Claims
- 1. A method of actuating a controllable device that is at a remote location from a source station and disposed within a tubular system containing mobile fluid media which may comprise hydrocarbon liquids and gases, water, process fluids, and various combinations of such media, the method comprising the steps of:launching a gas shock impulse into the tubular system at the source station, the shock impulse initially having abrupt leading and trailing edge transitions less than ½ second apart, and an energy level calculated in accordance with the distance to the remote location and the media characteristics to travel through the media within the tubular system but retain predetermined impulse characteristics at the remote location; sensing at the remote location, a local physical perturbation in the media that is created by the passage of the shock impulse to the remote location; converting the sensed physical perturbation to a signal variation; determining if the signal variation is, in amplitude and duration characteristics, that intended for actuating the controllable device; and actuating the controllable device thereafter in response to the determination.
- 2. A method as set forth in claim 1 above, wherein the tubular system is disposed within a well bore and the controllable device is a down hole tool.
- 3. A method as set forth in claim 1 above, wherein the tubular system is a pipeline and the controllable device is movably or fixedly located within the pipeline at a distance from the source station.
- 4. A method of providing a detectable signal through fluid media from a source location at a well head at which the media is compressible to a remote down hole location for actuation of a controlled device in an incompressible media while safeguarding against accidental actuation of that device, comprising the steps of:defining amplitude and width characteristics for at least one signal to actuate the controlled device; propagating, from the well head via the fluid media toward the down hole location, a short term high energy pulse in the compressible media which is calculated to be attenuated and modified by the media during propagation in the incompressible and compressible media to amplitude and width characteristics corresponding to the at least one signal for actuation; and detecting, at the remote down hole location, a local physical perturbation representative of defined characteristics caused by the propagated pulse to provide an electrical signal for actuating the controlled device.
- 5. A method as set forth in claim 4 above, including the step of storing multiple selected signal profiles to control actuation and recognizing selected signal profiles defining a pattern in the detected physical perturbations.
- 6. A method as set forth in claim 4 above, wherein the remote down hole location is disposed along the path of a tubular system including at least one mobile medium, and further comprising the steps of propagating the high energy pulse along the tubular system through the fluid medium contained therein, and wherein the defined amplitude and width characteristics are selected relative to the media characteristics along the tubular structure.
- 7. A method as set forth in claim 4 above, wherein the short term high energy pulse has an energy content at least equal to that of the level of 200 psi released over {fraction (1/50)} second, and wherein the step of providing a pulse utilizes an inert gas.
- 8. The method as set forth in claim 4 above, wherein the step of defining at least one amplitude and width characteristic comprises defining a sequence of amplitude and width characteristics of a series of signals to actuate the controlled device, and wherein the step of propagating a high energy pulse comprises propagating a succession of high energy pulses having power levels and durations calculated to correspond to a chosen predetermined sequence of amplitude and width characteristics in media perturbations at the down hole location, and wherein the method further comprises the steps of converting the media perturbations to a signal for actuating the controlled device, and preceding each succession of pulses with a distinctive high energy impulse to initiate operation.
- 9. The method of remote signaling to a deep, down hole, location within a well bore, to actuate at least one controlled device without requiring a physical or electrical connection to the device, while providing security against accidental actuation, despite the fact that a tubular structure in the well bore is at least partially filled with at least one mobile media, such as liquid, air, air entrained in liquid, and liquid containing solids, the method comprising the steps of:propagating time measured gas pressure impulse shocks directionally into the interior of the tubular structure along the axis, the incremental pressure rise of the impulses above the ambient being in the range of 100-15,000 psi and the duration thereof being in the range of less than 1 second; confining the propagated pressure impulse principally within the tubular structure through the mobile media therewithin, while allowing the impulse profile to be modified by dispersion and reflections during propagation; establishing a set of pressure impulse profiles, by amplitude and width, anticipated to be received at a down hole location taking into account the mobile media in the tubular structure; and detecting physical perturbations caused by the shocks in the liquid media at the down hole location, and locally comparing the established profiles to the detected perturbations at the down hole location to identify a signal sent to the down hole location as that intended to be used to actuate a controlled device.
- 10. A method as set forth in claim 9 above, wherein the step of propagating the gas pressure impulse shocks comprises propagating a series of spaced apart, discrete impulses each having pressure rises and durations selected in accordance with a predetermined pattern, and wherein the step of locally comparing comprises making successive comparisons to identify a selected controlled device action unambiguously by virtue of the existence of a distinctive command signal pattern.
