This disclosure relates generally to off-axis image projection systems.
Off-axis image projection systems suffer from non-uniform relative illumination (RI), non-uniform modulus of the optical transfer function (MTF), non-uniform magnification (distortion) and non-uniform shape (keystoning), to name a few issues. These non-uniformities are exasperated when the off-axis projection angles increase and/or when the distance from the projector's final optical surface is forced to come close to the output projection plane.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
Embodiments of the disclosure have other advantages and features which will be more readily apparent from the following detailed description and the appended claims, when taken in conjunction with the examples in the accompanying drawings, in which:
The figures and the following description relate to preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of what is claimed.
In some embodiments, an extreme off-axis image projection system substantially compensates for image-quality-degrading aberrations typical to off-axis imaging systems. This is accomplished through the use of a free-form mirror (or other type of non-spherical mirror) in conjunction with both spherical and aspherical refractive elements and an off-axis placement of the input image source.
The coordinate system is defined as follows. The optical axis of the lens system 110 defines the z-axis. The projection surface 160 may be non-planar (e.g., a car door), but it extends primarily perpendicularly to the z-axis. The long direction of the projection surface 160 defines the x-axis and the other direction defines the y-axis. For example, if the projection surface is approximately rectangular, then the long edge of the rectangle defines the x-axis and the short edge defines the y-axis.
The image source 150 is offset in one direction along the x-axis (along the −x direction in
In these designs, the overall system (image source 150, projection system 100 projection surface 160) is compact along the z dimension, but the projection surface 160 may extend significantly in the x- and y-directions. In some embodiments, the length of the system along the z-axis is not more than 220 mm, or even 200 mm or less; while the projection surface is at least 1000 mm×600 mm (x-dimension×y-dimension) or even 1200 mm×680 mm or larger. In some embodiments, the x-extent of the projection surface is in the range 850 mm to 1600 mm, or even larger. The y-extent of the projection surface may be in the range 500 mm to 800 mm or even larger. The ratio of the x-extent to the z-extent is preferably at least 6:1, and may be in the range of 4:1 to 10:1.
Image quality issues, such as low relative illumination (RI), low modulus of the optical transfer function (MTF), high distortion, high keystoning, and other image quality degradations, are substantially mitigated by using a free-form mirror 120 in conjunction with off-axis refractive optics 110, as described in more detail below.
Tables 1 and 2 show the optical prescription data for the system's light source collimation optics and beam homogenizer.
Once the light reflects off the DMD, it enters the projection optical system, as diagrammed in
The first lens group 511 near the DMD work to make the lens near telecentric and improve the RI of the system. The aspheres in this group correct for aberrations and some distortion. The second lens group 512 and the free form mirror 120 create the wide angle field of view (WFOV). The free form mirror 120 is correcting for the distortion associated with WFOV systems. In one application, the projection surface is the side of a car. Keystone or other distortion in the final image may originate from the shape of the car. It can be corrected with a pre-distorted image. That is, a controller coupled to the spatial light modulator predistorts the image displayed by the spatial light modulator. There is a large depth of field due to the large image space F/#. Therefore, the system may project images onto a wide range of surface contours.
The projection system described above may be used in many applications. Short projection distance situations where the projection system cannot be in the projection area could use this design architecture. The system may be modified to cover a range of projection areas and display sizes. In the example design described above, the image source (DMD spatial light modulator) is offset in both x and y. In a typical short throw projector, the image source is offset along the short axis (y axis) of the source. This design is also offset along the long axis (x axis) of the source so the light can be projected both down and along the side of the vehicle.
Although the detailed description contains many specifics, these should not be construed as limiting the scope of the invention but merely as illustrating different examples and aspects of the invention. It should be appreciated that the scope of the invention includes other embodiments not discussed in detail above. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as defined in the appended claims. Therefore, the scope of the invention should be determined by the appended claims and their legal equivalents.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/903,687, “High Image Quality During Off-Axis Projection Using A Free-Form Mirror,” filed Sep. 20, 2019. The subject matter of all of the foregoing is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/051675 | 9/18/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/055884 | 3/25/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020089757 | Bignolles et al. | Jul 2002 | A1 |
20050147135 | Kurtz et al. | Jul 2005 | A1 |
20060227432 | Yoshikawa et al. | Oct 2006 | A1 |
20060262284 | Onishi | Nov 2006 | A1 |
20070285780 | Mafuku et al. | Dec 2007 | A1 |
20090141250 | Destain | Jun 2009 | A1 |
20100238416 | Kuwata | Sep 2010 | A1 |
20110002051 | Hsu | Jan 2011 | A1 |
20140022518 | Amano | Jan 2014 | A1 |
Entry |
---|
PCT International Search Report and Written Opinion, International Application No. PCT/US2020/051675, dated Dec. 16, 2020, 10 Pages. |
European Patent Office, Extended European Search Report, European Patent Application No. 20866112.4, Oct. 2, 2023, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20220365325 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62903687 | Sep 2019 | US |