High molecular weight polyimide, method of making same and articles formed therefrom

Information

  • Patent Grant
  • 5026822
  • Patent Number
    5,026,822
  • Date Filed
    Tuesday, July 12, 1988
    36 years ago
  • Date Issued
    Tuesday, June 25, 1991
    33 years ago
Abstract
A novel composition consisting essentially of a polyimide of the formula: ##STR1## wherein R is: ##STR2## is disclosed and claimed. The composition has a weight average molecular weight, M.sub.w of at least 75,000 and a polydispersity of from about 1.8 to about 2.6.
Description

TECHNICAL FIELD
The present invention relates generally to polyimides and more specifically to polyimides containing hexafluorosopylidene linkages.
BACKGROUND ART
Polyimides in general are well known in the art to be useful for high temperature applications, since they have a glass transition temperature of about 300 degrees Celsius and above. Such polymers may be prepared in any number of ways, perhaps the most common method being a two-step process including reacting a dianhydride such as pyromellitic dianhydride (PMDA) with a diamine to form a soluable polyamic acid which is then cyclized, thermally or by chemical means to form a polyimide.
Such procedures have been employed in connection with fluorinated polyimides as shown, for example, in U.S. Pat. No. 3,356,648 to Rogers. Example 11 of the '648 patent discloses a method of preparing a polyimide from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 2,2-bis(4-aminophenyl) hexafluoropropane. Equimolar amounts of the diamine and dianhydride are stirred together in dioxane for about eighteen hours at room temperature to form a polyamic acid. To the polyamic acid is added acetic anhydride and a minor amount of beta-picoline. After stirring for about 15 minutes, without cooling, the mixture is poured onto a glass plate to form a gel film. The gel film is heated in an oven at 120.degree. C. for twelve hours, then heated two more hours at 250.degree. C. to form a polyimide film. The polyimide film thus produced is reportedly soluable in chloroform, benzene, dioxane and acetone.
Other fluorinated polyimides are disclosed in U.S. Pat. No. 3,959,350 to Rogers. In Example I of the '350 patent, a fluorinated polyimide is prepared by mixing equimolar amounts of the 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-diaminodiphenyl ether in dimethylacetamide under a nitrogen atmosphere at room temperature The intermediate polyamic acid is converted to the corresponding polyimide by adding beta-picoline and acetic anydride.
Fluorinated polyimides prepared as above do not have the desired properties in terms of molecular weight, color and other parameters required for many applications and thus further work has been done in this field. For instance, in U.S. Pat. No. 4,645,824 to Landis et al., there is disclosed and claimed a method of preparing high molecular weight fluorinated polyimides prepared by way of cresol solution. In the '824 patent, a method of preparing polyimides is described including the steps of step wise mixing equimolar amounts of 4,4'-hexafluoroisopropylidene bis(phthalic dianhydride) and 2,2-bis(3-aminophenyl) hexafluoropropane in cresol at room temperature. The mixture is heated to about 215.degree. Celsius for one hour to yield polyimide of molecular weight up to about 35,000, reportedly soluable in dimethylacetamide.
The above noted polymers, while exhibiting the temperature performance characteristic of polyimides, do not exhibit the properties desired in many end-uses.
It is accordingly an object of the invention to produce fluorinated polyimide compositions exhibiting superior performance in terms of mechanical properties, thermal stability, low dielectrics, optical properties, and other, more uniform characteristics.
Another object of the invention is to achieve shaped articles of suitable mechanical and optical properties for end uses in demanding environments.
Still further objects and advantages of the present invention will become readily apparent from the following description and claims.
SUMMARY OF INVENTION
The present invention is directed to certain ultra-high molecular weight fluorinated polyimide compositions, a method of producing same and shaped articles of such fluorinated polyimide compositions exhibiting the properties and advantages herein stated. There is provided in accordance with the invention high molecular weight polyimide compositions of the formula: ##STR3## wherein R is ##STR4## The compositions of the present invention are produced by way of a substantially isothermal, low temperature process such that the weight average molecular weight,M.sub.w is at least about 100,000 and the polymer exhibits low polydisperity values, from about 1.8 to about 2.6. Shaped articles formed of the novel composition of the present invention such as thin films are colorless and exhibit unique properties, such as low dielectric constant, optical clarity and flexibity.





