High horsepower pumping configuration for an electric hydraulic fracturing system

Information

  • Patent Grant
  • 10648311
  • Patent Number
    10,648,311
  • Date Filed
    Wednesday, December 5, 2018
    7 years ago
  • Date Issued
    Tuesday, May 12, 2020
    5 years ago
Abstract
Embodiments include a hydraulic fracturing system for fracturing a subterranean formation. The system includes an electric pump, arranged on a first support structure, the electric pump coupled to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. The system also includes support equipment, arranged on a second support structure, electrically coupled to the electric pump, wherein the support equipment includes at least a transformer for distributing power to the electric pump, the power being received from at least one generator at a voltage higher than an operating voltage of the electric pump.
Description
BACKGROUND
1. Technical Field

This disclosure relates generally to hydraulic fracturing and more particularly to systems and methods for configuring high horsepower pumping systems.


2. Background

With advancements in technology over the past few decades, the ability to reach unconventional sources of hydrocarbons has tremendously increased. Horizontal drilling and hydraulic fracturing are two such ways that new developments in technology have led to hydrocarbon production from previously unreachable shale formations. Hydraulic fracturing (fracturing) operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, hydraulic fracturing usually includes pumps that inject fracturing fluid down the wellbore, blenders that mix proppant, chemicals, and the like into the fluid, cranes, wireline units, and many other components that all perform different functions to carry out fracturing operations.


Usually in fracturing systems, the fracturing equipment runs on diesel motors or by other internal combustion engines. Such engines may be very powerful, but have certain disadvantages. Diesel is more expensive, is less environmentally friendly, less safe, and heavier to transport than natural gas. For example, diesel engines are very heavy, and so require the use of a large amount of heavy equipment, including trailers and trucks, to transport the engines to and from a well site. In addition, such engines are not clean, generating large amounts of exhaust and pollutants that may cause environmental hazards, and are extremely loud, among other problems. Onsite refueling, especially during operations, presents increased risks of fuel leaks, fires, and other accidents. The large amounts of diesel fuel needed to power traditional fracturing operations require constant transportation and delivery by diesel tankers onto the well site, resulting in significant carbon dioxide emissions.


Some systems have tried to eliminate partial reliance on diesel by creating bi-fuel systems. These systems blend natural gas and diesel, but have not been very successful. It is thus desirable that a natural gas powered fracturing system be used in order to improve safety, save costs, and provide benefits to the environment over diesel powered systems. Turbine use is well known as a power source, but is not typically employed for powering mobile fracturing operations.


Some electric pumping configurations have a limited horsepower (HP) range, such as between approximately 1750 HP and 2500 HP. This contrasts diesel powered pumping configurations which may include horsepower ranges between 2250 HP and 3000 HP. Fracturing operations with high horsepower configurations which desire the benefits of electric powered pumps typically supplement with smaller diesel powered configurations, which may reduce or eliminate the numerous benefits provided by electric powered pumps. Moreover, rig up times may be increased because two different types of pumping configurations are transported and installed at the well site.


SUMMARY

Applicant recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, for operating electric fracturing pumps.


In an embodiment a hydraulic fracturing system for fracturing a subterranean formation includes an electric pump, arranged on a first support structure, the electric pump coupled to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. The system also includes support equipment, arranged on a second support structure, electrically coupled to the electric pump, wherein the support equipment includes at least a transformer for distributing power to the electric pump, the power being received from at least one generator at a voltage higher than an operating voltage of the electric pump.


In an embodiment a hydraulic fracturing system for fracturing a subterranean formation includes a first support structure, forming a pumping trailer. The first support structure includes an electric pump fluidly connected to a well associated with the subterranean formation and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. The first support structure also includes at least one electric motor providing operational energy to the electric pump. The first support structure further includes a first support component, the first support component regulating operation of the electric pump. The system also includes a second support structure, forming a support trailer. The second support structure includes a second support component, the second support component regulating electric power transmission to the electric pump.


In an embodiment a hydraulic fracturing system for fracturing a subterranean formation includes at least one generator and at least one switch gear receiving electrical power from the generator. The system also includes an electric pump, arranged on a first support structure, the electric pump coupled to a well associated with the subterranean formation and powered by at least one electric motor arranged on the first support structure, the electric pump configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. The system also includes a transformer, arranged on a second support structure, positioned between the switch gear and at least one electric motor, the transformer reducing a voltage output from the at least one switchgear.





BRIEF DESCRIPTION OF DRAWINGS

The present technology will be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of an embodiment of a hydraulic fracturing system, in accordance with embodiments of the present disclosure;



FIG. 2 is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure;



FIG. 3A is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure;



FIG. 3B is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure;



FIG. 4A is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure;



FIG. 4B is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure;



FIG. 5 is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure;



FIG. 6 is a schematic block diagram of an embodiment of a hydraulic fracturing system, in accordance with embodiments of the present disclosure;



FIG. 7 is a schematic block diagram of an embodiment of a hydraulic fracturing system, in accordance with embodiments of the present disclosure;



FIG. 8A is a schematic perspective view of an embodiment of an enclosure, in accordance with embodiments of the present disclosure;



FIG. 8B is a schematic perspective view of an embodiment of an enclosure, in accordance with embodiments of the present disclosure;



FIG. 9 is a partial schematic perspective view of an embodiment of an enclosure, in accordance with embodiments of the present disclosure;



FIG. 10 is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure; and



FIG. 11 is a schematic block diagram of an embodiment of a pumping configuration, in accordance with embodiments of the present disclosure.





