High lignan flaxseed product and product by process

Information

  • Patent Application
  • 20030180436
  • Publication Number
    20030180436
  • Date Filed
    March 24, 2003
    21 years ago
  • Date Published
    September 25, 2003
    21 years ago
Abstract
The present invention consists of an inventive high lignan (3% to 5% or greater) flax seed product and product by process which is produced by the improved method of 1) supplying a uniformly colored quantity of flax seeds with less than 5 percent visually darker seeds; 2) milling the selected seeds of a visually uniform color; 3) sifting the milled selected seeds into a second portion and a third portion using a preferred screen size from US #12 up to and including US #18; 4) selecting the coarser fraction of the sifted, milled flax meal and aspirating it into a fourth lighter density portion and a fifth coarser, angular portion, wherein the fourth lighter portion contains the valuable high lignan concentrate. As an added advantage of the preferred product and product by the process, the improved high lignan flax seed meal further contains approximately 40-50% insoluble fiber and 50-60% soluble fiber.
Description


FIELD OF THE INVENTION

[0002] The present invention relates to the field of flax seed processed meals, and more particularly those processes which create a very high lignan flax seed meal.



BACKGROUND OF THE INVENTION

[0003] Flax seeds are flat, oval and pointed at one end. They contain a seed coating, an embryo comprising two large, flattened cotyledons, a short hypocotyl and a radical. The seed coating in flax seed is formed from the ovule and has five layers, two of which are the most important. These two layers consist of the epidermal layer, commonly called the mucilage layer, and the testa which consists of pigmented cells which determine the seed's coloring. The cotyledon forms 55% of the seed, whereas the seed coat and the endosperm comprise 36% of the seed, while the embryo axis comprises 4% of the seed's total weight.


[0004] Typically, various abrasion methods have been implemented in husking. The oil of the flax seed may be separated by pressing or extracting it from the whole grain. Flax seed has been cultivated in Canada and the USA primarily for oil The solid residue has been typically used as an animal feed.


[0005] Full fat milled seed is defined as the product milled by any suitable milling process including grinding and impact techniques where the whole seed is milled without any prior extraction of oil or other components.


[0006] Defatted flax meal refers to flax meal made from flax seeds from which the oil has been extracted therefrom.


[0007] One of the major benefits of processing flax seeds into a nutritional supplement for humans is the fact that they contain lignans in an amount of 0.7 percent to 1.5 percent. High lignan processed flax seeds are believed to hold special pharmaceutical benefits inasmuch as they exhibit broad biological activities, including antitumor, antioxidant, antiviral and estrogenic and antiestrogenic activities. The lignans are generally cinnamic acid dimers containing a dibenzylbutane skeleton. The primary lignan found in flax seed is secoisolariciresinol diglycoside (SDG). Other benefits include the fact that it is a rich source of essential fatty acids.


[0008] In the past, lignan concentrations in flax seed were exhibited far less than 3%. In such concentrations, the pharmaceutical applications were more limited and flax seed products were not typically used for antitumor, antiviral, estrogenic and antiestrogenic purposes. It should be noted that in the past, defatted flax seed meals typically contained less than 3 percent lignans.



SUMMARY OF THE INVENTION

[0009] The present invention consists of a method and product by method for producing high lignan flax seed meal. The flax product created from the present inventive process may be made from either flax seed or defatted flax meal, which has elevated lignan concentrations and soluble fiber concentrations. In the inventive process, flax seeds are selected by a process essentially consisting of selecting portions of flax seeds such that uniformly colored seeds are selected and product with 5% or more of the visually darker flax seeds are deselected. Such a method is completely disclosed in U.S. Pat. No. 6,368,750, issued to Glenn Roy Pizzey on Apr. 9, 2002, and which is incorporated by reference hereto within the present patent application.


[0010] The hulls are then milled or separated from the seeds such that the hulls still retain mucilage, lignans and antioxidants. The selected milled product is then sifted into two fractions by using screens having aperture sizes of US #12, US #14, US #16 or US #18. The larger the screen size, the more selected product is produced. Typically, from 1 percent to 5 percent yield is obtained from this screening process.


[0011] The next step is to take the coarse fraction and further process it by aspiration, which is a process well known in the relevant art of grain processing and is not further described herein. From this process the resultant product is again separated into two fractions, with the first being lighter in density than the second fraction. The second fraction is denser and more angular. The first fraction has the preferred high lignan content, which is the inventive product by process. This first product may be sold as is, or it may be further extruded and then sold commercially.


