This invention relates to systems and methods for remote actuation or control of tools and completion equipment in gas and oil wells, whether in subsurface or subsea locations, for communication and control in measurement while drilling (MWD) systems and associated tools, and for remote control of traveling bodies and stationary elements in pipeline installations.
As oil and gas drilling and production techniques have advanced and become more complex and versatile, many different down-hole tools have come into use. Some include their own power packs, or other energy sources, and either are or can potentially be operated by remote control. Microprocessors, which are small, reliable and have a low power consumption, are commonly used in such tools and equipment. There are many other potential applications for remote control of tools and other equipment within a confining passageway at a substantial distance, including not only in the drilling, completion, workover, production and abandonment of a well, but also in tools and devices that are fixed or movable in pipelines and further with underwater equipment connected to a surface system via a subsea manifold. If commands can reliably be communicated to a remote well bore location, then such functions as opening and closing valves, sliding sleeves, inflating plugs, detonating perforating guns, shifting tools and setting packers are available. Through the use of remote actuation, expensive down time in the well can be minimized, saving the costs of many hours or even days of operation.
Systems have been proposed, and some are in use, for remote control of equipment in well bore installations. A wire connection system using electric line has been in use for some time, and remains in use today. This system employs a heavy duty electrical line that is fed into the well bore along the tubing or casing string to the down-hole location. The line is of relatively large diameter and for setup requires a massive carrier and support equipment, with setup time requiring many hours. Moreover, electrical power transmitted into a deep well creates potential dangers from short circuits and arcing in explosive environments at the well site where an inert atmosphere cannot be maintained. A later developed “Slickline” is only a wire for providing mechanical operations and is of much smaller diameter although very high strength. While it can be transported and manipulated by much smaller vehicles and installations, and is deployed considerably more rapidly than the electric line mechanism, it is not well suited to remote operation of down-hole tools. Time consuming and unsafe control methods with these systems are based on use of times, and motion sequences combined with, pressure and temperature readings.
Other systems are known for transmitting non-electrical commands to preinstalled down-hole tools by communicating through a pressurized liquid medium or metal walls along the well bore. Pressure variations imparted at the surface are sensed by a strain gauge or other transducer at the remote location, to trigger a battery powered device in response to a coded pressure varying signal. One such system, called the “EDGE” (trademark of Baker Hughes) system, interfaces with liquid media only and injects pulses of chosen frequency into the well bore. A down-hole tool having an actuable element powered at the tool includes electronic circuits which filter the selected frequency from other variations and respond to a selected pattern of pulse frequencies. This system requires substantial setup time and can only be used in a constant and predictable all-liquid bore. Another system effects control of mechanical devices by establishing a high initial pressure and then bleeding off pressure in a programmed fashion.
Another prior art system is disclosed in U.S. Pat. No. 3,227,228 (1966) assigned to Bannister. This patent teaches the use of a liquid injector to inject liquid into a liquid-filled well bore to create a pressure pulse. The pressure pulse travels down the liquid-filled tubing and is detected as it passes a pressure transducer projecting out into the fluid. The signal from the pressure transducer is used to actuate a downhole tool. As with the Baker “EDGE” system, the conduit through which the pulse is to be sent has to be completely filled with liquid for the system to work.
There is a need, therefore, for a remote control system and method which will function reliably in actuating a remote tool or other equipment, whatever the nature of the media in the confining elongated bore. Preferably, it should be useful in a wide range of well drilling and completion operations, including MWD, and in pipeline applications which are generally horizontal. The system and method should ensure against accidental triggering of the remote device and be essentially insensitive to extraneous operating conditions and effects. It should also be capable of remote control of selected individual ones of a number of different devices, and providing redundant modes of detection for enhanced reliability and communication capability. While retaining the higher degree of reliability, the system should preferably also require substantially less setup and operating time for field installation and actuation.
MWD installations currently in use require communication with bottom hole assembly (BHA) measuring equipment such as sensors, instruments and microprocessors. The MWD equipment stores information on many parameters including but not limited to bit direction, hole angle, formation evaluation, pressure, temperature, weight on bit, vibration and the like. This is transmitted to the surface using mud pulsing technology. Communicating to the MWD equipment for the purpose of controlling movable elements (i.e., to adjust the stabilizer blades to control direction) is, however, another matter, since not only must commands be given, they must actuate the proper tool and provide sufficient data to make a quantitative adjustment. The current methods use changes of pump rate, and changes of weight on the bit, both of which take time, are limited in data rate, and increase the chances of sticking the drill string.
