Not applicable.
Not applicable.
Not applicable.
Not applicable.
The present invention relates generally to a ratchet tool, and more particularly to the innovative structure type of a high-loading ratchet tool.
The ratchet wrench is a ratchet tool using ratchet mechanism to implement one-way back stop actuation, as shown in
The two ends of the ratchet 14 axially form a circular first shaft segment 17 and a circular second shaft segment 18 respectively. The handle 11 forms a first receiving groove 112 for receiving the ratchet 14. The two ends of the first receiving groove 112 of the handle 11 form a circular second receiving groove 114 and a circular third receiving groove 116 respectively. The first shaft segment 17 is pivoted in the second receiving groove 114, the second shaft segment 18 is pivoted in the third receiving groove 116, based on the working part 12 and the ratchet 14 required of easy rotation, the outside diameter of the first shaft segment 17 is a little smaller than the inside diameter of the second receiving groove 114, and the outside diameter of the second shaft segment 18 is a little smaller than the inside diameter of the third receiving groove 116.
The known ratchet wrench still has the following problems and defects in practical application:
The working part 12 is used for connecting the sleeve, the sleeve is fitted over a driven object (not shown in the figure). The working part 12 indirectly brakes the driven object through the sleeve. The driven object is rotatably installed or removed. The driven object can be a bolt or a nut cap or a similar object. The working part 12 applies a torsion to the driven object through the sleeve to rotate the driven object, The driven object generates a stress, the stress is transferred through the sleeve to the working part 12, so that the working part 12 and the ratchet 14 move away from the brake block 15, and then the outer edge of the first shaft segment 17 is in single line contact with the second receiving groove 114 (as shown in
The existing method for enhancing the load capacity of ratchet tool for acting force is to change the materials or manufacturing methods of the working part 12, the ratchet 14 and relevant structures with the ratchet 14.
Therefore, for said problems in the known technology of ratchet tool, how to develop an innovative structure with more ideal practicability is the objective and direction of the related circles. In view of this, based on the inventor's years' experience in manufacturing, developing and designing related products, the present invention with practicability is obtained after detailed design and careful evaluation for said objective.
The primary object of the present invention is to provide a high-loading ratchet tool, the technical problem to be solved is to break through how to develop a novel ratchet tool with higher load capacity and more ideal practicability.
Based on said purpose, the technical characteristic of problem solving of the present invention is that the high-loading ratchet tool comprises a main body, a braking structure and a working part, wherein the main body forms a first receiving groove, a second receiving groove and a third receiving groove. The first receiving groove, the second receiving groove and the third receiving groove are axially connected, the first receiving groove is located between the second receiving groove and the third receiving groove.
The braking structure is disposed on the main body, the braking structure comprises a ratchet and a brake block, wherein the brake block engages with the ratchet to form one-way stop. The two ends of the ratchet axially form a circular first shaft segment and a circular second shaft segment respectively. The ratchet can be movably disposed in the first receiving groove. The first shaft segment can be movably disposed in the second receiving groove, the second shaft segment can be movably disposed in the third receiving groove.
The working part is coupled with the first shaft segment, so that the working part directly or indirectly brakes unidirectional rotation of a driven object.
The radius of the first shaft segment is R1, the second receiving groove is composed of a first circular surface and a second circular surface opposite to each other. The second circular surface is located on the side of the first circular surface far from the brake block. The center of the second circular surface is located in the second receiving groove. The radius of the first circular surface is R2, the radius of the second circular surface is R3, R2>R1≥R3, so as to disperse the relative force of the first shaft segment and the second receiving groove. The radius of the second shaft segment is R4. The third receiving groove is composed of a third circular surface and a fourth circular surface opposite to each other. The fourth circular surface is located on the side of the third circular surface far from the brake block. The center of the fourth circular surface is located in the third receiving groove. The radius of the third circular surface is R5, the radius of the fourth circular surface is R6, R5>R4≥R6, so as to disperse the relative force of the first shaft segment and the second receiving groove. In terms of main effect and advantages, the present invention can bear higher acting force, so that the restriction of the working part on external torsion is enhanced.
The braking structure 30 is disposed on the main body 20. The braking structure 30 comprises a ratchet 31, a brake block 32 and a switchover element 33, wherein the two ends of the ratchet 31 axially form a circular first shaft segment 34 and a circular second shaft segment 35. The ratchet 31 can be movably pivoted in the first receiving groove 21, the first shaft segment 34 can be movably disposed in the second receiving groove 22, the second shaft segment 35 can be movably disposed in the third receiving groove 23. The brake block 32 engages with the ratchet 31 to form one-way stop, so as to restrict unidirectional rotation of the ratchet 31. The switchover element 33 is in contact with the brake block 32, so as to transform the stopping state of the brake block 32 and the ratchet 31. The switchover element 33 is optional, the braking structure 30 can be free of the switchover element 33 for some purposes. The braking structure 30 is the existing technology familiar to the persons of the technical field. The composition will not be described in detail.
