The present invention relates to aerial vehicles and more specifically to aircraft having one or more horizontal airfoils having spans bounded in dual fuselage configurations.
Aircraft, having multiple fuselages, and amphibious aircraft, having multiple hulls, have been proposed as high lift and low draft air vehicles achieved via one or more horizontal wings bounded on each of their tips by a fuselage. U.S. Pat. No. 3,844,432 to Blanchard, Jr. et al. discloses an aircraft having multiple fuselages addressing large nose-down pitching moments generated by the flap high-lift forces. Elevator control is achieved via horizontal tails extended outboard from each to the outmost fuselages. Rudder control is achieved via vertical tails extending upwards from each of the outmost fuselages.
U.S. Pat. No. 3,159,361 to Weiland discloses an amphibious aircraft having multiple fuselages or hulls having interposed between them a forward negatively swept horizontal wing and an aft negatively swept horizontal wing in tandem. The tandem negatively swept horizontal wings each have a pair of pivotally mounted turbo-props. Rudder control is achieved via vertical stabilizers extending upwards from each of the hulls. Elevator control is achieved via a horizontal stabilizer above the plane of the tandem wings and connected to upper ends of the vertical stabilizers.
U.S. Pat. No. 3,244,246 to Weiland discloses an amphibious aircraft having multiple fuselages or hulls having interposed between them a forward horizontal wing and an aft horizontal wing in tandem. The tandem horizontal wings exploit ground effects using a plenum volume created via extendable vanes between the underside of each of the horizontal wings and the ground or water surface. Rudder control is achieved via vertical stabilizers extending upwards from each of the hulls. Elevator control is achieved via a horizontal stabilizer above the plane of the tandem wings and connected to upper ends of the vertical stabilizers.
There remains a need for aircraft having two or more wings having substantially parallel fuselages at each of the wingtips where turboprops or other propulsion systems are mounted at the nose or tail of each of the fuselages or where turboprops or other propulsion systems, when mounted on a wing section, the wing section may be articulated to orient the thrust vector. Further, there remains a need for aircraft having two or more wings having substantially parallel fuselages at each of the wingtips where canards may be used for finer pitch control absent adverse acceleration and aileron-induced roll control.
The invention in its several embodiments is an aircraft having port and starboard fuselages and at least two wings or bounded airfoils interposed between the fuselages. The port fuselage of the exemplary aircraft has a substantially cylindrical body with a port centerline, a nose portion, a mid-body portion and a tail portion. A port vertical stabilizer mounted topside and proximate to the tail portion of the port fuselage may be used or a T-tail stabilizer system. Some embodiments have an outboard port canard, proximate to the nose portion of the port fuselage. The outboard port canard may be complemented by an inboard port canard. The outboard port canard may have deflectable panel. A port propulsion unit may be mounted, preferably along the port centerline, at either the nose or the tail of the port fuselage. The starboard fuselage of the exemplary aircraft is substantially parallel to and coplanar with the port fuselage, and the starboard fuselage is also a substantially cylindrical body having a starboard centerline, a nose portion, a mid-body portion and a tail portion. A starboard vertical stabilizer is mounted topside and proximate to the tail portion of the starboard fuselage or T-tail stabilizer may be used. Some embodiments have an outboard starboard canard, proximate to the nose portion of the starboard fuselage. The outboard starboard canard may be complemented by an inboard starboard canard. The outboard starboard canard may have deflectable panel. A starboard propulsion unit may be mounted, preferably along the starboard centerline, at either the nose or the tail of the starboard fuselage. The propulsion unit may be a turbo-prop or a turbojet/turbofan, for example. Preferably a pusher turbo-prop propulsion system is mounted at the tail portion of the fuselages. The exemplary aircraft has a forward wing that may be described as having a leading edge and a trailing edge. The forward wing, as a substantially aerodynamic planar member, spans a region between the mid-body portion of the port fuselage and the mid-body portion of the starboard fuselage. Accordingly, the fuselages may be described as at the wingtips of the forward wing. The exemplary aircraft also has an aft wing that may be described as having a leading edge and a trailing edge. The aft wing, as a substantially aerodynamic planar member, spans a region between the mid-body portion of the port fuselage and the mid-body portion of the starboard fuselage so that it is substantially parallel to and above the plane of the forward wing and preferably aligned so that the leading edge of the aft wing is aft of the trailing edge of the forward wing. When each fuselage does not have its own respective T-tail stabilizer system, then a horizontal stabilizer spans from an upper section of the port vertical stabilizer to an upper section of the starboard vertical stabilizer.
Other embodiments of the invention include an aircraft having additional propulsion units, preferably a forward wing propulsion unit mounted at substantially the mid-span region of the forward wing and proximate to the leading edge of the forward wing and an aft wing propulsion unit mounted at substantially mid-span of the forward wing and proximate to the leading edge of the aft wing. In some embodiments the forward wing, the aft wing, or both wings are adapted to pivot substantially about the leading edge of each respective wing wherein the trailing edge of the respective wing preferably subtends an angle of less than twenty-one degrees.
For a further understanding of the nature and objects of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:
The synergistic arrangement of wings between and bounded by fuselages that may also serve as cargo components of an aircraft provides for optimum aerodynamic and mission performance including amphibious take off and landing operations. The configurations of the invention improve the operations of current aircraft having conventional wing-fuselage configurations. Such operational improvements may include: an increased in range due to higher lift-to-drag ratios; an increase in payload due to an increase in lift and a reduction in structural weight; an improvement in airport and carrier operations due to significant reductions in wing span; a reduction in take-off speeds and distances due to higher wing lift at low speeds; and a significant reduction in production costs due to manufacturing preferably through composite construction. Preferably, the aircraft configuration of the present invention includes two or more wings located between two aerodynamic cargo bays or fuselages and a tail stabilizer assembly.
The T-tail stabilizer system 106 of the embodiment illustrated in
Referring again to
An alternative embodiment of the aircraft configuration as illustrated by example in
In this illustration, a forward propulsion system 518 is mounted on a forward wing 502 and an aft propulsion system is mounted on an aft wing 504. In some embodiments, a cockpit 531 for manned flight or for autopilot electronics is integrated into the upper portion of the port fuselage 112, midway between the forward wing 102 and aft wing 104.
Likewise, in some embodiments, a cockpit 533 for manned flight or for autopilot electronics is integrated into the upper portion of the starboard fuselage 114, midway between the forward wing 102 and aft wing 104. In some embodiments, a cockpit 532 may be centrally located in the forward wing 102.
Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention.
Therefore, the invention has been disclosed by way of example and not limitation, and reference should be made to the following claims to determine the scope of the present invention.
This application claims the benefit of provisional application No. 60/540,212, to Frank Malvestuto, Jr., and John R. Hanscomb entitled “HIGH-LIFT, LOW-DRAG DUAL FUSELAGE AIRCRAFT,” filed Jan. 28, 2004, and is hereby incorporated by reference herein, in its entirety, for all purposes.
Number | Date | Country | |
---|---|---|---|
60540212 | Jan 2004 | US |