While the disclosure will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the disclosure to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the disclosure as defined by the appended claims.


DETAILED DESCRIPTION

The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.


When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions. Additionally, recitations of steps of a method should be understood as being capable of being performed in any order unless specifically stated otherwise. Furthermore, the steps may be performed in series or in parallel unless specifically stated otherwise.


Embodiments of the present disclosure describe systems and methods for various pump configurations to produce greater horsepower (HP) output with a smaller footprint at a well site. In certain embodiments, various components may be arranged on a common support structure, such as a trailer or skid. For example, the trailer may include a transformer, variable frequency drive (VFD), and pump. In such embodiments, the total area available for pumps on the trailer may be decreased due to the support equipment, and as a result, the horsepower output from the pump may be reduced because of its size. In various embodiments, a separate skid or trailer may be utilized for certain support components to thereby enable larger pumps or more pumps to be positioned on the pump trailer to increase the total horsepower output and reduce the number of pump trailers arranged at the well site.


Embodiments of the present disclosure describe systems and methods for pumping configurations utilizing electric powered pumps that produce horsepower greater than or equal to diesel-powered pumping configuration. As described above, diesel-powered systems are noisy and generate pollution. Moreover, transportation of fuel to well sites may be costly and availability of fuel may delay or otherwise bottleneck fracturing operations. In various embodiments, electric pumping configurations include trailers or skids with a pump and a VFD mounted on a single skid or trailer. In certain embodiments, the VFD may be moved to a separate auxiliary skid to increase the room available on the trailer or skid housing the pump. As a result, multiple pumps may be situated on the skid or trailer, or larger pumps may be situated on the skid or trailer. In various embodiments, a single trailer or skid may have a capacity for a 6000+HP output utilizing a variety of configurations such as a single pump with multiple electric motors, a single motor powering a large pump, a large motor powering multiple electric pumps, or the like.


In various embodiments, the pumps utilized with the disclosed configurations may include non-standard fluid ends (e.g., a fluid manifold with valves and seats to isolate a suction side and high pressure discharge side without allowing back flow). By way of example only, the fluid ends may include more than 3 plungers (e.g., triplex) or more than 5 plungers (e.g., quintaplex) or plunger stroke lengths longer than 11 inches. For example, the fluid ends may be septenplex (7 plungers), novenplex (9 plungers), undenplex (11 plungers), tredenplex (13 lungers), or include any other reasonable number of plungers. Size constraints and the like have produced difficulty utilizing such pumps in other systems. However, by adjusting the position of various support equipment for the pumps, such as VFDs, transformers, and motor control centers (MCCs), the trailer or skid may have sufficient size to accommodate larger or non-standard pumps for use with hydraulic fracturing.


In various embodiments, the pumping configurations described herein may include a support skid. This support skid may include auxiliary components for operating the pumps, such as the VFDs, transformers, MCCs, and the like to thereby free up space on the skid or trailer housing the pumps for various additional different configurations, such as more pumps or larger pumps. While referred to herein as “support skids” it should be appreciated that the components associated with the support skids may be mounted on a skid or trailer. That is, the term “support skid” should not be interpreted as limiting the base or support structure to only a skid and other support structures, such as pads, trailers, truck beds, and the like may also be utilized and fall within the scope of the embodiments disclosed herein. Moreover, references to “pump trailers” should be interpreted as including embodiments where the support structure for the pumps and/or associated pumping equipment includes a trailer, a skid, a pad, a truck bed, or any other reasonable support structure.


Various embodiments utilize VFDs in order to control and monitor operation of the electric fracturing pumps. The VFDs may include soft stalls for improved operation. The soft stall allows the VFD to “disengage” the motor for a short amount of time (such as milliseconds) instead of tripping the VFD off to protect the drive and motor. Due to fluctuations in the wellhead pressure and pump fluid rate, if the VFD is near its upper limitations on torque a small fluctuation of pressure can cause the VFD to “trip” or shut down to protect itself to prevent damage. The soft stalls allow the VFD to stall temporarily then reengage the motor instead of shutting down completely. These “soft stalls” are unnoticed by the operator and are so quick that total fluid rate is not affected. This feature allows operation of the VFDs and motors at higher horsepower without fear of suffering an unexpected shutdown. Rated hydraulic horsepower (HHP) may be increased from 1,600 HP to 1,700 HP. In various embodiments, the soft stall is a software setting implemented as an executable instruction stored on a non-transitory machine readable memory and initiated by an associated processor of a control system.



FIG. 1 is a simplified block diagram of an embodiment of a hydraulic fracturing system 100. In the illustrated embodiment, a power generation section 102 includes four turbine generators 104A-D arranged to produce electrical energy at approximately 13.8 kV and generate more than approximately 20 MW of power depending on demand, size, and the like. That is, different types of generators may be arranged at the well site and produce different quantities of electrical energy. For instance, the generators may produce electrical energy at approximately 600 V, 4,160 V, or any other reasonable voltage output. Furthermore, different sizes of generators may be utilized in order to accommodate size and space restrictions at the well site. The illustrated embodiment further includes support equipment 106 for the turbine generators 104A-D, such as compressors 108, filters 110, heaters 112, and the like. It should be appreciated that other equipment, such as electronic equipment rooms and the like, have been omitted for clarity.