BRIEF DESCRIPTION OF DRAWINGS
The present invention is described in connection with several figures, in which:
FIG. 1 is a gel permeation chromatography curve of the molecular weight distribution of the polymer disclosed in Example I hereof;
FIG. 2 is a gel permeation chromatography curve of the molecular weight distribution of the polymer disclosed in Example II hereof; and
FIG. 3 is a graph of Optical Transmission versus wavelenghth for films of 0.0018 inches in thickness formed of the polymers of Examples I and II.





DETAILED DESCRIPTION
The invention is discussed in detail below in connection with several examples. For purposes of brevity only, and not by way of limitation, terminology, measurements and procedures are now enumerated. Unless otherwise indicated, terms are used throughout as detailed below.
INHERENT VISCOSITY
The inherent viscosity of polymer samples was obtained by measuring the viscosity of the polymer solution and the solvent and the inherent viscosity (IV) was calculated from the following equation ##EQU1## where C is the concentration expressed in grams of polymer per 100 milliliters of solution. In all cases, inherent viscosity was measured using 0.5 grams of polymer or reaction mixture in 100 ml of dimethyl acetamide at 25 degress Celsius.
MOLECULAR WEIGHT DATA
The molecular weight of the polymers, whether weight average molecular weight, M.sub.w or number average molecular weight M.sub.n were measured by gel permeation chromatography (GPC) performed on dilute solutions of the polymer in tetrahydrofuran (THF). The actual apparatus employed consisted of a Waters (Millipore Corp ) programmable automatic sampler, vaccum pump, chromatography columns with heater, and a differential refractometer connected to a Shimadzu CR 30A data reduction system with accompanying software (version 1 1, Shimadzu part No. T/N 22301309-91). The refractometer used was a Waters model 410 and four chromatography columns, 500 Angstrom, 1000 Angstrom, 10,000 Angstrom and 100,000 Angstrom (available from Waters) were connected in series. The system was calibrated using multiple available polystyrene standards ranging in molecular weight as follows:
TABLE I______________________________________GPC CALIBRATIONCalibration Standard(Polystyrene) Mol. Wt.______________________________________1 470,0002 170,0003 68,0004 34,5005 9,2006 3,2007 1,250______________________________________
The standards are essentially monodisperse, consisting substantially of a single molecular weight. With the system thus calibrated the weight average molecular weight M.sub.w, the average molecular weight M.sub.n, and polydispersity, M.sub.w /M.sub.n were obtained for polymers produced in accordance with the examples given hereinafter.
TRACE METAL
Polymers produced in accordance with the present inventron were tested for ionic impurities such as sodium, potassium and iron. Trace metal data given herein was obtained using a Perkin Elmer 2380 Atomic Absorbtion Spectrophotometer.
OPTICAL PROPERTIES
The various films disclosed hereinafter were tested for optical transmission in the visible light range using a Perkin Elmer 559 ultraviolet spectral photometer.
ELECTRICAL, THERMAL, MECHANICAL PROPERTIES
Glass transition temperatures (Tg) were determined by differential scanning calorimetry using a Perkin Elmer DSC-4 calorimeter operating at 20.degree. C./min, nitrogen atmosphere at 60cc/min. Glass transition temperature by this method is generally defined as the point of intersection of tangent lines about the point of first inflection of the heating curve of the polymer. Thermogravimetric analysis was performed with a Perkin Elmer 65-2 analyzer at 20.degree. C./min with an air rate of 80cc/min. TGA values given herein are for five percent weight loss; in other words, the temperature at which 5% weight loss is observed is reported.
Limiting Oxygen Index (LOI) was measured in accordance with ASTM D-2863-77; which refers to excess oxygen, over air content, required to maintain a flame.
Dielectric Constant was measured in accordance with ASTM D-150-81.
Dissipation Factor was measured in accordance with ASTM D 150-81.