Remote control of elements in pipelines is a significant objective, since pipeline pigs are driven downstream for inspection or cleaning purposes and can stick or malfunction. Some pigs include internal processor and control equipment while others are designed to disintegrate under particular conditions. The ability to deliver commands to a pig or a stationary device in a remote location in a pipeline is thus highly desirable.
Applicant has discovered and shown that a brief high amplitude pressure impulse will propagate into and through media of different types in a well bore. The pressure impulse transforms during propagation into a time-stretched waveform, at low frequency, that retains sufficient energy at great depth, so that the leading and trailing edges of its transformed profile are readily detectable by modern pressure and motion responsive instruments.
Systems and methods in accordance with the invention utilize a high energy, very short duration, pneumatic impulse transmitted into a tubular or annular system such as exists within a well bore or pipeline. Pressure at a selected level from a gas source is abruptly expelled from a chamber of chosen volume through an orifice into an entry zone, creating an impact burst reaching a very high peak amplitude. Preferably, the pressure level used for supplying pneumatic energy is in the range of 100 to 15,000 psi, the time needed to open into the orifice is of the order of a few milliseconds, and the pressure confining chamber is in the range of 2 to 200 in3 in volume. This energy is dissipated substantially and differently during transmission through long paths in the media, or combination of media, that fills the tubular system. However, the pressure impulse transforms into an extended wavetrain having dominant frequency components, usually below about 200 Hz. Significantly, the pressure impulse traverses the interface between zones of different impedance, such as between a gas level above the top of liquid media in the well bore. Furthermore the impulse propagates without substantial attenuation within the tubular system or annulus, whatever the liquid media or mixture of media in the path. These are referred to herein as “mobile fluid media.”
Since it is usually known whether the media is liquid, gas, or successive layers of the two, or contains particulates or other solids, and since well depth is known, the attenuation can be estimated and the energy impulse can be adjusted accordingly. In all instances, wave energy transformation during transmission follows a generic pattern. The pressure impulse is not only diminished in amplitude but is spread out in time, and the brief impulse transitions within the confining structure into what may be called a “tube wave” This is a sequence of high amplitude waves at a low frequency approximately determined by the diameter of the tubular confinement structure. These “tube waves”, known and defined in seismic applications, contain ample acoustic wave energy at the deep down-hole location to generate signals of high signal-to-noise ratios.
The pressure variations derived from an input burst are typically of a fraction of a second in total duration. At the remote location one or more transducers respond to physical perturbations of the media to generate separate electrical signals for associated threshold detection, amplifier and decoding circuitry that can recognize signal coding sequences. The signal coding is in the form of a series of time distributed wavetrains above some threshold level, which series represents a binary data sequence. Detection is not frequency or duration based, although the communicated energy varies within frequency and time spaced limits. The components of each series are adequately separated in time to prevent ambiguity arising from possible overlap of the time spread sequences at down-hole targets. The control system circuitry then activates its local energy source to operate the tool selected by the coded sequence in the manner indicated.
The system and method thus imparts an initial high energy burst that assures that wave energy reaches the deep target location in the form of predictable pressure variations. The received signals are so modulated and distinct as to provide a suitable basis for redundant transmissions, ensuring reliability. The system is tolerant of the complex media variations that can exist along the path within the well bore. Differences in wave propagation speed, tube dimension, and energy attenuation do not preclude adequate sensitivity and discrimination from noise. Further, using adequate impulse energy and distributed detection schemes, signals can reach all parts of a deephole installation having multiple lateral bores.
In a pipeline installation, this method of imparting a high energy, impulse is particularly effective because with the uniform media in the pipeline an impulse can traverse a long distance. Thus, an instrumented or cleaning pig can be commanded from a remote source to initiate a chosen control action or pig disintegration.
The concept is particularly suitable for MWD applications, which include not only directional controls, but utilize other commands to modify the operation of down-hole units. The MWD context may require many more encoded patterns, in order to compensate for the dynamic variations that are encountered by the MWD equipment during operation.
The system is also applicable to subsea oil and gas production installations, which typically interconnect a surface platform or vessel via pipelines to a seafloor manifold system communicating with subterranean well bores. By impulsing at the surface with complex coded sequences, systems on the seafloor and down hole tools can be addressed and controlled via the pipelines.