The illustrated embodiment further includes a power distribution section 114 including switch gears 116A, 116B for protection and distribution, as well as step down transformers 118 and auxiliary units 120. As shown, the generators 104A-D produce electrical energy at 13.8 kV for transmission to the switch gear 116A, 116B. Thereafter, the step down transformers 118 receive and convert the energy to 600 V, which is distributed to pumps 122. As shown, the auxiliary units 120 are utilized to step down the energy for the associated fracturing equipment, such as a data van 124, blender 126, a hydration unit 128, and sand equipment 130. In various embodiments, the auxiliary units may include transformers to step down the energy to 600 V, 240 V, or any other reasonable voltage output.


Continuing with FIG. 1, the illustrated embodiment further includes hydraulic fracturing equipment, such as the illustrated pumps 122, data van 124, blenders 126, hydration unit 128, and sand equipment 130. It should be appreciated that various components have been simplified and/or removed for clarity. Moreover, the embodiment illustrated in FIG. 1 is not intended to be limiting. For instance, more than 8 twin frac pumps may be arranged at the well site. Moreover, multiple data vans, blenders, sand equipment, and hydration units may be utilized. The illustrated pumps 122 are twin frac pumps. The twin frac pumps may be arranged on a common skid or trailer and receive energy from the transformers 118. It should be appreciated that the pumps 122 may be configured to operate at different voltages, such as 600 V, 13.8 kV, 4,160 V, or any reasonable voltage. Moreover, in embodiments the pumps 122 may be singular pumps mounted on a trailer or skid. However, in embodiments that utilize the twin frac pumps, the trailer or skid may include two fully independent, electrically powered fluid pumps. In various embodiments, the illustrated fleet is capable of generating approximately 16,000 HP for fracturing jobs. As will be described below, different configurations, for example of the pumps, may enable more than approximately 20,000 HP.



FIG. 2 is a schematic diagram of an embodiment of a twin frac pump trailer 200. It should be appreciated that twin frac pumps 202A, 202B may also be arranged on a skid, pad, bed, or any other reasonable support structure 204. As illustrated, a transformer 206 steps down electrical energy from 13.8 kV to 600 V and may be rated for approximately 3500 kVA. The 600 V power is transmitted to the pumps 202A, 202B, for example via cabling 208, through a VFD and MCC 210. In various embodiments, the VFD and MCC 210 are arranged on the same support structure 204 (e.g., trailer, skid, pad, bed, etc.) as the dual electric fracturing pumps illustrated in FIG. 2. It should be appreciated that while the VFD and MCC 210 are illustrated as a single unit in the illustrated embodiment, in other embodiments the VFD and MCC may be separate and distinct units, which may not be both arranged on the support structure 204. The illustrated pumps 202A, 202B produce approximately 1,750 HP, which allows for the trailer to have a combined output of approximately 3,500 HP. It should be appreciated that various components have been eliminated for clarity. For example, each fluid pump 202A, 202B may include an electric motor, motor cooling equipment, a power end, a lube oil cooler, a fluid end, and the like. In embodiments, the additional equipment may be arranged on the same support structure 204. However, in various embodiments, the additional equipment may be on an auxiliary or separate support structure.


In various embodiments, hydraulic fracturing jobs may utilize upwards of 28,000 HP. Accordingly, utilizing the configuration illustrated in FIG. 2 would lead to approximately 8 twin frac pump trailers 200 at the site, as illustrated in FIG. 1. This configuration may take up significant space, which may be limited at various fracturing sites. Moreover, mobilizing and demobilizing the equipment may be time consuming. Accordingly, various embodiments disclosed herein may be utilized to produce more horsepower per pump trailer to thereby reduce the number of pump trailers at the site.



FIGS. 3A and 3B are schematic diagrams of embodiments of frac pump trailer configurations 300, 302 which may produce approximately 6,000 HP. As shown in FIG. 3A, pumps 304A, 304B, 304C and the support equipment 306 have been separated onto two different support structures 308, 310, for example two different trailers. A first trailer 312 includes a transformer 314 for stepping down the 13.8 kV voltage. As described above, in various embodiments the voltage may be stepped down to 600 V, however it should be appreciated that different output voltages may be utilized. The first trailer 312 also includes the VFD/MCC 316 for controlling operation of the electric motor powering the pumps. As noted above, the VFD/MCC 316 may be integrated into a singular unit or may be separate and distinct units. FIG. 3A also illustrates a second trailer 318 having three electric pumps 304A-C. The illustrated pumps are rated for approximately 2,000 HP each, thereby providing a configuration to produce approximately 6,000 HP. The embodiment illustrated in FIG. 3A may include various cabling and instrumentation permanently mounted to the first trailer 312 for supporting the transformer 314 and VFD/MCC 316. As a result, connections may be simplified at the site because separate cabling and the like will not be run between the transformer 314 and the VFD/MCC 316. Moreover, simplified connections via power cables may be used to transmit power to the electric pumps 304A-C, thereby reducing the likelihood of misconnections at the well site and improving reliability.



