The present invention relates to an improved cutting element or attack tool that may be used to break minerals or rocks or any hard materials in a variety of industries such as mining, drilling, asphalt, construction and excavation industries. Continuous use of a tool may result in wear and tear of the tool. Examples of high-impact resistant tools from the prior art are disclosed in U.S. Pat. No. 6,824,225 to Stiffler, US Pub. No. 20050173966 to Mouthaan, U.S. Pat. No. 6,692,083 to Latham, U.S. Pat. No. 6,786,557 to Montgomery, Jr., U.S. Pat. No. 3,830,321 to McKenry et al., US. Pub. No. 20030230926, U.S. Pat. No. 4,932,723 to Mills, US Pub. No. 20020175555 to Merceir, U.S. Pat. No. 6,854,810 to Montgomery, Jr., U.S. Pat. No. 6,851,758 to Beach, which are all herein incorporated by reference for all they contain.
U.S. Pat. No. 3,830,321 to McKenry et al., which is herein incorporated by reference for all that it contains, discloses an excavating tool and a bit for use therewith in which the bit is of small dimensions and is mounted in a block in which the bit is rotatable and which block is configured in such a manner that it can be welded to various types of holders so that a plurality of blocks and bits mounted on a holder make an excavating tool of selected style and size.
U.S. Pat. No. 6,733,087 to Hall, et al., which is herein incorporated by reference for all that it contains, discloses an attack tool for working natural and man-made materials that is made up of one or more segments, including a steel alloy base segment, an intermediate carbide wear protector segment, and a penetrator segment comprising a carbide substrate that is coated with a superhard material. The segments are joined at continuously curved surfaces vary from one another at about their apex in order to accommodate ease of manufacturing and to concentrate the bonding material in the region of greatest variance. The carbide used for the penetrator and the wear protector may have a cobalt binder, or it may be binderless. It may also be produced by the rapid omnidirectional compaction method as a means of controlling grain growth of the fine cobalt particles. The parts are brazed together in such a manner that the grain size of the carbide is not substantially altered. The superhard coating may consist of diamond, polycrystalline diamond, cubic boron nitride, binderless carbide, or combinations thereof.
A high-impact resistant tool comprises a steel shank. The steel shank has a hollow portion. The shank is adapted for insertion into a holder and connection to a driving mechanism. A carbide cap is joined at a brazed joint to the first end of the shank. In some embodiments, an impact tip may be disposed opposite a cavity in a base end of the cap.
A ceiling of the cavity may comprise a tapered geometry. The tool may be incorporated into a pavement milling machine, mining machine, trencher, or combinations thereof. The shank, the holder and the cavity of the cap may be substantially coaxial. The impact tip may be bonded to the cap opposite the base end. The tip may comprise a carbide segment bonded to a sintered polycrystalline diamond. The carbide segment of the impact tip may comprise a height of less than 10 mm. The diamond may comprise a substantially conical portion.
The diamond may comprise an axial thickness of at least 0.100 inches thick. The base end of the cap may overhang the first end of the shank. The hollow portion of the shank may contain a lubricant. The lubricant may be adapted to lubricate the outer diameter of the shank and an inner diameter of the holder. The braze joint may be tapered or planar. The cap may be asymmetric. The steel shank may comprise a substantially T-shaped geometry.
The shank may comprise a groove. The base end of the cap may comprise a protrusion adapted to interlock with the groove of the shank. The hollow portion of the shank may extend along an entire length of the shank from the first end to a second end. At least a portion of the cap may protrude into the hollow portion through the first end of the shank.
a is cross-sectional diagram of another embodiment of a cap.
a is cross-sectional diagram of an embodiment of a high-impact resistant toot
b is cross-sectional diagram of an embodiment of a high-impact resistant tool.
a is cross-sectional diagram of another embodiment of a high-impact resistant tool.
b is cross-sectional diagram of another embodiment of a high-impact resistant tool.
c is cross-sectional diagram of another embodiment of a high-impact resistant tool.
Referring now to
The super hard material 207 may comprise diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, cubic boron nitride, refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, monolithic diamond, polished diamond, course diamond, fine diamond, nonmetal catalyzed diamond, cemented metal carbide, chromium, titanium, aluminum, tungsten, or combinations thereof.
The hollow shank 203 may be press fit into the holder 204. The brazed joint 250 may be tapered. In some embodiments, brazed joint may be brazed along surfaces at different angles. A braze material may comprise copper, brass, lead, tin, silver or combinations thereof. The shank 203 may comprise a snap mechanism 240 adapted to hold the shank 203 and the holder 204 together. The largest diameter of the shank may overhand a portion of the outer diameter of the holder 204.
The tool 101 may be lubricated. The lubrication may be provided from the driving mechanism. In embodiments, where the driving mechanism is a drum, the drum may comprise a lubrication reservoir and a port may be formed in the drum which connects the lubrication reservoir to the hollow portion of the shank. The lubrication reservoir may be pressurized to force the lubrication between the outer diameter of the shank and the inner diameter of the holder. A weeping seal may provide the benefit of preventing the debris from entering between the shank and the inner diameter of the holder, while allowing some lubricant to escape to keep the seal clean.