Further in accordance with the invention, the sensor equipment at the remote location may comprise a pressure sensitive device such as a hydrophone, a strain sensor, motion sensitive devices such as a geophone or accelerometer, or a combination used in redundant and mutually supportive fashion. Accommodating the fact that the propagated waveforms, durations and times are modified not only by the transmission distance but by the media, this redundant capability assures further against accidental triggering or actuation of the remote device. Impact forces and pressures generated mechanically or transmitted from other sources through the surrounding environment thus are even less likely to affect the remote tool.
A better understanding of the invention may be had by reference to the following description, taken in conjunction with the accompanying drawings, in which:
A system and method in accordance with the invention, referring now to
Possible propagation paths mainly comprise the interior of the tubing and the annulus spaces, through the gas or liquid media therein. There are also, however, different acoustic signal propagating paths, such as drill pipe and casing steel, and electric or “Slickline”. Each has its own pressure impulse transmission properties, including propagation rate, but pressure impulses moving along the paths will be of a lesser order of magnitude than those through the tubular bounded media.
Within the cross-sections defined by steel boundary elements, the fluid media may comprise oil, an oil-water mix (with or without gas bubbles), oil or water to a predetermined level that is below a gas cap depth, a complete gas path, a gas/foam mix, or a typical operating fluid, such as a drilling mud containing substantial particulates and other solids. These are what are termed “mobile” fluid media, since they can be transported and circulated above the down hole devices. It is desired to communicate through any such media, and the specific nature of the fluids in any particular installation will generally be known.
The term “air gun” is used here to connote a shock generator for high intensity pneumatic impulses, even though some other gas than air is typically used. Compressed nitrogen and sometimes CO2 is preferred, so that if mixed with a flammable source, a flammable environment is not created in or around the well. Referring now to
The volumetric pressure chamber 19 in the air guns 16, 24 comprises an impulse transformer, which may incorporate a movable piston wall (not shown) or other element for adjusting the interior volume. An interior volume of from 2 in3 to 150 in3 is found to be adequate for the present examples, although other volumes may be advantageous depending on the application. The greater the volume, the higher the energy level delivered, other factors remaining constant.
The air gun 24 is gated open within a short interval, typically a few milliseconds, by the valve 25, and provides a pulse burst of about 40 milliseconds duration with sharp leading and trailing edge transitions and highest amplitude in mid-burst. Gas flow dynamics involved in the release of high pressure momentarily from a small volume into a larger volume introduces negative going excursions both after the initial positive excursion and during a few subsequent cycles.
The output from the air gun 16 or 24 is variously referred to herein as a “pulse burst”, “pressure impulse”, “pneumatic impulse”, “shock impulse”, an “acoustic pulse” and by other terms as well, but all are intended to denote the variations occurring upon sudden injection of a pressurized gas into the system for downhole transmission.
Dependent on the pressure, chamber volume and the orifice size and shape, the shock impulse can be achieved by simply opening the valve 25 to allow the pressurized gas to expel, and closing the valve after a suitable duration to pressurize for the next impulse, or by specifically timing the opening and closing of the valve to precisely predetermine the leading and trailing edge.
Referring again to
Whether the first air gun 16 or the second air gun 24 is used will be determined by the operator, depending upon the down-hole tool to be operated, the most efficient transmission path and signal receiver position in the tubing or annulus. The well bore 40 below the well head 12 comprises typically a conventional tubing 20 and exterior casing 26 string within a cement fill. Lateral bore holes 46 and 47 which may be greater or lesser in number, extend from the well bore 40 at chosen angles of inclination. The media 65 in the well bore 40 will be an energy transmissive medium, whether gas, air, foam, water, oil, or a drilling mud, or mixtures of different kinds.
In the lower regions of the well, various remotely controlled tools are shown as used in two of the lateral bores 46, 47 that branch off from the main bore 40, which extends at its lowest elevation into a horizontal extension 48. At a selective re-entry and diverter system 50, the first lateral bore 46 diverts horizontally to a well formation such as a hydrocarbon bearing region, as seen in idealized form. Along this line 46 the tubing includes remotely controlled sliding sleeves 52, separated by external casing packers 54 to provide zonal isolation. At the second lateral bore 47, a different illustrative example is shown, in which the branch is bounded in the main bore by a pair of casing packers 56, while in the lateral bore 47 a distal remotely controlled valve 58 is isolated by an external casing packer 54. Similarly, in the main well bore, another remotely controlled valve 60 is below the lower casing packer 56. Since there may be a number of lateral bores (as many as eight have been known to have been tried), the capability for command and control of different tools and equipment in each branch at different depths requires high energy levels as well as advanced signal encoding and detection. These objectives are realized by systems and methods in accordance with the invention.
