The present disclosure relates to a high heat-absorption core for manufacturing of cast components.
Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. Casting is most often used for making complex shapes that would be otherwise difficult or uneconomical to make by other methods. Sand casting, also known as sand mold casting, is a metal casting process characterized by using sand as the mold material. The term “sand casting” may also refer to an object produced via the sand-casting process.
Certain bulky equipment like machine tool beds, ship propellers, combustion engine components (such as cylinder heads, engine blocks, and exhaust manifolds), etc., may be cast more easily in the required size, rather than be fabricated by joining several small pieces. The mold cavity and gating system are typically created by compacting the sand around models called patterns, by carving directly into the sand, or by 3D printing. The mold includes runners and risers that enable the molten metal to fill the mold cavity by acting as reservoirs to feed the shrinkage of the casting as it solidifies. During the casting process, metal is first heated until it becomes liquid and is then poured into the mold after certain melt treatment such as degassing, adding grain refiner, and adjusting alloy element contents. The mold gradually heats up after absorbing the heat from liquid metal. Consequently, the molten metal is continuously cooled until it solidifies. After the solidified part (the casting) is taken out of the mold and following a shake out, excess material in the casting (such as the runners and risers) is removed.
Cores are frequently used for sand casting components with internal cavities and reentrant angles, i.e., interior angles greater than 180 degrees. For example, cores are used to define multiple passages in engine blocks, cylinder heads, and exhaust manifolds. Cores are typically disposable items constructed from materials such as sand, clay, coal, and resin. Core materials generally have sufficient strength for handling in the green state, and, especially in compression, to withstand the forces, e.g., material weight, of casting, sufficient permeability to allow escape of gases, good refractoriness to withstand casting temperatures. Because cores are normally destroyed during removal from the solidified casting, core materials are generally selected to permit core break-up during shake out. The core material is typically recycled.
A high heat-absorption casting core for manufacturing a cast component includes a core body. The core body has at least a portion thereof defined by metal powder. The metal powder is configured to absorb heat energy from the cast component during cooling of the component and solidification thereof.
The core body may be additionally defined by a sand fraction in contact with the metal powder fraction.
The core body may include a sand body segment and a mixed-material body segment. In such an embodiment, the mixed-material body segment may include the metal powder fraction intermixed with the core sand fraction.
The metal powder fraction may be magnetized to thereby maintain structural and dimensional integrity of the metal powder fraction.
The sand fraction may define a channel configured to retain the metal powder fraction.
The channel may retain the metal powder fraction intermixed with the core sand fraction.
The metal powder fraction may include particles of at least one of aluminum, copper, bronze, iron, and steel.
The core body may be defined by an exterior surface. Furthermore, the core body may include a coating on the exterior surface positioned to contact the cast component and configured to minimize sticking of the core body to the interior feature of the cast component.
The coating may include one of ceramic, nitride, silicon, and titanium.
The coating may have a thickness in a range of 50 nanometers to 5 microns.
A system and a method for manufacturing a cast component using such a high heat-absorption casting core are also disclosed.
The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of the embodiment(s) and best mode(s) for carrying out the described disclosure when taken in connection with the accompanying drawings and appended claims.
Terms such as “above”, “below”, “upward”, “downward”, “top”, “bottom”, etc., are used in the present disclosure descriptively for the figures, and do not represent limitations on the scope of the disclosure, as defined by the appended claims.
Referring to
As shown in each of
In general, the faster the solidification rate, the finer the cast material microstructure and thus the higher the mechanical properties of the casting. Typically, a sand core has low thermal conductivity and affects coarse material microstructure and low material properties in the finished casting. For example, low cooling rate during solidification of the cast component 10 around an exhaust manifold wall 14 with the use of a sand core may result in a crack 16 (shown in
Sand cores are typically produced by introducing core sand into specifically configured core boxes, for example half core, dump core, split core, and gang core boxes. Specific binders may be added to core sands to enhance the core strength. Dry-sand cores are frequently produced in dump core boxes, in which sand is packed into the box and scraped level with the top of the box. A plate, typically constructed from wood or metal, is placed over the box, and then the box with the plate in place is flipped over such that the formed core segment may drop out of the core box. The formed core segment is then baked or otherwise hardened. For complex shape cores, multiple core segments may be hot glued together or joined using other attachment methods.
