This application relates to the cooling of lamps and, more particularly, to the cooling of high-intensity discharge lamps, such as xenon arc lamps.
High-intensity discharge lamps are relatively compact and lightweight, yet they are capable of producing a significantly amount of illumination. Therefore, high-intensity discharge lamps are commonly used in various applications that require significant illumination intensity, such as searchlights and spotlights, image projectors, stadium lighting and the like.
Furthermore, the bright white spectral profile of certain high-intensity discharge lamps, such as xenon arc lamps, closely resembles natural sunlight. Therefore, such high-intensity discharge lamps are commonly used in solar simulators. Solar simulators facilitate the indoor testing of solar cells under carefully controlled laboratory conditions. Solar simulators are also used to test objects, such as building materials, automobiles, aircraft and space vehicles, for thermal and ultraviolet exposure issues.
The operation of high-intensity discharge lamps produces a significantly large quantity of unwanted heat. For example, certain xenon arc lamps operate at temperatures ranging from about 100° C. to about 120° C. If not adequately dissipated, the heat generated by a high-intensity discharge lamp may shorten the working life of the lamp or possibly even permanently damage the lamp and/or any surrounding structures. The high voltages required to initially ignite such lamps and to maintain such lamps in operation render it difficult to dissipate generated heat.
Accordingly, those skilled in the art continue with research and development efforts in the field of lamps and lamp cooling to address problems identified above and other, related issues.
In one embodiment, the disclosed lamp assembly may include a housing defining an internal volume and a lamp positioned in the internal volume, the lamp including a first electrode and a second electrode, wherein the first electrode is both thermally and electrically coupled to the housing, and wherein the second electrode is thermally coupled to the housing but electrically isolated from the housing.
In another embodiment, the disclosed lamp assembly may include a housing defining an internal volume and a lamp positioned in the internal volume, the lamp including a first electrode and a second electrode, wherein the first electrode is both thermally and electrically coupled to the housing, and wherein the second electrode is thermally coupled to the housing by way of a thermally conductive, electrically insulative material and a heat transfer element.
In another embodiment, the disclosed lamp assembly may include a housing defining an internal volume, a lamp positioned in the internal volume, the lamp including a first electrode and a second electrode, a mounting structure connecting the first electrode to the housing, a heat transfer element thermally coupling the second electrode to the housing along a cooling pathway, and a thermally conductive, electrically insulative material positioned in the cooling pathway to electrically isolate the second electrode from the housing.
In yet another embodiment, the method for cooling a lamp may include providing a lamp and a housing, the lamp including a first electrode and a second electrode, thermally coupling and electrically coupling the first electrode with the housing, and thermally coupling the second electrode with the housing by way of a thermally conductive, electrically insulative material.
Other embodiments of the disclosed high-intensity discharge lamp assembly and method will become apparent from the following detailed description, the accompanying drawings and the appended claims.
Referring to
The housing 12 may form the outer structure of the lamp assembly 10. Therefore, the housing 12 may provide a level of protection (e.g., from the environment) to the components of the lamp assembly 10 (e.g., the lamp 14, the heat transport elements 16 and the thermally conductive, electrically insulative material 18) housed therein. While a dome-shaped housing 12 is shown in the drawings, those skilled in the art will appreciate that housings 12 of various shapes and configurations may be used without departing from the scope of the present disclosure. For example, the shape of the housing 12 may be dictated by the shape of the lamp 14 housed therein.
The housing 12 may be formed from a material that is both thermally conductive and electrically conductive. As one general, non-limiting example, the housing 12 may be formed from a metal or metal alloy. Specific examples of metallic materials suitable for forming the housing 12 include, but are not limited to, aluminum, copper and steel (e.g., stainless steel), or alloys thereof. As another example, non-metals (e.g., composite materials) that are both thermally conductive and at least somewhat electrically conductive may be used.
Thus, the housing 12 may be electrically grounded (e.g., electrically coupled to ground G (
The housing 12 may define an internal volume 20 and an opening 22 into the internal volume 20. The internal volume 20 may be filled with ambient air. Alternatively, a modified atmosphere may be sealed within the housing 12. As best shown in
The lamp 14 may be any apparatus or system that generates light using electrical energy. In one particular construction, the lamp 14 may be a gas discharge lamp, such as a high-intensity discharge (HID) lamp. As one specific, non-limiting example, the lamp 14 may be a xenon short-arc lamp, such as a CERMAX® xenon short-arc lamp commercially available from Excelitas Technologies Corp. of Waltham, Mass. As another specific, non-limiting example, the lamp 14 may be a xenon long-arc lamp. Multiple lamps 14 may be used within a single housing 12.