The working part 40 is coupled with the first shaft segment 34. The working part 40 is a column, and a bulge 42 is formed on one side of the working part 40, so that the working part 40 is inserted in a sleeve (not shown in the figure). The sleeve is fitted over a driven object (not shown in the figure), the working part 40 indirectly brakes the rotation of the driven object through the sleeve. The driven object is rotatablely installed or removed, the driven object can be a bolt or a nut cap or a similar object.
As shown in Fig.5, the second receiving groove 22 is composed of a first circular surface 222 and a second circular surface 224 connected to each other. The second circular surface 224 is located on the side of the first circular surface 222 far from the brake block 32. The center of the second circular surface 224 is located in the second receiving groove 22. The radius of the first circular surface 222 is greater than the radius of the first shaft segment 34. The radius of the first shaft segment 34 is greater than or equal to the radius of the second circular surface 224. As shown in
As shown in Fig.5, when the radius of the first circular surface 222 is greater than the radius of the first shaft segment 34 and when the first shaft segment 34 is greater than the radius of the second circular surface 224, the first shaft segment 34 is in line contact with the second receiving groove 22 in at least two places. As shown in
Further, it is preferable that the radius of the first circular surface 222 is greater than the first shaft segment 34 and that the radius of the first shaft segment 34 is equal to the radius of the second circular surface 224. It is also preferable that the radius of the third circular surface 232 is greater than the radius of the second shaft segment 35 and the second shaft segment 35 is equal to the radius of the fourth circular surface 234. When the radius of the first circular surface 222 is greater than the radius of the first shaft segment 34 and the radius of the first shaft segment 34 is equal to the radius of the second circular surface 224, the first shaft segment 34 is in a minimal surface contact with the second circular surface 224. When the third circular surface 232 is greater than the radius of the second shaft segment 35 and the radius of the second shaft segment 35 is equal to the radius of the fourth circular surface 234, the second shaft segment 35 is in small surface contact with the fourth circular surface 234.
In comparison to the known ratchet wrench, the present invention can effectively disperse the relative force between the first shaft segment 34 and the second receiving groove 22, and disperse the relative force between the second shaft segment 35 and the third receiving groove 23, so that the ratchet tool of the present invention can bear higher acting force than the known ratchet wrench, and the first shaft segment 34, the second shaft segment 35, the second receiving groove 22 and the third receiving groove 23 are not damaged, the restriction of the working part 40 on external torsion can be enhanced.
As shown in
As shown in
When the radius of the first circular surface 222 is greater than the radius of the first shaft segment 34 and the radius of the first shaft segment 34 is greater than the radius of the second circular surface 224, the first shaft segment (not shown in the figure) and the second receiving groove 22 of Embodiment 2 are in line contact on the first joint faces 226 respectively; when the radius of the third circular surface 232 is greater than the radius of the second shaft segment 34 and the radius of the second shaft segment 34 is greater than the radius of the fourth circular surface 234, the second shaft segment (not shown in the figure) and the third receiving groove 23 of Embodiment 2 are in line contact on the second joint faces 236 respectively.
As shown in
In another embodiment, the radius of the first shaft segment 34 is equal to the radius of the second shaft segment 35 and the radius of the first circular surface 222 is equal to the radius of the third circular surface 232 and the radius of the second circular surface 224 is equal to the radius of the fourth circular surface 234, the second receiving groove 22 and the third receiving groove 23 can be formed at a time by using the same cutting tool, so that the second receiving groove 22 and the third receiving groove 23 are likely to have the same machining accuracy. The first shaft segment 34 and the second shaft segment 35 are likely to contact the second receiving groove 22 and the third receiving groove 23 in the same position, so as to avoid eccentric wear, favorable for improving the service life.
Embodiment 4 is the implementation option applied to ratchet wrench, as shown in
Based on said structural composition and technical characteristics, the high-loading ratchet tool of the present invention can bear higher acting force, so that the restriction of the working part 40 on external torsion is enhanced.
Number | Date | Country | Kind |
---|---|---|---|
108139718 | Nov 2019 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
9789593 | Kao | Oct 2017 | B2 |
20050120832 | Chiang | Jun 2005 | A1 |
20100186555 | Hu | Jul 2010 | A1 |
20130319184 | Chen | Dec 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20210129297 A1 | May 2021 | US |