FIG. 3B illustrates a configuration in which the transformer and VFD/MCC are on different support structures, such as different skids or trailers. For example, the illustrated transformer 314 is arranged separate from the VFD/MCC 316, for example on different support structures 320, 322. Accordingly, cabling 324 and the like may be arranged between the transformer 314 and the VFD/MCC 316 to enable transmission of electrical energy. Furthermore, illustrated on a separate support structure 326 such as a trailer or skid, is a pair of electric pumps 304A, 304B rated for approximately 3,000 HP. Because there are fewer pumps 304A, 304B on the trailer 326, compared to FIG. 3A, larger pumps may be utilized, which enables the pump trailer 302 to produce approximately 6,000 HP total. Accordingly, using the embodiments illustrated in FIGS. 3A and 3B, producing approximately 28,000 HP will utilize approximately 5 trailers, as opposed to 8, for example using the configuration of FIG. 2. As a result, the system may have a smaller footprint at the site and also have less equipment to connect, disconnect, and move.



FIGS. 4A and 4B are schematic diagrams of embodiments of frac pump trailer configurations 400, 402 which may produce approximately 5,000-6,000 HP. As shown in FIG. 4A, the pumps 404A, 404B and the support equipment 406 have been substantially separated onto two different support structures 408, 410, for example two different trailers. A notable difference from FIG. 3A is the inclusion of an MCC 412 on the trailer 408 supporting the pair of pumps 404A, 404B, rather than on the trailer 410 for the support equipment 406. While this configuration occupies additional space on the pump trailer, it enables improved and efficient cable management and increase electrical safety. With the MCC 412 on the pump trailer 408, only power and some communication cables will be used between the auxiliary trailers and the pump trailers. In various embodiments, the MCC 416 will include breakers to distribute power to equipment components both large and small. In various embodiments, the equipment may include lights, heaters, blowers, small pumps, control computers, motors, and the like.


In the illustrated embodiment, the support structure 410 with the support equipment 406 (which may be referred to as a support trailer) includes a transformer 414 for stepping down the 13.8 kV energy. As described above, in various embodiments the voltage may be stepped down to 600 V, however it should be appreciated that different output voltages may be utilized. The support trailer also includes a VFD 416 for controlling operation of the electric motor or motors (not shown) powering the pumps 404A, 404B. FIG. 4A also illustrates the support structure 408 with the pumps 404A, 404B (which may be referred to as a pump trailer), as described above. The pump trailer includes the pair of electric pumps 404A, 404B and the MCC 412. The illustrated pumps 404A, 404B are rated for approximately 2,500-3,000 HP each, thereby providing a configuration to produce approximately 5,000-6,000 HP. As described above, because there are only two pumps on the trailers the pumps may be larger and therefore capable of producing additional power output.



FIG. 4B illustrates the configuration in which the transformer 414 and VFD 416 are on different support structures, 418, 420 such as different skids or trailers. Additionally, the MCC 412 is mounted on the same trailer 408 as the pumps 404A-C, as described above with respect to FIG. 4A. For example, the illustrated transformer 414 is arranged separate from the VFD 416, for example on different support structures 418, 420. Accordingly, cabling and the like may be arranged between the transformer 414 and the VFD 416 to enable transmission of electrical energy. Furthermore, illustrated on the separate support structure 408, such as a trailer or skid, is three electric pumps 404A-C rated for approximately 1,750 HP and the MCC 412. Because there are more pumps 404A-C on the trailer 408, each pump 404A-C may be smaller than configurations with fewer pumps. Additionally, as described above, the MCC 412 occupies space on the trailer, but provides improved and efficient cabling. The embodiment illustrated in FIG. 4B may produce approximately 5,250 HP. Accordingly, using the embodiments illustrated in FIGS. 4A and 4B, producing approximately 28,000 HP will utilize approximately 5 or 6 trailers, as opposed to 8. As a result, the system may have a smaller footprint at the site and also have less equipment to connect, disconnect, and move.



FIG. 5 is a schematic diagram of an embodiment of a frac pump trailer configuration 500 which may produce approximately 3,000 HP. In the illustrated embodiment, a transformer 502, VFD/MCC 504, and electric pump 506 are all located on a common support structure 508, such as a trailer or skid. Because of the support equipment arranged on the trailer 508, the size of the pump 506 may be reduced, and therefore produces between approximately 1,750 and 3,000 HP. The configuration illustrated in FIG. 5 enables permanent cabling to be installed on the trailer to facilitate connection at the well site. For example, power may be transmitted to the trailer from the switch gear, as illustrated in FIG. 5. Accordingly, the embodiment illustrated in FIG. 5 provides a compact and simplified configuration at the well site.



FIG. 6 is a schematic diagram of an embodiment of a hydraulic fracturing system 600 including a power generation section 602, a power distribution section 604, and hydraulic fracturing equipment 606. The illustrated embodiment includes hydraulic fracturing pumps 608, for example mounted on a common trailer or skid 610 with a transformer 612 and VFD and MCC 614, in a configuration to produce approximately 30,000 HP. As illustrated, there are 10 different frac pump trailers 610, which may have the same configuration illustrated in FIG. 5. By incorporating the embodiment illustrated in FIG. 5, the separate transformers illustrated in FIG. 1 have been removed because the transformers 612 are already included with the pump trailers 610. Accordingly, a more compact configuration may be arranged at the well site.



FIG. 7 is a schematic diagram of an embodiment of a hydraulic fracturing system 700 including a power generation section 702, a power distribution section 704, and hydraulic fracturing equipment 706, as described in detail above. The illustrated embodiment may produce approximately 30,000 HP. As shown, a transformer 708 and VFD 710 are removed from the frac pump trailers 712 that support one or more pumps 714 and are supported separately, for example via a separate trailer or skid 716. In various embodiments, the MCC may be incorporated into the trailer 712 supporting the pumps 714 or the trailer 716 supporting the transformer 708 and VFD 710, as described above. As shown, the illustrated configuration includes 5 frac pump trailers, and in various embodiments a single large pump on the frac pump trailer 712, a pair of frac pumps, three frac pumps, or any reasonable number in order to produce the particularly selected amount of horsepower. The illustrated embodiment further includes the auxiliary units for supplying electrical energy to the support equipment, such as the data van 718, blenders 720, hydration unit 722, and sand equipment 724, as described above.