[0012] Nonetheless, the resultant products has a lignan content not seen before in the prior art, that is a lignan concentration of 3%, 4%, 5%, 6%, 7% or even greater, enabling it to have a much wider use for dietary supplements and pharmaceutical products and preparations, and especially such usages as antiviral, antitumor, antioxidant, estrogenic and antiextrogenic activities.



OBJECTS OF THE INVENTION

[0013] Thus, it is one primary object of the present invention to provide a product by process that may attain greatly elevated lignan concentrations of 3%, 4%, 5% or even greater by supplying a quantity of uniformly colored flax seeds containing 5% or less of the visually darker seeds, then milling the selected seeds, then sifting the milled product and selecting the darker coarser portion, then aspirating the selected milled product and then reselecting the lighter density product which has the improved higher lignan content.


[0014] Another primary object of the present invention is to provide a product by process which may attain an improved ratio of soluble fiber to insoluble fiber by supplying a quantity of uniformly colored flax seeds containing 5% or less of the visually darker seeds, then milling the selected product, then sifting the milled product and selecting the darker coarser portion, then aspirating the selected milled product and then reselecting the lighter density product which has the improved higher lignan content.


[0015] Yet a further object of the present invention is to provide an improved processing method and resultant product by supplying a quantity of uniformly colored flax seeds containing 5% or less of the visually darker seeds, then milling the selected seeds, then sifting the milled product and selecting the coarser portion, then aspirating the selected milled product, then reselecting the lighter density product which has the improved higher lignan content and then extruding the reselected lighter, higher lignan product.


[0016] Still an additional object of the present invention is to provide a product by process that may attain greatly elevated lignon concentrations of 3%, 4%, 5%, 6%, 7% or even greater by supplying a quantity of uniformly colored flax seeds containing 5% or less of the visually darker seeds, then milling the selected product, then sifting the milled product and selecting the coarser portion, then aspirating the selected milled product and then reselecting the lighter density product which is improved in that it has a total dietary fiber comprising 40-50% insoluble fiber and 50-60% soluble fiber


[0017] These and other objects and advantages of the present invention can be readily derived from the following detailed description of the present invention and should be considered as within the overall scope of the invention.







DETAILED DESCRIPTION OF INVENTIVE PROCESS AND PRODUCT BY PROCESS

[0018] In the present inventive process, flax seeds are selected by a process essentially consisting of providing a quantity of flax seeds, selecting portions of the flax seeds such that the uniformly colored seeds are selected and product with no more than 5% of the visually darker product is retained in the mix. As noted above, such a method is fully disclosed in U.S. Pat. No. 6,368,750 issued to Glenn Roy Pizzey on Apr. 9, 2002, and which is incorporated by reference hereto.


[0019] The visually uniformly colored seeds are then milled or hulls are separated from the seeds such that the hulls still retain mucilage, lignans and antioxidants. This particular milled product is then sifted into two portions by using screens with apertures sizes of US #12, US #14, US #16 or US #18. The larger the aperture mesh selected, the greater the process yield. Typically, from one percent to five percent is obtained from such a product.


[0020] The resultant coarser portion is then further processed by aspiration, a procedure well known in the relevant art and which is not further disclosed herein. From the aspiration process, the aspiration product is again divided into two portions, wherein the first portion is lighter in density, while the second is heavier and more coarse. It is the first fraction which as the higher or preferred high lignan content which is the inventive product by process. This particular product may be used as is, or it may be further extruded, depending upon the particular application which it will be used in.


[0021] When the hulls are extruded, this is accomplished with a X-20 Wenger, Spiral ribbed single screw extruder, or other preferred similar extruders may be utilized. No preconditioning is necessary for use with the extruder. The hulls are fed through the extruder dry, although at the beginning of the run, drops of ambient, distilled water are dripped into the barrel. This sufficiently lubricates the barrel to facilitate the feeding of the hull into the extruding device. After material reaches the end of the die, then the addition of distilled water into the barrel is no longer necessary. The material creates its own sheer and thus heat. The barrel is jacketed and cooling water is circulated through for the entire duration of the extrusion. The first four sections of the barrel are cooled constantly. The cooling jacket on the die end is only utilized when the temperature exceeds 105° C. It is preferable to avoid further temperature increases. A high die temperature creates a very hard product, which may plug the die holes. However, it is necessary to maintain some heat because it facilitates material movement through the extruder.


[0022] Although dies with two holes have been typically used in the inventive process, there is no reason to believe that dies with additional holes would not adequately function to accomplish the task at hand. Extruded product has not been dried or tested for moisture. Moisture need not be tested at the beginning of the extrusion process. A higher oil content of the hull can cause surging.