In an exemplary test system, referring now to
Since the length of a deep well is many thousands of feet, the brief pressure energy impulse, when sufficient in amplitude, has ample residence time, when propagated along the longitudinal sections within the confining walls, to transform to a preferential frequency range. Usually this will be below about 200 Hz, typically below the 60 Hz range.
The propagation speed varies in accordance with the media characteristics along the propagation path. This speed is significantly different for different media, as follows:
At one or more chosen locations in the well bore 40, or in the lateral bore holes 46 and 47, tools 70, flow controllers and other equipment, shown only generally in
At the surface, signals received at the hydrophone 77 were received via an electrical support line 91 and recorded and analyzed at response test circuits 93, enabling the charts of
The signal detection and control circuitry 75 is configured to respond to the energy in the perturbations of the media reaching the down-hole location in a time-extended, somewhat frequency-centered form, as shown by waveforms (B) in
The different pressure variation detectors that are shown or referred to, namely the hydrophone 77, the geophone 79, a microphone and an accelerometer, are usually not needed at the same time for an adequate signal-to-noise ratio. However, since the nature of the modulation and attenuation introduced during transmission of the shock impulse from the well head 12 cannot be exactly known, there is some benefit to be derived from utilizing confirmatory readings. A second detector or a third detector can be used simultaneously together with signal verification or conditioning circuits, to enhance reliability. If both the pressure amplitude variation from the hydrophone 77 and the wave velocity variation represented by the output of the seismic-type detector 79 (geophone or accelerometer) are consistent, then the shock impulse gun signal has been even more assuredly identified than if a single transducer alone is used.
In a preferred embodiment, the encoded signal pattern that is generated at the air gun 16 or 24 for remote detection and control is usually in a format based on a binary sequence, repeated a number of times. Each binary value is represented by a burst (e.g., binary “1”), or non-burst (e.g., binary “0”), during a time window. Thus, if a binary sequence of 1,0,0,0,1 is used to designate a particular remote tool 70, then there will be impulse bursts only in the first and fifth time windows.
The preprogramming of different remote tools or equipment can be based on use of a number of different available variables. This flexibility may often be needed for multilateral wells, where a single vertical well is branched out in different directions at different depths to access adjacent oil bearing sands. Here, the use of paired different signal transducers enables more reliable detection of lower amplitude signal levels.
Moreover, the signal patterns can employ a number of variables based on pressure, time, chamber volume and orifice configuration to enable more code combinations to become available. For example, using a pressure regulated source, the starting impulse can be given varying waveforms by changing pressure (e.g., from 2,000 psi to 3,250 psi) using the same chamber size. The stored pattern of the remote microprocessor will have been coded to detect the changed signal waveforms. Likewise, chamber volume can also be varied within a signal sequence to provide predictable modulation of downhole wavetrains.
In a preferred embodiment, the time gap between the time windows in the first example is determined by the duration needed to establish non-overlapping “sensing windows” at the remotely controlled device, as seen in
In other words, after one burst has been generated at the well head, sufficient time elapses as that burst is propagated down the well bore 40 for another burst to be generated while the first is still en route. Once a first wavetrain has been received, the remaining sensing windows can be timed to start at reasonable times prior to the anticipated first arrival of the succeeding propagated wavetrains. However, until the first wavetrain is received, the receiving circuits operate as with an indefinitely open window.
Another variant, shown at waveform B in
These timing relationships as depicted in
The sensitivity of a modern commercial geophone in response to velocity variations is also high, even though less in absolute terms, being typically in the order of 20 volt-in./sec. or 0.2V for a wave of 0.1 in./sec.
Consequently, a brief shock impulse, time distributed over a longer interval and converted to a “tube wave” is readily detected at a deep sub-surface location. This is true even though waves are much more efficiently transmitted in pure liquid than in a gas, which is compressible, or in a mud, which contains reflective particulates.