Further illustrated in the power distribution section 704 is load sharing between the switch gear 726 to keep the load balanced across the generators 728A-D. This balance may be achieved even though there are an unequal number of pump trailers utilized in the system. That is, a first switch gear 726A may transmit energy to two different frac pump trailers and a second switch gear 726b may transmit energy to three different frac pump trailers.


It should be appreciated that various embodiments of the components of the present disclosure may utilize a variety of equipment in order to achieve a desired end. For example, the pumps described herein may be magnetic coil, reciprocating, centrifugal, positive displacement, rotary (e.g., gear pumps, screw pumps, rotary vane pumps), progressing cavity, roots-type, peristaltic, plunger, hydraulic ram, velocity, or any other reasonable type of pumps. Moreover, the VFDs may be housed within an enclosure having an internal air conditioned space for technicians. In various embodiments, the VFD enclosures may no longer be a “house” and rather be panels that are weather and oil-field condition proof (e.g., blast proof, water proof, dust proof, etc.). Accordingly, the size of the housing may be decreased as the technicians may access the exterior panels while standing beside the trailers or skids.


Various embodiments may include a support skid, trailer, or body load, as described above, to free up space on the pump trailers (e.g., pump skid, pump pad, etc.) for additional pumps and/or larger pumps. As described above, it should be appreciated that references to a “support skid” may also refer to a support trailer, a support pad, a body load, or any other reasonable configuration. By way of example only, the support skid may include a main transformer, such as a step down transformer to take power down from 13.8 kV on the primary side (e.g., inlet) to 4,160 V on the secondary side (e.g., outlet). Furthermore, the transformer and/or support skid may include a bus, which may be common or separate, to feed the VFD and the MCC.



FIGS. 8A and 8B are schematic perspective views of embodiments of enclosures 800, 802 for VFD assemblies. As described above, in various embodiments the VFDs may be housed within enclosures that include weather-proof and/or oil field condition-proof configurations, such as being blast proof or dust proof. The illustrated embodiment includes an outdoor medium voltage adjustable speed drive and an advanced enclosure design and power section topology. Namely, the illustrated embodiments are particularly designed for mounting in remote locations, such as harsh environments including desert or oil-field conditions. It should be appreciated that alternative embodiments may not have an integrated outdoor enclosure.



FIG. 9 is a schematic partial perspective view of the enclosure for the VFD assembly 900 illustrating the transformer section 902, rectifier/control section 904, and inverter/output section 906. In various embodiments, the VFD assembly 900 may include one or more features or controls to enable low harmonics, meeting or exceeding IEEE 519-2014 specifications. Moreover, the VFD assembly 900 may further enable a higher true power factor (e.g., greater than 0.95) than configurations that run motors across the line. In various embodiments, an advanced user interface design enables operators to interact with the VFD assembly 900 to control or monitor operations.


In various embodiments, the VFD assembly 900 may operate in temperatures from −45 degrees C. to 50 degrees C., thereby providing flexibility in operations. Moreover, the VFD assembly 900 may be configured to enable operation with standard motors without the need for special motor insulation or cables. In order to provide predictability in operations, the VFD assembly 900 may be designed with a ten-year mean time between failures, thereby enabling operators to plan for maintenance activities.


Furthermore, in various embodiments the VFD assembly 900 incorporates an enclosure cooling system (not pictured) with a combination of air-to-air heat exchangers along with forced air cooling of the power modules. Utilizing a totally enclosed cooling system where no (or nearly no) exchange of internal air and external air occurs enables the internal drive components to remain clean and uncontaminated from the environment, which may include pollutants or dust. Accordingly, the costs and challenges associated with filter maintenance to keep the pollutants or dust out of the enclosure are eliminated.


Embodiments of the VFD assembly 900 further include a copper-wound input isolation transformer that provides 36 pulse phase-shift harmonic cancellation that meets or exceeds IEEE 519-2014. This isolation transformer may function similarly to a linear load on the incoming AC line. The soft charge reactor on the primary side of the isolation transformer maximizes the longevity of the transformer and minimizes the in rush current on weak grid systems.


Additionally, embodiments of the VFD assembly 900 further include a five-level NPC PWM output that closely simulates a true sine wave, which minimizes motor failures caused by insulation stress and long lead-length issues. The output waveform topology may be suitable for use on existing non-inverter duty motors without upgrading the motor insulation system.


In various embodiments, the VFD assembly 900 utilizes advanced IGBT technology with robust multi-level topology and controls with a fast industrial processor. Furthermore, an LCD Electronic Operator Interface enables quick, user-friendly programming. In various embodiments, faults are logged containing date and time steps. Furthermore, programming inputs and outputs are included to meet specific application needs. Moreover, the VFD assembly 900 may further include software to capture, extract, and compress full operating data at the time of a fault. This track-back data allows users to capture data with ease for detailed fault analysis, which can be submitted for remote diagnostics and support. In various embodiments, the VFD assembly 900 and associated software will include functional capabilities to communicate with one or more of DeviceNet, EtherNet/IP, Modbus RTU, Modbus TCP, Profibus, Tosline-S20, TCNet, and Ethernet Global Data (EGD).