Volume Resistivity was measured in accordance with ASTM D-257-78.
Dielectric Strength was measured in accordance with ASTM D-149-81.
Surface Resistivity was measured in accordance with ASTM D-257-78.
Mechanical properties were measured in accordance with ASTM D-882-81 using an Instron model 4202 provided with a computer interface (Series IX, version 2.51 software). Cross head speed was set at 0.2 inch/minute and guage length was two inches. Unless otherwise indicated, a one hundred pound load cell was used, sample width was 0.5 inches and tests were conducted at 75.degree. F. with a relative humidity of fifty per cent.
REACTANTS
Monomers used in accordance with the examples which follow are preferably substantially analytically pure; for example, in examples I and II "electronic" grade fluorinated dianhydride is specified. This material contains more that 98.5% dianhydride, less that 1.5% of the corresponding monoanhydride-diacid and less than 0.1% of the corresponding tetra-acid. The 2,2-bis(3,4-dicarboxy phenyl) hexafluoropropane dianhydride specified herein (6FDA) is available from Hoechst-Celanese Corporation, Route 202-206 North, Somerville, N.J. 08876. Electronic grade danhydride contains less than 10 ppm sodium, less than 5 ppm iron, less than 2 ppm cobalt and less that 2 ppm manganese, and has a melting point of 246.5 degres Celsius.
Diamine utilized in accordance with the present invention is also preferably substantially analytically pure. to obtain the preferred purity of the diamines noted hereinafter, an available grade or synthsized grade of 2,2-bis(4-aminophenyl) hexafluoropropane or 2,2-bis(3-aminophenyl) hexafluoropropane is dissolved in aqueous hydrochloric acid and treated with activated charcoal stirred for thirty minutes and filtered. The treatment is repeated as necessary to remove color impurities. the aqueous solution obtained after repeated filtering is treated with ammonium hydroxide until the pH of the resulting slurry is about 9. The diamine slurry is then filtered and washed with de-ionized or distilled water to form a filter cake, which in turn is redissolved in methanol and clarified through a five micron or smaller fi)ter. Subsequently, diamine is precipitated from the methanol solution by the addition of distilled or de-ionized water and washed, also with water. The moist diamine is dried overnight in a vaccum oven and contains less that 10 ppm iron, sodium and chloride ions. Further information concerning diamines may be found in copending application Ser. No. 105,857 filed Oct. 7, 1987, now U.S. Pat. No. 4,906,741 the disclosure of which is incorporated herein by reference.
EXAMPLE I
A 5000 ml 3 neck flask was fitted with a stirrer, condenser, ice water bath, thermometer and nitrogen atmosphere. To the flask, 250.5 g. (0.75 mole) of recrystallized substantially pure 2,2-bis(4-aminophenyl) hexafluoropropane (Mw=334) along with 1000 grams freshly distilled N-methyl pyrrolidone (NMP) was charged. The mixture was agitated to get a clear solution, cooling was applied and agitation was continued until the diamine solution reached about 15 degrees Celsius. To the cooled solution, 333 grams (0.75 mole) of electronic grade 2,2-bis(3,4-dicarboxyphenyl) hexafluoroprpane dianhydride was charged portion-wise in substantially equal intervals while the system was agitated over a forty-five minute period so that the solution was maintained at 20-25 degrees Celsius by the bath while the exothermic polymerization occurred. The beakers used to add the diamine and dianhydride was washed with an additional 1334 grams of freshly distilled NMP which was added to the reaction flask to make a roughly 20 percent solution of polymer precurser. The reaction mixture was agitated gently for twenty hours, while maintaining the temperature uniformly throughout the reaction mixture at about 25.degree. Celsius to obtain a high IV polyamic acid, (IV 1.14 dl/gm at 0.5 grams/dl in dimethyl acetamide (DMAC) at 25.degree. C.). To 2792 grams of the viscous polyamic acid solution, 71.81 grams of reagent grade beta picoline was dispersed by agitation for several minutes and subsequently 718.10 grams of acetic anhydride were added. Preferably, the acetic anhydride is added dropwise. The reaction mixture was agitated for six hours at 25 degrees Celsius to complete cyclization. The above process was carried out in a dry nitrogen atmosphere and the reactants were in all cases added in portions so that any substantial amount of gellation is avoided. Likewise, it is important to keep temperature suitably uniform in all steps. The polyimide thus produced was precipitated in methanol, using about 2000 mls of methanol for every 500 mls of polymeric material. The precipitated polymer was washed with fresh methanol and dried overnight at 60-65 degrees Celsius. 520 grams of solid (98% of theoretical yield) was produced.