In the example of
Referring to
The example of
The impulse burst (A) in
Accordingly, dependent upon both the depth and the media through which acoustic impulses are to be transmitted, the energy level impulsed by the air gun can be substantially increased by higher pressure and higher chamber size so as to provide reliable distribution through a deep well system. Orifice size and shape can also be used to vary the impulse characteristics.
For an exemplary 15,000 foot depth, filled with liquid hydrocarbons, each binary code combination requires a time window (and a corresponding sensing window) of approximately 1.0 seconds, assuming a minimum propagation time of 3.0 seconds. With respect to the timing diagram of
Using commercial hydrophones and geophones, useful outputs are derived under deep well conditions. In the test installation, the hydrophone output is approximately 2 volts and the geophones output is 0.2 volts, each of which readily facilitates signal detection.
As illustrated in
As previously described, complex pressure impulse signal patterns can both address and actuate subunits on the sea floor as well as down-hole tools. The sea floor systems include not only the subsea manifold 108 and the pump 106, but subsea separation processing modules and subsea well controls. The control system can alternatively be a secondary control for subsea trees and modules, where the primary control system is most often a combination of electric communication and hydraulic actuation units.
In the development of production systems, there has been a trend toward replacing platforms with floating vessels for production, storage and off-loading applications. Such vessels can process the flow to reduce water and gas content and then deliver the product to shuttle tankers or on-shore locations. Again, subsea modules including manifolds, valving systems and pumps, can control operations and flows from a number of different well bores. In these applications, remote control of units, tools and other equipment on the sea floor or in the well bores can be extremely useful for deep water subsea completions.
Whether a pipeline is on the surface or buried, or a combination of these placements, an ability to command and control remotely can be very useful, and the shock impulse control mode, system and method, are applicable for a variety of unique purposes in the pipeline installation. A pipeline 120, referring now to
Pipeline pigs, for example, are widely used for inspection of pipeline sections. For this purpose, a pig 126 having an instrumentation trailer 128 and sized to mate in sliding relation within the pipeline 120 is transported along the pipeline under pressure from the internal flowing media 122. A self-contained power supply and control circuits on the pig 126 and/or the instrumentation trailer 128 can be actuated by encoded signals from the N2 gun 124, whatever the position along the pipeline length, since the media 122 provides excellent acoustic signal transmission. The pig 126 can be commanded to stop by expansion of peripheral members against the interior wall of the pipeline 120, so that the instrumentation trailer 128 can conduct a stationery inspection using magnetization, for example. If the inspection can be done while in motion, the instrumentation trailer 128 is simply commanded to operate.
Alternatively, expandable pigs having internal power supplies and control circuitry can be immobilized at spaced apart positions upstream and downstream of a leak, so that a repair procedure can be carried out, following which the pigs can be commanded to deflate and move downstream to some removal point.
It is now common to transport cleaning pigs along the interior of a pipeline, with the pigs sized to scrape scale and accumulated deep debris off the interior pipeline wall. Such a pig 130 may become stuck, in which event shock impulse control signals may be transmitted to actuate internal mechanisms which impart thrust so as to effect release, or reduce the pig diameter in some way such as by detonators. Such cleaning pigs 130 are also constructed so as to disintegrate with time, which action can be accelerated by strong shock impulse triggering signals actuating an internal explosive charge.
This is one type of “disappearing pig” for cleaning applications, known as the “full bore” type. However, undersized pigs 132, usually of polyurethane, are also run through a pipeline with the anticipation that they will not get stuck by scale or debris. If they do get stuck, such an undersized pig 132 gradually dissolves with pressure and time, although this action can be greatly accelerated by the use of the remote control signals.
In a number of applications required for pipeline operation, such as dewatering, it is desirable to be able to control a remote unit, such as a check valve. Here again, the high energy encoded signals can be used efficiently, since they can transmit a detectable signal for miles within the pipeline 120, to be received by a remote control valve 136, for example.
Although a number of different applications have been illustrated and identified for high impulse signal control of remote tools and other equipment, many other applications are possible. For example, hydraulic pressure-operated tools employed in drill stem testing and tubing conveyed perforating operations can advantageously be supplanted by acoustic actuation, thus minimizing the possibilities of accidental actuation of pressure-operated elements. Rapid sequencing control for “OMNI” valves can be accomplished more rapidly and reliably using acoustic control signals. In GP screen isolation tubing, flapper valves or sleeves can be efficiently operated. A number of other applications will suggest themselves to those skilled in the art.