Referring to
A mounting structure 42 may connect the lamp 14, specifically the first electrode assembly 24 of the lamp 14, to the housing 12 and may retain the lamp 14 in the desired position and orientation relative to the housing 12. The mounting structure 42 may enclose, at least partially, the opening 22 into the internal volume 20 of the housing 12. For example, the mounting structure 42 may be a plate, such as a ground plate, positioned over the opening 22 into the internal volume 20 of the housing 12. The mounting structure 42 may define an opening 44 through which a portion of the lamp 14 may extend to project light, as shown by arrow L.
The mounting structure 42 may be formed from a material that is both thermally conductive and electrically conductive. As one general, non-limiting example, the mounting structure 42 may be formed from a metal or metal alloy. Specific examples of metallic materials suitable for forming the mounting structure 42 include, but are not limited to, aluminum and steel (e.g., stainless steel). Non-metals (e.g., composite materials) that are both thermally conductive and electrically conductive may also be used.
Thus, the mounting structure 42 may both electrically couple and thermally couple the first electrode assembly 24 of the lamp 14 to the housing 12. As such, the mounting structure 42 may provide an electrical pathway from the first electrode assembly 24 of the lamp 14 to ground G (
The second electrode assembly 26 of the lamp 14 may be potted in the thermally conductive, electrically insulative material 18, such as in the form of a heat spreader. Additionally, the hot end portion 46 of each heat transport element 16 may be potted in the thermally conductive, electrically insulative material 18. The opposed, cold end portion 48 of each heat transport element 16 may be thermally coupled to the housing 12. An optional fastener 50, such as a mechanical fastener (e.g., a clip, a clamp or the like) or an adhesive-based fastener (e.g., a tape), may maintain touching engagement (physical contact), and thus thermal contact, of the cold end portion 48 of each heat transport element 16 with the housing 12.
Thus, the thermally conductive, electrically insulative material 18 may thermally couple the hot end portion 46 of each heat transport element 16 with the second electrode assembly 26 of the lamp 14, thereby thermally coupling the second electrode assembly 26 with the housing 12. Additionally, the thermally conductive, electrically insulative material 18 may electrically isolate the hot end portion 46 of each heat transport element 16 from the second electrode assembly 26.
While the lamp assembly 10 is shown in
A gap T of sufficient magnitude may be provided between the hot end portion 46 of each heat transport element 16 and the second electrode assembly 26, thereby avoiding the risk of arcing or otherwise shorting out to ground G (
The thermally conductive, electrically insulative material 18 may be any material or combination of materials capable of conducting significant quantities of heat from the second electrode assembly 26 to the heat transport elements 16, while significantly inhibiting the flow of electrical current between the second electrode assembly 26 and the heat transport elements 16. In one expression, the thermally conductive, electrically insulative material 18 may have a thermal conductivity of at least about 0.5 W/m-K, such as at least about 0.6 W/m-K or at least about 1 W/m-K or at least about 10 W/m-K. In another expression, the thermally conductive, electrically insulative material 18 may have a resistivity (at 20° C.) of at least about 1 Ωm, such as at least about 10 Ωm or at least 100 Ωm.
Various materials may be used as the thermally conductive, electrically insulative material 18. Examples of materials suitable for use as the thermally conductive, electrically insulative material 18 include, but are not limited to, epoxies, adhesives, pastes (whether curable or not), resins (whether curable or not), gels, oils and non-electrically conductive composites.
In one particular implementation, the thermally conductive, electrically insulative material 18 may be a thermally conductive, electrically insulative epoxy. One specific, non-limiting example of a thermally conductive, electrically insulative epoxy suitable for use as the thermally conductive, electrically insulative material 18 is MASTERBOND® Supreme 10AOHT single component epoxy, which is commercially available from Master Bond, Inc., of Hackensack, N.J. Another specific, non-limiting example of a thermally conductive, electrically insulative epoxy suitable for use as the thermally conductive, electrically insulative material 18 is MASTERBOND® EP21TDCANHT two-component epoxy, which is also commercially available from Master Bond, Inc.
The heat transport elements 16 may be any apparatus or system capable of transferring heat from the lamp 14 to the housing 12. In a simple realization, a heat transport element 16 may include a thermally conductive material (e.g., copper wire or tubing) that is elongated between the hot end portion 46 of the heat transport element 16 and the cold end portion 48. Heat may be transferred by conduction. In a more effective realization, the heat transport elements 16 may transfer heat by employing a working fluid that undergoes a phase transition.
In one specific realization, the heat transport elements 16 may be (or may include) heat pipes. For example, as shown in
Optionally, the heat transport elements 16 may be flexible. For example, the heat transport elements 16 may be shaped (e.g., bent) to closely conform to the contour of the housing 12, thereby providing the physical contact necessary to efficiently transfer heat to the housing 12.