[0023] The size or shape of the extruded pellets is not an important factor inasmuch as the resultant product may later be ground to the preferred size. For example, a food fortification application may require a mesh size of approximately 30 mesh, whereas a dietary supplement tablet application may require an 80 mesh size. Various grinders can be used for preparing the product; however, mesh sizes finer than 40 mesh may require cryogenic pre-cooling.


[0024] It may be noted that the lignan concentration of the flax seed product of the present invention was determined using a novel method developed by the inventor and Alpha Laboratories, 1365 Redwood Way, Petaluma, Calif. The method comprises hydrolizing flax seed hulls directly using 0.3-2N NaOH followed by HPLC analysis and UV diode array detection at 281 nm.


[0025] It should be noted that an important aspect of the present inventive process is that extrusion lowers the microbial counts without any impairment of stability of the end product. The resultant product exhibits stability for up to one full year. Extrusion of the hull material creates mechanical sheer, which produces heat and thus pasteurization.


[0026] An additional feature of the present inventive process and product by process is that the flax product produced contains a higher ratio of soluble fiber to insoluble fiber than full fat milled flaxseed. Specifically, in prior art flax meals, total fiber in flax meal consists typically of 60-70% insoluble fiber to 30-40% soluble fiber. However, the flax product described herein has approximately 40-50% insoluble fiber and 50-60% soluble fiber.


[0027] It is further of note that the inventive flax seed product has antioxidant activity of typically 15,000 to 40,000 TE (Trolox Equivalents) per 100 grams. As shown below, this is significantly higher than the antioxidant activity of other foods considered to be high in antioxidant activity.
1FoodAntioxidant activity (TE/100 grams)Flax Product40,000Red Grapes1,350Red Cabbage1000Broccoli Flowers500Spinach500Green Grapes400Tomato300Green Beans175Lima Beans1,055Red Beans11,459Blueberries3,300Raisins5,900Wheat Bran4,620Wheat Flour (refined)600


[0028] As discussed above, the flax product may be used in many applications, for example, but by no means limited to, a specialty animal feed, dietary supplement, food additive, functional food product, nutraceuticol, and the like.


[0029] The following is a Chemical Analysis of a the present Improved Flax Product


[0030] Energy 295 cal/100 g
2Min %Max %Typical %Moisture31311.5Protein6.57.57.0Dietary Fiber506056Soluble Fiber253530Insoluble Fiber222925Carbohydrate626664Fat (AOAC 996.06)101512.5Polyunsaturates7108.5Linolenic Acid687Linoleic Acid12.52Monosaturates1.52.52Saturates121.5Lignans575.5


[0031] Accordingly, a new inventive process is created and a product by process is disclosed herein which dramatically increased the lignan content of processed flax seed product by as much as 3%, 4%, 5%, 6%, 7% or even greater.


[0032] Although in the foregoing detailed description the present invention has been described by reference to various specific embodiments, it is to be understood that modifications and alterations in the structure and arrangement of those embodiments other than those specifically set forth herein may be achieved by those skilled in the art and that such modifications and alterations are to be considered as within the overall scope of this invention.


Claims
  • 1. A flax product having a lignan concentration of greater than 3%
  • 2. The flax product according to claim 1 wherein the concentration of lignans is greater than 4%.
  • 3. The flax product according to claim 1 wherein the concentration of lignons is greater than 5%.
  • 4. The flax product according to claim 1 wherein the concentration of lignons is greater than 6%.
  • 5. The flax product according to claim 1 wherein the concentration of lignans is greater than7%.
  • 6. The flax product according to claim 1 having a total dietary fiber comprising 40-50% insoluable fiber and 50-60% soluable fiber.
  • 7. The flax product according to claim 1 having an antioxidant activity of 15,000 to 40,000 TE per 100 grams.
  • 8. The flax product according to claim 1 produced by the process of: providing a quantity of flax seeds; selecting a visually uniformly colored first portion of flax seeds by deselecting a second portion of the flax seeds which contains a visually distinguishable darker color in a quantity of 5% or more; milling the first selected visually uniformly colored portion; sifting the milled seeds into a third portion which is lighter in color and a fourth portion which is denser and coarser in granularity; aspirating the coarser portion into a fifth lighter density portion and a sixth denser portion; wherein, the fifth portion has the desired improved high lignan content.
  • 9. The flax product by process according to claim 8 wherein the process of sifting the first portion into a third and forth portion is accomplished by the use of a mesh screen of a screen size from substantially US #12 to US #18.
  • 10. The flax product by process according to claim 8 wherein the fifth high lignon portion is further processed by extrusion.
Parent Case Info

[0001] The instant application is a continuation of U.S. Pat. Ser. No. 60/366,268, filed Mar. 22, 2002, now abandoned.

Provisional Applications (1)
Number Date Country
60366268 Mar 2002 US