In
a is a cross sectional diagram of a cap 200 with multiple tapers 2000, 2001 adapted to be brazed to the shank. The cavity wall 2002 comprises a taper generally increase as it approaches the base end of the cap. The ceiling 2003 of the cap is generally rounded and may form an inverted spheric section, inverted centenary geometry, inverted ellipsoid, section, a parabola, or combinations thereof.
a is a cross-sectional diagram of an embodiment of a high-impact resistant tool. The tool may comprise a carbide cap 200 with an impact tip 201 brazed with the first end 210 of the hollow shank 203. The cap 200 may comprise a cavity 205 aligned with the hollow shank 203. More than two-third of the height of the carbide cap 200 may be embedded inside the holder 204. In this embodiment, the shank may be press fit or anchored into the holder. The driving mechanism may be holder or block incorporated into a milling or mining drum. In other embodiments, it may be incorporated into a drill bit, percussion bit, roof bolt bit, roller cone bit, dredge, tunneling machine, trencher or combinations thereof.
a discloses cap 200 with a stem 270 that extends into the hollow portion of the shank.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation of U.S. patent application Ser. No. 12/135,595 which is a continuation in-part of U.S. application Ser. No. 12/112,743 which is a continuation in-part of U.S. patent application Ser. No. 12/051,738 which is a continuation-in-part of U.S. patent application Ser. No. 12/051,689 which is a continuation of U.S. patent application Ser. No. 12/051,586 which is a continuation-in-part of U.S. patent application Ser. No. 12/021,051 which is a continuation-in-part of U.S. patent application Ser. No. 12/021,019 which was a continuation-in-part of U.S. patent application Ser. No. 11/971,965 which is a continuation of U.S. patent application Ser. No. 11/947,644, which was a continuation-in-part of U.S. patent application Ser. No. 11/844,586. U.S. patent application Ser. No. 11/844,586 is a continuation-in-part of U.S. patent application Ser. No. 11/829,761. U.S. patent application Ser. No. 11/829,761 is a continuation-in-part of U.S. patent application Ser. No. 11/773,271. U.S. patent application Ser. No. 11/773,271 is a continuation-in-part of U.S. patent application Ser. No. 11/766,903. U.S. patent application Ser. No. 11/766,903 is a continuation of U.S. patent application Ser. No. 11/766,865. U.S. patent application Ser. No. 11/766,865 is a continuation-in-part of U.S. patent application Ser. No. 11/742,304. U.S. patent application Ser. No. 11/742,304 is a continuation of U.S. patent application Ser. No. 11/742,261. U.S. patent application Ser. No. 11/742,261 is a continuation-in-part of U.S. patent application Ser. No. 11/464,008. U.S. patent application Ser. No. 11/464,008 is a continuation-in-part of U.S. patent application Ser. No. 11/463,998. U.S. patent application Ser. No. 11/463,998 is a continuation-in-part of U.S. patent application Ser. No. 11/463,990. U.S. patent application Ser. No. 11/463,990 is a continuation-in-part of U.S. patent application Ser. No. 11/463,975. U.S. patent application Ser. No. 11/463,975 is a continuation-in-part of U.S. patent application Ser. No. 11/463,962. U.S. patent application Ser. No. 11/463,962 is a continuation in-part of U.S. patent application Ser. No. 11/463,953. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/695,672. U.S. patent application Ser. No. 11/695,672 is a continuation-in-part of U.S. patent application Ser. No. 11/686,831. All of these applications are herein incorporated by reference for all that they contain.
Number | Date | Country | |
---|---|---|---|
Parent | 12135595 | Jun 2008 | US |
Child | 12146665 | US | |
Parent | 12112743 | Apr 2008 | US |
Child | 12135595 | US | |
Parent | 12051586 | Mar 2008 | US |
Child | 12051689 | US | |
Parent | 11947644 | Nov 2007 | US |
Child | 11971965 | US | |
Parent | 11766865 | Jun 2007 | US |
Child | 11766903 | US | |
Parent | 11742261 | Apr 2007 | US |
Child | 11742304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12051738 | Mar 2008 | US |
Child | 12112743 | US | |
Parent | 12051689 | Mar 2008 | US |
Child | 12051738 | US | |
Parent | 12021051 | Jan 2008 | US |
Child | 12051586 | US | |
Parent | 12021019 | Jan 2008 | US |
Child | 12021051 | US | |
Parent | 11971965 | Jan 2008 | US |
Child | 12021019 | US | |
Parent | 11844586 | Aug 2007 | US |
Child | 11947644 | US | |
Parent | 11829761 | Jul 2007 | US |
Child | 11844586 | US | |
Parent | 11773271 | Jul 2007 | US |
Child | 11829761 | US | |
Parent | 11766903 | Jun 2007 | US |
Child | 11773271 | US | |
Parent | 11742304 | Apr 2007 | US |
Child | 11766865 | US | |
Parent | 11464008 | Aug 2006 | US |
Child | 11742261 | US | |
Parent | 11463998 | Aug 2006 | US |
Child | 11464008 | US | |
Parent | 11463990 | Aug 2006 | US |
Child | 11463998 | US | |
Parent | 11463975 | Aug 2006 | US |
Child | 11463990 | US | |
Parent | 11463962 | Aug 2006 | US |
Child | 11463975 | US | |
Parent | 11463953 | Aug 2006 | US |
Child | 11463962 | US | |
Parent | 11695672 | Apr 2007 | US |
Child | 11463953 | US | |
Parent | 11686831 | Mar 2007 | US |
Child | 11695672 | US |