Referring to
The configuration of lamp assembly 100 may be substantially the same or similar to the configuration of lamp assembly 10, with the exception of the location of the thermally conductive, electrically insulative material 118. Specifically, rather than having the second electrode assembly 126 of the lamp 114 and the hot end portion 146 of the heat transport element 116 potted in the thermally conductive, electrically insulative material 118, the thermally conductive, electrically insulative material 118 may be positioned between the housing 112 and the cold end portion 148 of the heat transport element 116, thereby allowing heat to transfer from the heat transport element 116 to the housing 112, while electrically isolating the housing 112 from the heat transport element 116.
Various configurations may be used. As one example, the thermally conductive, electrically insulative material 118 may be formed as a patch on the inner surface 113 of the housing 112, and the cold end portion 148 of the heat transport element 116 may be connected to the patch of the thermally conductive, electrically insulative material 118, such as with a fastener 150 (e.g., a mechanical fastener). As another example, the thermally conductive, electrically insulative material 118 may be physically connected to the inner surface 113 of the housing 112, and the cold end portion 148 of the heat transport element 116 may be potted in the thermally conductive, electrically insulative material 118.
Thus, the thermally conductive, electrically insulative material 118 may thermally couple the cold end portion 148 of the heat transport element 116 with the housing 112. Additionally, since the heat transport element 116 may be electrically hot due to direct contact with the second electrode assembly 126 of the lamp 114, the thermally conductive, electrically insulative material 118 may electrically isolate the cold end portion 148 of the heat transport element 116 from the housing 112.
Referring to
The configuration of lamp assembly 200 may be substantially the same or similar to the configuration of lamp assembly 10, with the exception of the addition of the first heat spreader 280 and the second heat spreader 282. Specifically, rather than having the second electrode assembly 226 of the lamp 214 and the hot end portion 246 of each heat transport element 216 potted in the thermally conductive, electrically insulative material 218, the first heat spreader 280 may be connected to the second electrode assembly 226 and the thermally conductive, electrically insulative material 218 may be positioned between the first heat spreader 280 and the hot end portion 246 of each heat transport element 216. For example, the hot end portion 246 of each heat transport element 216 may be connected to the second heat spreader 282, and the thermally conductive, electrically insulative material 218 may be positioned between the first heat spreader 280 and the second heat spreader 282.
The first and second heat spreaders 280, 282 may be formed from a highly thermally conductive material, such as a metal (e.g., copper) or metal alloy (e.g., an aluminum alloy). Therefore, the first and second heat spreaders 280, 282 may be electrically conductive. While the first heat spreader 280 is shown having a star shape, any shape and/or configuration may be used that effectively increases the surface area of the second electrode assembly 226 of the lamp 214.
Thus, the first heat spreader 280, the thermally conductive, electrically insulative material 218, and the second heat spreader 282 may readily transfer heat away from the second electrode assembly 226 of the lamp 214 and to the hot end portions 246 of the heat transport elements 216. However, the thermally conductive, electrically insulative material 218 may electrically isolate the first heat spreader 280 from the second heat spreader 282 and, as such, from the heat transport elements 216.
In one alternative embodiment, the second heat spreader 282 may be omitted and/or substituted with additional quantities of the thermally conductive, electrically insulative material 218. For example, the first heat spreader 280 (which may be connected to the second electrode assembly 226 of the lamp 214) and the hot end portion 246 of each heat transport element 216 may be potted in the thermally conductive, electrically insulative material 218. A gap of sufficient magnitude may be provided between the hot end portions 246 of the heat transport elements 216 and the first heat spreader 280, thereby avoiding the risk of arcing or otherwise shorting out to ground by way of the heat transport elements 216.
Referring to
At Block 304, the first electrode of the lamp may be both thermally coupled and electrically coupled to the housing. For example, a mounting structure (e.g., a ground plate) may connect the first electrode of the lamp to the housing and may retain the lamp in the desired position and orientation relative to the housing. The mounting structure may enclose, at least partially, the opening into the internal volume of the housing.
At Block 306, the second electrode of the lamp may be thermally coupled to the housing by way of a thermally conductive, electrically insulative material. One or more heat transfer elements, such as a heat pipe, may be included in the thermal pathway between the second electrode and the housing. The thermally conductive, electrically insulative material may form a portion of the thermal pathway between the second electrode and the housing, and may also electrically isolate the housing from the second electrode.
Accordingly, the disclosed high-intensity discharge lamp assembly and method may provide the ability to effectively cool a lamp, such as a xenon arc lamp that may operate at temperatures in excess of 100° C., without creating an electrical short, even during the initial, high-voltage ignition of the lamp.
Although various embodiments of the disclosed high-intensity discharge lamp assembly and method have been shown and described, modifications may occur to those skilled in the art upon reading the specification. The present application includes such modifications and is limited only by the scope of the claims.