While various forms and variations in accordance with the invention have been described it will be appreciated that the invention is not limited thereto but encompasses all the alternatives and variations in accordance with the appended claims.
This invention relates to Provisional Application Ser. No. 60/042,783, filed Apr. 7, 1997. The contents of that application are incorporated by reference herein. This application is a continuation of a prior application of Kenneth J. Carstensen, application Ser. No. 10/141,867 filed May 10, 2002, now U.S. Pat. No. 6,760,275. That patent is a division of a prior application of Kenneth J. Carstensen, application Ser. No. 09/056,055 filed Apr. 6, 1998, now U.S. Pat. No. 6,388,577. That patent claims priority to the above-identified provisional patent application.
Number | Name | Date | Kind |
---|---|---|---|
2924432 | Arps et al. | Feb 1960 | A |
3227228 | Bannister | Jan 1966 | A |
3316997 | McCoy | May 1967 | A |
3613070 | Jones et al. | Oct 1971 | A |
3622962 | Wingel et al. | Nov 1971 | A |
3708990 | Crooke | Jan 1973 | A |
3732728 | Fitzpatrick | May 1973 | A |
3739845 | Berry et al. | Jun 1973 | A |
3780809 | Ayers, Jr. et al. | Dec 1973 | A |
3915256 | McCoy | Oct 1975 | A |
3961308 | Parker | Jun 1976 | A |
3965983 | Watson | Jun 1976 | A |
4038632 | Parker | Jul 1977 | A |
4063215 | Abbott | Dec 1977 | A |
4065747 | Patten et al. | Dec 1977 | A |
4073341 | Parker | Feb 1978 | A |
4206810 | Blackman | Jun 1980 | A |
4243979 | Kleinschmidt | Jan 1981 | A |
4445389 | Potzick et al. | May 1984 | A |
4637463 | McCoy | Jan 1987 | A |
4646871 | Wolf | Mar 1987 | A |
4713800 | Russell | Dec 1987 | A |
4722393 | Rumbaugh | Feb 1988 | A |
4781607 | Rumbaugh | Nov 1988 | A |
4796699 | Upchurch | Jan 1989 | A |
4856595 | Upchurch | Aug 1989 | A |
4862426 | Cassity et al. | Aug 1989 | A |
4871045 | Cole | Oct 1989 | A |
4908804 | Rorden | Mar 1990 | A |
4915168 | Upchurch | Apr 1990 | A |
4945761 | Lessi et al. | Aug 1990 | A |
4971160 | Upchurch | Nov 1990 | A |
5018115 | Pascouet | May 1991 | A |
5050675 | Upchurch | Sep 1991 | A |
5117399 | McCoy et al. | May 1992 | A |
5188183 | Hopmann et al. | Feb 1993 | A |
5214251 | Orban et al. | May 1993 | A |
5226494 | Rubbo et al. | Jul 1993 | A |
5273112 | Schultz | Dec 1993 | A |
5283768 | Rorden | Feb 1994 | A |
5285388 | McCoy et al. | Feb 1994 | A |
5313025 | Roessler et al. | May 1994 | A |
5343963 | Bouldin et al. | Sep 1994 | A |
5358035 | Grudzinski | Oct 1994 | A |
5375098 | Malone et al. | Dec 1994 | A |
5412568 | Schultz | May 1995 | A |
5458200 | Lagerlef et al. | Oct 1995 | A |
5490564 | Schultz et al. | Feb 1996 | A |
5535177 | Chin et al. | Jul 1996 | A |
5558153 | Holcombe et al. | Sep 1996 | A |
5568448 | Tanigushi et al. | Oct 1996 | A |
5579283 | Owens et al. | Nov 1996 | A |
5611401 | Myers, Jr. et al. | Mar 1997 | A |
5646910 | Bouyoucos | Jul 1997 | A |
5691712 | Meek et al. | Nov 1997 | A |
5834710 | Finnestad | Nov 1998 | A |
5995449 | Green et al. | Nov 1999 | A |
Number | Date | Country |
---|---|---|
0 672 819 | Sep 1995 | EP |
2 281 424 | Apr 1998 | GB |
Number | Date | Country | |
---|---|---|---|
20040238184 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60042783 | Apr 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09056055 | Apr 1998 | US |
Child | 10141867 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10141867 | May 2002 | US |
Child | 10882195 | US |