Simple shape one-piece sand cores may also be produced in split core boxes. A typical split core box is made of two halves and has at least one hole for introduction of sand for the core. Cores with constant cross-sections may be created using specifically configured core-producing extruders. The resultant extrusions are then cut to proper length and hardened. Single-piece cores with more complex shapes may be made in a manner similar to injection moldings and die castings. Following extraction and, if required, assembly of the core segments, rough spots on the surface of the resultant core may be filed or sanded down. Finally, the core is lightly coated with graphite, silica, or mica to give the core a smoother surface finish and greater resistance to heat.
A high heat-absorption casting core 20, shown in various configurations in
In another embodiment, as shown in
The core body 22 may be defined by the metal powder fraction 26 intermixed with the sand fraction 24 in specific proportion to control the cooling rate of the molten metal during its solidification. The core body 22 may be formed in a core box with the sand fraction 24 and the metal powder fraction 26 premixed in the requisite proportion, which may vary locally across the core body. As shown in
In a separate embodiment, as shown in
In general, the metal powder material should have higher melting temperature than the material used for the actual casting. For cast components manufactured from aluminum, for instance, material for the metal powder fraction 26 may be selected from copper, bronze, cast iron, tool (stainless) steel, a Ni based alloy, or galvanized steel. Such metal chill element materials may be employed primarily because thermal conductivity (and durability) of copper, bronze, cast iron, or tool steel is higher than that of aluminum. Such metal powder materials may be employed primarily because of their high thermal conductivity and durability. However, for aluminum castings, when used with a ceramic coating, aluminum powder (whose melting point is around 660 degrees C.) may also be used as the material for the metal powder fraction.
Another option for the coating metal powder fraction core is spray-on alcohol-based graphite coating. Such a spray-on coating may include graphite flakes/particles (60˜70%), organic bentonite (2-3%), organic binder (1-2%), inorganic binder (1.5-2.5%), polyvinyl butyral (PVB, 0.2-0.5%), additives (2-5%), and remaining mixture based on anhydrous ethanol with other alcohol solvent(s). The material of the metal powder may be copper, bronze, cast iron, tool (stainless) steel, galvanized steel, or Ni based alloys to minimize the likelihood of the powder sintering when exposed to molten metal during the casting process and thereby facilitate ease of the casting core 20 shake out. Additionally, a non-oxidizing material (such as various oxides, nitrides, carbides), and borides (such as polycrystalline diamond ceramics, aluminum nitride, beryllium oxide, silicon nitride, and silicon carbide), may be specified for the sand fraction 24 to minimize reduction of heat transfer from the molten metal to the casting core 20.
As shown in
The core body 22 shown in
The coating 32 would be additionally selected to have the least effect on, i.e., not restrict, transfer of heat energy from the cast component 10 to the metal powder fraction 26. The coating 32 may be applied as a sprayable mold wash. Specific compositions of the mold washes may be: ˜30% water, ˜10% soluble mineral oil, ˜10% Kerosene, ˜40% silica flour, and ˜10% ceramic powders. To limit the effect of the coating 32 on heat transfer, the composition of the coating may include ceramic, nitride, silicon, or titanium, for example, according to a non-limiting list, ceramic-aluminide, nitride-aluminide, and titanium-aluminide, silicon-nitride, silicon-carbide, a diamond-like coating, boron nitride, and cerium oxide. To further limit its effect on heat transfer, the coating 32 may have a thickness in a range of 50 nanometers (nm) to 5 micrometers or microns (μm), depending on the sizes of silica flour and ceramic powders used in the wash.
By absorbing heat energy from the molten metal, the metal powder of the core body 22, such as in the metal powder fraction 26, is intended to yield refined microstructure of the casting material and improved mechanical properties of the cast component 10 under operation. Such improved mechanical properties will in turn minimize the likelihood of cracking of the cast component 10 during thermal and mechanical loading. For example, in manufacturing aluminum castings, the metal powder fraction 26 is intended to enhance localized cooling of the casting, and thereby decrease the cast aluminum material's dendrite arm spacing (DAS), which would improve the strength of the cast component 10 in the region around the interior feature 12.