In various embodiments, the VFD assembly 900 may further include features to streamline operations or provide improved diagnostic information. These features may include, communication cards, door-mounted equipment such as meters, pilot lights, speed potentiometer, and switches, direct online bypass, motor protection relay, RTD monitor, dV/dt or sine wave output filters, a solid state starter bypass, and multiple motors synchronous transfer and capture. Furthermore, features such as synchronous motor control (AC Brushless/DC Brush Type) and drive and motor space heater may also be incorporated. Additionally, an optional walk-in enclosure for power electronic components may be utilized. In embodiments, the VFD assembly may also include a voltage source inverter (VSI) with V/f Control and PID control and induction motor sensorless vector control synchronous motor sensorless Vector Control, and Closed Loop Vector Control (Using Pulse Generator Encoder or Resolver).


As described above, in various embodiments the VFD is utilized to control the one or more motors that operate the electric frac pumps. Specifications for the VFDs may include 3,500 HP-6,000 HP drive (one embodiment would be two 3,500 HP drives powering two 3,000-3,500 HP pumps) (another embodiment would be one 6,000 HP drive powering one 6,000 HP pump), output frequency of 0-120 HZ, and a control method including a five-level pulse-width modulation (PWM) output control with neutral-point clamping (NPC). Additionally, the VFD may include V/Hz Control such as V/Hz, sensorless vector control, variable torque, closed-loop vector control, and constant torque. In embodiments the VFD has a rotary encoder integrated into EOI. The VFD may also be used to protect the motor and/or the pumps via current limits, overcurrent, overload, undervoltage, overvoltage, ground fault, CPU error, and soft stall. In certain embodiments, the VFD may include speed regulation in the open loop up to 0.5% and the closed loop up to 0.1%. Further the VFD may include an overload current rating of 100% continuous or 115% for one minute every 20 minutes.


As described above, the VFD assembly may be operable via a control interface that enables operators to monitor and control the VFDs. The VFD control interface may include digital input, such as ten discrete inputs with programmable functions. It may also include digital output, such as ten available digital programmable outputs. In various embodiments, the VFD control interface includes analog input, such as three selectable currents (0/4 to 20 mA) or voltage (0-10 VDC) input signals. It may also include analog outputs, such as three to eight selectable output current (0/4 to 20 mA) or voltage (0-10 VDC). In certain embodiments, the control interface further includes communication ports, for example, Profibus, Modbus RTU & TCP, TOSLINE-S20, TCNet, Ethernet Global Data (EGD), DeviceNet & EtherNet/IP. Furthermore, the control interface may include safety features such as a standard pad-lockable input fuse disconnect switch with vacuum contactor, interlocked doors, and viewing window.


Furthermore, in various embodiments, each VFD will also be able to be controlled remotely via a wired or wireless control from the hydraulic fracturing data van control module or a remote suitcase. Moreover, a local display may be included. In embodiments, the local display is a 4-digit, 7-segment LED display and 4×20 character graphical plain English back-lit LCD display for programming, monitoring, and diagnostics. Furthermore, local LED indicators may be included, such as run (red)/stop (green) and local (green). Additionally, embodiments may incorporate local keys, such as local/remote, enter, mon/Prg, Esc, Run, and Stop/Reset, and monitoring. The monitoring may relay information to a frequency command screen, and display parameters such as motor current, motor speed, motor voltage, dc voltage, input voltage, output voltage, run time, output power, motor kW, motor kWH, motor kVAH, motor kVAR, and on-time Control power. In various embodiments, the above-described outdoor enclosure is NEMA 3R, free standing, and provides front-access only. Additionally, the outdoor enclosure may have bottom-entry power cables for input as well as the above-described forced-air cooling. In various embodiments, components of the present disclosure comply with standards and compliances such as NEC, NEMA, UL, ULC, ANSI, & American Recovery & Reinvestment Act Compliant.



FIG. 10 is a schematic diagram of an embodiment of a power distribution configuration 1000. In the illustrated embodiment, a first trailer or skid 1002, which may be referred to as a support skid, includes a primary transformer 1004 and two VFDs 1006A, 1006B. As shown, the VFDs each include a VFD isolation transformer, a VFD rectifier/control, and a VFD inverter/output. This support skid supplies electrical energy to a second trailer or skid 1008, which may be referred to as a frac pump trailer, that includes an MCC 1010 and a pair of pumps 1012A, 1012B with associated motors 1014A, 1014B and couplings 1016A, 1016B. The pair of pumps 1012A, 1012B may each be rated at or about 3,000 HP. In the illustrated embodiment, each VFD 1006A, 1006B of the support skid 1002 is utilized to control and monitor operations of a respective motor 1014A, 1014B powering one of the pumps 1012A, 1012B on the frac pump trailer 1008. Accordingly, as described above, there is additional space available on the frac pump trailer 1008, due to the removal of elements such as the transformer or VFDs, and therefore more or larger pumps may be arranged on the frac pump trailer 1008.