- 11. A method as set forth in claim 10 above, wherein the impulses are propagated in a sequence identifying a selected command from different points into the well bore.
- 12. A method as set forth in claim 11 above, wherein the time spans between successive impulses are sufficient to allow for dissipation of reflections and echoes from the next prior impulse.
- 13. The method of actuating a controllable element in a remote location in a tubular system, without physical or electrical interconnection with the remote location, despite the presence in the tubular system of indeterminate fluid combined with other media, the controllable element including a detector system for responding to physical variations in the media, the method comprising the steps of:transmitting a gas shock impulse into the media in the tubular system with a sufficient differential impulse force to travel along the tubular system and reach the down hole location as a transitory pulse pressure perturbation in the media having identifiable amplitude and width characteristics despite compressible fluid in the media; and detecting a dynamic change in a physical property of the media caused by the transitory pulse pressure perturbation that sufficiently evidences the original predetermined amplitude and width characteristics to initiate a control action in the controllable element.
- 14. The method of claim 13 above, wherein the detected physical property is velocity variations in the media.
- 15. The method of claim 13 above, wherein the detected physical property is displacement variations caused by pressure impulses in the media.
- 16. The method of claim 13 above, wherein the method further includes the steps of sequentially transmitting shock impulses varying in force or duration sufficiently to provide discernibly varying impulse pressures which together represent a multiple element logical command.
- 17. The method of claim 13 above, wherein the tubular system includes a lengthy tubular structure containing at least some of the media, and the transmitted impulse propagates within the tubular structure with differential propagation of lowest frequency components and interior reflection of higher frequency components while substantially maintaining the profile integrity of the shock impulse.
- 18. The method of signaling through a long confined pathway containing physically mobile media that may include gases and solids to a remote unit when the pathway has different path configurations and the media may differ along the length of the pathway, comprising the steps of:launching an impulse pneumatic shock burst into the pathway, the shock burst having in excess of up to 15,000 psi of pressure differential over a duration in excess of {fraction (1/50)} seconds; propagating the shock burst through the different path configurations and through the mobile media in the pathway, the shock burst being subject to attenuation, frequency dispersion, frequency cutoff, and reflections in moving along the pathway; and detecting the existence, at a remote unit along the pathway, of a pattern of anticipated pulse amplitude and time width variations in at least one property of the media as determined for the remote unit in accordance with its position along the pathway and the mobile media therebetween.
- 19. The method of claim 18 above, wherein the confined pathway is a well bore having an interior tubular system and the remote unit is a tool along the tubular system.
- 20. The method of claim 18 above, wherein the pathway is a pipeline and the remote unit is an element within the pipeline that may be fixed or movable.
- 21. The method of controlling a remote device in a down hole location at substantial depth within a bore hole below a well head installation, the bore hole encompassing a tubular structure and including variations in the size of the tubular conduit and also variations in the media within the tubular structure between the well head installation and the bore hole, the method comprising the steps of:propagating a shock impulse along the tubular conduit by releasing into the well head installation, and the bore hole, a burst of gas pressure in excess of 200 psi and with a duration of less than about one second, the impulse having distinctive leading and trailing edges; detecting the amplitude and duration of energy from the received shock wave reaching the down hole location; varying the pressure and energy content of the successive shock impulses propagated from the well head in accordance with a predetermined command pattern for the remote device; and detecting the existence of a preselected sequence of amplitude and duration variations in the received pattern of shock impulses to control the remote device.
- 22. A method as set forth in claim 21 above, wherein the shock impulse is modified by conditions along the bore hole to spread in frequency and to have components which move with different velocities along the bore hole, while nonetheless comprising a principal shock impulse which is proportioned, in amplitude and in duration between leading and trailing edges, to the initial shock impulse.
- 23. The method of communicating with a down hole tool in a well bore despite the presence of a blocking element within a casing structure at an elevation above the down hole tool comprising the steps of:directing a high impact pneumatic impulse into the annulus between the casing and the well wall, the impulse having leading and trailing edges separated by less than 50 milliseconds duration, and the differential pressure level relative to ambient during the duration of the impulse being in excess of 100 psi; responding to physical perturbations resulting from the impulse at the down hole tool to generate electrical signals representative of the time difference between leading and trailing edges of the of at least one impulse at the down hole tool, and operating the down hole tool in response to a selected impulse duration.