The metal powder fraction 26 may be arranged strategically in locations where the cooling rate of the core sand would otherwise result in reduced rate of solidification of the molten metal, and reduced material properties and increased cracking of the cast component 10 during thermal and mechanical loading. Such particular locations in the cast component 10 may be identified by methods such as CAE. Such methods may use various analytical algorithms for analysis of the component structure under virtual testing parameters simulating, operating conditions for identification of high stress areas. Based on such an analysis, the core body 22 may be packed or printed via the 3D printing process using the metal powder fraction 26 intermixed with loose sand of the sand fraction 24 and binder.
Either by forming the entirety of the core body 22 or defining a particular part of the core body 22, the metal powder is configured to be easily removed during shake out of the casting core 20 from the cast component 10 subsequent to the solidification of the molten metal. Ease of break-up of the core body 22 made up entirely of the metal powder or of the core body defined by the metal powder fraction 26 together with the core sand fraction 24 is intended to facilitate efficient removal of the casting core 20 from the formed cast component 10 without damaging or otherwise disrupting the solidified structure of the cast component. The material of the high heat-absorption casting core 20 may then be recycled.
A method 100 of preparing the high heat-absorption casting core 20 for generation of the cast component 10 is shown in
Specifically, in frame 102 the method may include introducing the core sand fraction 24 and the metal powder fraction 26 into the core box and compacting the materials of the two fractions until the core box is full, e.g., the sand and metal powders are level with the top of the core box. Alternatively, the method may include using the 3D printing process to generate the core body 22, as disclosed above with respect to
In frame 110 the method may include hardening the formed casting core 20, such as by baking in a furnace at temperatures in the range of 200 to 250 degrees C. Alternatively, if self-hardening bonded sand is used (where typically two or more binder components are mixed with sand) for the sand fraction 24, the sand will cure and self-harden at room temperature. Following frame 110, the method may advance to frame 112. In frame 112 the method includes smoothing out, e.g., filing or sanding down, the outer surface of the hybrid core. Additionally, in frame 112 the method may include coating the outer surface of the casting core 20 with a suitable compound, such as graphite, silica, or mica to give the hybrid core a smoother surface finish and greater resistance to heat. The method may conclude in frame 114 following one of the frames 108-112, with packaging or storing the high heat-absorption casting core 20 in preparation for placing thereof in a mold for subsequent generation of the cast component 10.
A system 200 for manufacturing the cast component 10 is shown in
The system 200 also includes the high heat-absorption casting core 20 having a core body 22 with at least a portion thereof defined by metal powders, such as having the metal powder fraction 26, as described above with respect to
When introduced via the mechanism 206, the molten metal 208 flows into the cavity 204 and around the high heat-absorption casting core 20 to form the exterior shape and the interior feature 12 of the cast component 10. The high heat-absorption casting core 20, and specifically the metal powder fraction 26, controls solidification of the molten metal 208 around the interior feature 12 to enhance mechanical properties of the manufactured cast component 10 in the region around the interior feature. The molten metal 208 is permitted to cool and solidify, after which the cast component 10 is removed from the mold 202. As described above, the casting core 20 is removed from the solidified cast component 10 during the core shakeout process, with the brake-up of the core sand fraction 24 and the metal powder fraction 26 facilitating extraction of the core body 22 from the finished casting.
The detailed description and the drawings or figures are supportive and descriptive of the disclosure, but the scope of the disclosure is defined solely by the claims. While some of the best modes and other embodiments for carrying out the claimed disclosure have been described in detail, various alternative designs and embodiments exist for practicing the disclosure defined in the appended claims. Furthermore, the embodiments shown in the drawings or the characteristics of various embodiments mentioned in the present description are not necessarily to be understood as embodiments independent of each other. Rather, it is possible that each of the characteristics described in one of the examples of an embodiment may be combined with one or a plurality of other desired characteristics from other embodiments, resulting in other embodiments not described in words or by reference to the drawings. Accordingly, such other embodiments fall within the framework of the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
10525525 | Propheter-Hinckley | Jan 2020 | B2 |
20130220570 | Sears | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
19534836 | Mar 1997 | DE |
60311824 | Oct 2007 | DE |
0226419 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20220088671 A1 | Mar 2022 | US |