating. The hardness, bonding, corrosion-resisting, shock-resisting and porousness of ED layer is better than that of the other coating layer.
Ultraviolet paint is ultraviolet curable paint. UV paint is usually referred to as photo-curable coating (photosensitive coating). UV paint uses UV light as curing source and is also referred to as UV curable paint. The UV paint can be fast and easily cured to form a film on combustible material such as paper, plastic, leather or wood without the need of heating. The UV paint mainly comprises photosensitive resin, photosensitizer and diluent and is added with certain additives such as heat stabilizers. The color UV paint also contains pigment and filler. The photosensitive resin is generally low-molecular-weight resin with unsaturated bond and is, for example, unsaturated polyester or acrylic acid based oligomer. The photosensitizer is a compound tending to generate free radical after receiving UV light, and is for example benzophenone or benzoin alkanes ether. The diluent is used for reduce paint viscosity and also cured into film for active dilution. The diluent is, for example, styrene or acrylate. The photo-curable coating has the advantages of short curing time (from less-than-1 second to several minutes), low curing temperature, low volatilization, energy saving, resource saving, pollution-free and high efficiency.
At least one part of the shell structure disclosed here can be manufactured by steps of arbitrary number.
The magnesium alloy object according to the present invention is subject to micro-arc oxidation (MAO) or conversion coating treatment, painted with conductive paint, subject to CNC high-gross treatment and then painted with protective paint, and can achieve corrosion protection. Moreover, the high-gross surface of the magnesium alloy object is passivated and the passivated surface still has metallic gross. The magnesium alloy object is added with conductive layer to increase the ED coverage area and to enhance corrosion protection ability.
The surface of the magnesium alloy object 102 is provided with oxide film 104 to enhance corrosion protection function. The magnesium alloy object 102 with oxide film 104 is also provided with first paint layer 106 thereon. According to one embodiment, a functional paint layer (the first paint layer) is arranged on the oxidized first surface, where the functional paint layer comprises at least polymer selected from the group consisting of polystyrene, polyimide (PI), Polypropylene (PP), polyurethanes (PU), methylsilsesquioxane, polyethylene (PE), polystyrene silicone, butyl rubber, polyamide (PA), polycarbonate (PC), styrene-butadiene rubber, acrylate polymer, epoxy and fluoropolymer. Therefore, the magnesium alloy object has appealing appearance and the surface thereof can be protected. Part of the first paint layer 106/passivation layer (oxide film) 104 is cut away to expose and to form a cut portion 108 such that the exposed metallic main body has high gross surface. A second paint layer 110 is arranged on the cut portion 108. According to one embodiment, a functional paint layer (the second paint layer) is arranged on the oxidized first surface, where the functional paint layer comprises at least polymer selected from the group consisting of polystyrene, polyimide (PI), Polypropylene (PP), polyurethanes (PU), methylsilsesquioxane, polyethylene (PE), polystyrene silicone, butyl rubber, polyamide (PA), polycarbonate (PC), styrene-butadiene rubber, acrylate polymer, epoxy and fluoropolymer. The metallic main body 112 of the magnesium alloy object 102 and the oxide film 104 is covered by the second paint layer 110 to have corrosion protection function.
The surface of the magnesium alloy object 202 is provided with oxide film 204 to enhance corrosion protection function. Part of the protection layer (the oxide film 204) on the surface of the magnesium alloy object 202 is removed to expose the metallic surface 206 of the magnesium alloy object 202. The conductive paint layer 208 is provided on the metallic surface 206. The third paint layer 210 is arranged on the oxide film 204 and the conductive paint layer 208 to protect the magnesium alloy object 202. Part of the conductive paint layer 208 and the third paint layer 210 is cut away to expose the metallic main body 212 of the magnesium alloy object 202 and to form the cut portion 214 with high gross. A fourth paint layer 216 is formed on the magnesium alloy object 202 to cover the metallic main body 212 of the magnesium alloy object 202 and the conductive paint layer 208. According to one embodiment, a functional paint layer (the fourth paint layer) is arranged on the oxidized first surface, where the functional paint layer comprises at least polymer selected from the group consisting of polystyrene, polyimide (PI), Polypropylene (PP), polyurethanes (PU), methylsilsesquioxane, polyethylene (PE), polystyrene silicone, butyl rubber, polyamide (PA), polycarbonate (PC), styrene-butadiene rubber, acrylate polymer, epoxy and fluoropolymer. Therefore, the surface of the magnesium alloy object 202 can be protected.
The surface of the magnesium alloy object 302 is provided with oxide film 304 to enhance corrosion protection function. The fifth paint layer 306 is arranged on the magnesium alloy object 302 with the oxide film 304, thus provide appealing appearance and protect the surface of the magnesium alloy object 302. Part of the fifth paint layer 306/the oxide film (passivation layer) 304 is cut away to expose the metallic main body 308 of the magnesium alloy object 302 and to form the cut portion 312 with high gross surface. The sixth paint layer 310 is arranged on the cut portion 312 to encapsulate/cover the metallic main body 308 of the magnesium alloy object 302 and the oxide film 304 to provide corrosion protection function.
The surface of the magnesium alloy object 402 is provided with oxide film 404 to enhance corrosion protection function. The magnesium alloy object 402 with oxide film 404 is also provided with the conductive paint layer 406 thereon. The seventh paint layer 408 is sprayed on the conductive paint layer 406 to enhance appearance. Part of the seventh paint layer 408/the conductive paint layer 406/the passivation layer (oxide film) 404 is removed to form the cut portion 414 and expose the metallic main body 410 with high gross surface and the high gross surface is electrically conductive. The eighth paint layer 412 is formed by ED process. According to one embodiment, a functional paint layer (the eight paint layer) is arranged on the oxidized first surface, where the functional paint layer comprises at least polymer selected from the group consisting of polystyrene, polyimide (PI), Polypropylene (PP), polyurethanes (PU), methylsilsesquioxane, polyethylene (PE), polystyrene silicone, butyl rubber, polyamide (PA), polycarbonate (PC), styrene-butadiene rubber, acrylate polymer, epoxy and fluoropolymer. Therefore, the high gross surface can be protected. The eighth paint layer 414 is arranged on the cut portion 414 to encapsulate/cover the metallic main body 410 of the magnesium alloy object 402, the conductive paint layer 406 and the oxide film 304 to provide corrosion protection function.
The magnesium alloy object according to the present invention is subject to micro-arc oxidation (MAO) or conversion coating treatment, painted with conductive paint, subject to CNC high-gross treatment and then painted with protective paint, and can achieve corrosion protection. Moreover, the high-gross surface of the magnesium alloy object is passivated and the passivated surface still has metallic gross. The magnesium alloy object is added with conductive layer to increase the ED coverage area and to enhance corrosion protection ability.
Although the present invention has been described with reference to the preferred embodiment thereof, it will be understood that the present invention is not limited to the details thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the present invention as defined in the appended claims.