- 24. The method as set forth in claim 23 above, wherein the down hole tool is self powered and wherein the actuating impulse into the annulus comprises a series of impulses which together define a triggering pattern for the down hole tool.
- 25. The method as set forth in claim 23 above, wherein a series of impulses vary in durations established by the leading and trailing edges of the impulses.
- 26. The method as set forth in claim 23 above, wherein the patterns vary by time distribution of pulses in a series.
- 27. The method of directing a pressure impulse of chosen profile from a low impedance zone through an abrupt interface to a higher impedance zone to have a time/pressure profile at a substantial distance in the high impedance zone comprising the steps of:directing an impulse having a pressure difference greater than 100 psi more than the ambient pressure level into the low impedance zone in the direction of the interface, the impulse having a rectangular leading edge; maintaining the impulse for no greater than {fraction (1/50)} second while terminating the impulse abruptly to define a rectangular trailing edge; confining the pressure impulse to a limited cross-sectional area along a path through the interface into the higher impedance zone along the substantial distance; and transitioning through the interface with less than 10% reflection of energy in the pressure impulse at the interface, such that a predictable time/pressure profile is propagated into the high impedance zone.
- 28. A method as set forth in claim 27 above, further including the steps of establishing a pressurized gas reserve of a selected volume, and opening the volume for the selected interval to launch the impulse in the selected direction.
- 29. A method as set forth in claim 27 above, wherein the low impedance and high impedance zones are upper and lower zones in a well bore, having a down hole location at which the pressure impulse is to be used, the upper zone having a gaseous atmosphere and the lower zone containing a mobile fluid media, and wherein the method further comprises varying the impulse pressure level and duration in accordance with the impedance values and the distance to the traversed.
- 30. A method as set forth in claim 29 above, wherein the gas reserve is an inert gas wherein the selected volume is in the range of 2 to 200 in3, and wherein the pressure is in the range from 100 to 15000 psi.
- 31. A method of remotely controlling a signal responsive downhole tool in the tubular system of a petroleum well from a surface location when the tool is immersed at a known distance from the surface location in a media which is at least principally liquid, and the surface location and an upper part of the tubular system in the well are in unpressurized an air media, with there being an air-liquid interface in the tubular system below the surface location, the method comprising the steps of:introducing a shock impulse form the surface location into the air media in the upper part of the tubular system, the shock impulse having distinct leading and trailing edges spaced apart by less than a one second duration and a differential pressure amplitude relative to ambient that is calculated to be sufficient relative to existing downhole conditions, the impulse characteristics being selected to identify a particular downhole tool; propagating the impulse downward through the tubular system from the surface location with concomitant modification of amplitude, trailing and leading edges; sensing, at the downhole location, perturbations traveling along the tubular system in the media that result from the shock impulse at the surface location; and detecting a perturbation with modified characteristics corresponding to those identifying a particular downhole tool, to control the tool.
- 32. A method of signaling through a substantial length of tubular system from an air environment at the upper part of the tubular system, through an air-liquid interface and along the liquid to a signal controllable tool at a given depth in the tubular system, comprising the steps of:introducing an abrupt gas impulse into the air environment in the upper part of the tubular system, the impulse having a positive-going trailing edge, the edges being spaced apart by a duration of less than 1 second selected for a particular tool, and the pressure of the impulse between the leading and trailing edges being above that of the air environment by a factor calculated to reach the given depth with discernible characteristics; propagating the energy of the impulse downwardly through the tubular system as a traveling positive pressure deviation with both positive and negative-going edges of form modified by the effects of the tubular system and the media; and detecting variations in the pressure deviations reaching the signal controllable tool which correspond to the leading and trailing edge duration spacings chosen for the control of that tool.
CROSS-REFERENCE TO RELATED APPLICATIONS
This invention relates to Provisional Application Serial No. 60/042,783, filed Apr. 7, 1997. The contents of that application are incorporated by reference herein.
US Referenced Citations (51)
Foreign Referenced Citations (2)
Number |
Date |
Country |
0 672 819 |
Sep 1995 |
EP |
2 281 424 |
Apr 1998 |
GB |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/042783 |
Apr 1997 |
US |