FIG. 11 is a schematic diagram of an embodiment of a power distribution and pumping configuration 1100. The illustrated embodiment includes the first trailer 1102, which may be a support skid, having the primary transfer 1104 and a VFD 1106. The illustrated VFD 1106 includes the isolation transformer section, the rectifier/control section, and the inverter/output section. The support skid 1102 supplies power and controls the motor of the second trailer 1108, which may be a frac pump trailer. The illustrated frac pump trailer 1108 includes the MCC 1110 and a single pump 1112, which further includes a motor 1114 and coupling 1116. The illustrated pump 1112 may be rated for 6,000 HP. As described above, removing one or more components from the frac pump trailer enables larger pumps. Compared to the embodiment illustrated in FIG. 10 with the dual pumping configuration, the embodiment illustrated in FIG. 11 may have a larger pump having a larger horsepower capability.


It should be appreciated that while various embodiments described herein discuss voltages such as 4,160 V or 13.8 kV that other voltages may be utilized. For example, other options may include 600 V, 480 V, 240 V, or any other voltage that may be utilized commercially. Frequency can be approximately 50 Hz or 60 Hz. Moreover, in embodiments, the turbine generators may each produce approximately 5.7 MW of electricity. However, other turbine generators producing less electricity or more electricity may be utilized. Additionally, it should be appreciated that the power can be broken up into one or more banks. Moreover, in embodiments, the generators and/or the equipment may be particularly selected based on the power output or generate of the other. For example, in embodiments the generators may produce power at 4,160 V and the associated equipment may also operate at 4,160 V. In other embodiments, the generators may produce power at 600 V and the associated equipment may also operate at 600 V. In other embodiments, the generators may produce power at 13.8 kV and the associated equipment may also operate at 13.8 kV. Additionally, as described above, various transformers may be utilized to step down voltages to enable equipment operating at different voltages to be incorporated into various pumping configurations.


The present disclosure described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure disclosed herein and the scope of the appended claims.

Claims
  • 1. A hydraulic fracturing system for fracturing a subterranean formation, comprising: three electric pumps, arranged on a first support structure, the three electric pumps coupled to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation; andsupport equipment, arranged on a second support structure, electrically coupled to the three electric pumps, wherein the support equipment includes at least a transformer for distributing power to at least one of the three electric pumps and a control system for monitoring or controlling one or more operational parameters of the three electric pumps, the power being received from at least one generator at a voltage higher than a respective operating voltage of the three electric pumps, the second support structure having integrated instrumentation and cabling for coupling the transformer and the control system.
  • 2. The system of claim 1, wherein the second support structure is separated from and distinct from the first support structure.
  • 3. The system of claim 1, wherein the first support structure and the second support structure are at least one of a trailer, a skid, a pad, a truck bed, or a combination thereof.
  • 4. The system of claim 1, further comprising: a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor.
  • 5. The system of 4, wherein the control system comprises the variable frequency drive.
  • 6. The system of claim 1, wherein the three electric pumps have a combined horsepower of between 5,000 and 6,000 horsepower.
  • 7. The system of claim 1, further comprising: a switch gear positioned separate from the second support structure and between the at least one generator and the transformer.
  • 8. A hydraulic fracturing system for fracturing a subterranean formation, comprising: a first support structure, forming a pumping trailer, comprising: three electric pumps fluidly connected to a well associated with the subterranean formation and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation;at least one electric motor providing operational energy to the three electric pumps;a first support component, the first support component regulating operation of at least one of the three electric pumps; anda cable management system, associated with the first support structure, for coupling the three electric pumps to the at least one electric motor and the first support component; anda second support structure, forming a support trailer, comprising: a second support component, the second support component regulating electric power transmission to at least one of the three electric pumps; anda control system for monitoring or controlling one or more operational parameters of the three electric pumps, the second support structure having integrated instrumentation and cabling for coupling the second support component and the control system.
  • 9. The system of claim 8, wherein the second support component comprises at least one of a transformer, a variable frequency drive, or a motor control center.
  • 10. The system of claim 8, wherein the first support structure and the second support structure are separate components arranged remote from and not in contact with one another.
  • 11. The system of claim 8, wherein the first support structure and the second support structure are at least one of a trailer, a skid, a pad, a truck bed, or a combination thereof.
  • 12. The system of claim 8, wherein the second support component is a transformer for distributing power to at least one of the three electric pumps, the power being received from at least one generator at a voltage higher than a respective operating voltage of the three electric pumps.
  • 13. The system of claim 8, wherein the three electric pumps have a combined horsepower of between 5,000 and 6,000 horsepower.
  • 14. The system of claim 8, wherein a respective pump of the three electric pumps has a horsepower rating of between approximately 1,750 and approximately 3,000.
  • 15. The system of claim 8, further comprising a plurality of pumping trailers and a plurality of support trailers arranged at well site, wherein a combined horsepower of the respective electric pumps of the plurality of pumping trailers is approximately 30,000.
  • 16. The system of claim 8, wherein the first support component comprises at least one of a transformer, a variable frequency drive, or a motor control center.
  • 17. A hydraulic fracturing system for fracturing a subterranean formation, comprising: at least one generator;at least one switch gear receiving electrical power from the generator;three electric pumps, arranged on a first support structure, the three electric pumps coupled to a well associated with the subterranean formation and powered by at least one electric motor arranged on the first support structure, the three electric pumps configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation;a transformer, arranged on a second support structure, positioned between the switch gear and at least one electric motor, the transformer reducing a voltage output from the at least one switchgear; anda control system, arranged on the second support structure, for monitoring or controlling one or more operational parameters of the three electric pumps, the second support structure having integrated instrumentation and cabling for coupling the transformer and the control system.
  • 18. The system of claim 17, wherein the first support structure and the second support structure are separate components arranged remote from and not in contact with one another.
  • 19. The system of claim 17, wherein the first support structure and the second support structure are at least one of a trailer, a skid, a pad, a truck bed, or a combination thereof.
  • 20. The system of claim 17, wherein the three electric pumps have a combined horsepower of between 5,000 and 6,000 horsepower.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/594,925 filed Dec. 5, 2017 titled “HIGH HORSEPOWER PUMPING CONFIGURATION FOR AN ELECTRIC HYDRAULIC FRACTURING SYSTEM” and U.S. Provisional Application Ser. No. 62/595,411 filed Dec. 6, 2017 titled “HIGH HORSEPOWER PUMPING CONFIGURATION FOR AN ELECTRIC HYDRAULIC FRACTURING SYSTEM” the full disclosures of which are hereby incorporated herein by reference in their entirety for all purposes.

US Referenced Citations (390)
Number Name Date Kind
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2248051 Armstrong Jul 1941 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2753940 Bonner Jul 1956 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3881551 Terry May 1975 A
4037431 Sugimoto Jul 1977 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4432064 Barker Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4922463 Del Zotto et al. May 1990 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber et al. Jun 1991 A
5050673 Baldridge Sep 1991 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5548093 Sato Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5655361 Kishi Aug 1997 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann Aug 2001 B1
6315523 Mills Nov 2001 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6529135 Bowers et al. Mar 2003 B1
6776227 Beida Aug 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7308933 Mayfield Dec 2007 B1
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Yoshida Sep 2009 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7926562 Poitzsch Apr 2011 B2
7894757 Keast Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
8037936 Neuroth Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8083504 Williams Dec 2011 B2
8096354 Poitzsch Jan 2012 B2
8096891 Lochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8474521 Kajaria Jul 2013 B2
8534235 Chandler Sep 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8760657 Pope Jun 2014 B2
8774972 Rusnak et al. Jul 2014 B2
8789601 Broussard Jul 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9067182 Nichols Jun 2015 B2
9103193 Coli Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel Oct 2015 B2
9175554 Watson Nov 2015 B1
9206684 Parra Dec 2015 B2
9322239 Angeles Boza et al. Apr 2016 B2
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9458687 Hallundbaek Oct 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9840901 Oehring et al. Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
9893500 Oehring Feb 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symehuk Apr 2018 B2
9963961 Hardin May 2018 B2
9970278 Broussard May 2018 B2
9976351 Randall May 2018 B2
9995218 Oehring Jun 2018 B2
10008880 Vicknair Jun 2018 B2
10020711 Oehring Jul 2018 B2
10036238 Oehring Jul 2018 B2
10107086 Oehring Oct 2018 B2
10119381 Oehring Nov 2018 B2
10196878 Hunter Feb 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10309205 Randall Jun 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
20020169523 Ross et al. Nov 2002 A1
20030056514 Lohn Mar 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr Mar 2004 A1
20040102109 Cratty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060260331 Andreychuk Nov 2006 A1
20070131410 Hill Jun 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264640 Eslinger Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090090504 Weightman Apr 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100101785 Khvoshchev Apr 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100200224 Nguete Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100293973 Erickson Nov 2010 A1
20100303655 Scekic Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110061855 Case et al. Mar 2011 A1
20110085924 Shampine Apr 2011 A1
20110166046 Weaver Jul 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120127635 Grindeland May 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner, Jr. Oct 2012 A1
20120255734 Coli et al. Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130306322 Sanborn et al. Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140219824 Burnette Aug 2014 A1
20140246211 Guidry et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Bumette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140379300 Devine Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace et al. Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170096885 Oehring Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170145918 Oehring May 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring Aug 2017 A1
20170222409 Oehring Aug 2017 A1
20170226839 Broussard Aug 2017 A1
20170226842 Omont Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180156210 Oehring Jun 2018 A1
20180183219 Oehring Jun 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180258746 Broussard Sep 2018 A1
20180274446 Oehring Sep 2018 A1
20180320483 Zhang Nov 2018 A1
20180363437 Coli et al. Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190162061 Stephenson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20190316447 Oehring Oct 2019 A1
Foreign Referenced Citations (27)
Number Date Country
2007340913 Jul 2008 AU
2406801 Nov 2001 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
201687513 Dec 2010 CN
101977016 Feb 2011 CN
202023547 Nov 2011 CN
102602322 Jul 2012 CN
2004264589 Sep 2004 JP
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
Non-Patent Literature Citations (73)
Entry
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017.
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Candian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
Schlumberger, “Jet Manual 23, Fracturing Pump Units, SPF/SPS-343, Version 1.0,” Jan. 31, 2007, 68 pages.
Stewart & Stevenson, “Stimulation Systems,” 2007, 20 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Dec. 17, 2011, 5 pages.
“Griswold Model 811 Pumps: Installation, Operation and Maintenance Manual, ANSI Process Pump,” 2010, 60 pages.
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Application No. PCT/US18/63977.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Application No. PCT/US18/63970.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070.
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014.
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
Non-Final Office Action issued in U.S. Appl. No. 16/152,695 dated Mar. 3, 2020.
International Search Report and Written Opinion issued in Application No. PCT/US2019/055323 dated Feb. 11, 2020.
Related Publications (1)
Number Date Country
20190169971 A1 Jun 2019 US
Provisional Applications (2)
Number Date Country
62595411 Dec 2017 US
62594925 Dec 2017 US