The white solid polymer thus obtained had the following characteristics:
Inherent Viscosity: 1.02 dl/g.
Mol. Wt. Data (GPC): Mw=194,800, Mn=81,200 polydispersity=2.4
Glass Transition Temp. (DSC): 328.degree. C.
Wt. Loss (TGA, 20.degree. C./min.): 5% @ 520.degree. C.
Trace Metal (AA): Na=2.4 PPM, Fe=4.2 PPM.
Color: Colorless, transparent film.
EXAMPLE II Following the procedure of Example I, the following materials were used:
267.2 grams (0.8 mole) recrystallized, substantially pure 2,2bis(3-aminophenyl) hexafluoropropane
NMP: 1000 grams to initially dissolve diamine and 1490 grams added during the procedure.
355 2 grams (0.8 moles) electronic grade 2,2-bis(3,4 dicarboxyphenyl)hexafluoropropane dianhydride
79.5 grams beta picoline
795 grams acetic anhydride
570 grams of white solid polymer was obtained (97 percent of theoretical yield), having the following characteristics:
Inherent Viscosity: 0.9 dl/g.
Mol. Wt. Data (GPC): Mw=290,000, Mn=151,690 polydispersity=1.9.
Glass Transition Temp. (DSC): 255.degree. C.
Wt. Loss (TGA) 20.degree. C./min): 5% @520.degree. C.
Trace MetaI (AA): Na=3.7 PPM, K=2.2 PPM, Fe=2.9 PPM.
Color: Colorless, transparent film.
The intermediate polyamic acid had an inherent viscosity, IV, of 1.0 dl/g.
As may be seen from the foregoing, the polymides in accordance with the present invention exhibit very high molecular weight and low values of polydispersity. The polymers so formed are useful for making shaped articles such as fibers, films, or molded articles as further discussed herein. It will be appreciated by one of skill in the art that such articles have superior properties to lower molecular weight products, for example in terms of optical properties, electrical properties and stability of the polymer.
MOLECULAR WEIGHT CHARACTERISTICS
FIGS. 1 and 2 are representations of molecular weight distribution typical of the polymers produced in accordance with Examples I and II. As will be noted, the peaks for the polymer are substantially singular (as opposed to bimodal or trimodal etc.) characteristic of a polymer composition having a measured polydispersity of about 1.8 to 2.6. It will be further noted that the peaks are sharp, as opposed to shouldered, which shouldering would be the case if there were substantial amounts of low molecular weight material mixed with high molecular weight material.
FILM PREPARATION
Films were prepared from polymers prepared in accordance with Examples I and II by dissolving twenty five grams of solid, granular polymer in one hundred grams of 70/30 gamma-butyrolactone/diglyme mixture to achieve a colorless, clear solution of twenty percent N.V. concentration. Films were then cast on a clean glass plate by spreading the solution with a doctor's blade, followed by heating in an air circulating oven with the following heating sequence:
2 hrs. @ 70.degree. C.
1.5 hrs. @ 100.degree. C.
1.0 hr. @ 150.degree. C.
0.5 hr. @ 200.degree. C.
0.5 hr. @ 250.degree. C.
1.0 hr. @ 350.degree. C.
FILM PROPERTIES
A. Optical Transmission
Films of 1.8 thousandths of an inch (1.8 mils) thickness were prepared from polymers produced in accordance with Examples I and II. Optical Transmission data appears in FIG. 3 for the two polymers. As may be seen, the films transmit over seventy five per cent of the incident light at wavelengths of about 400 nanometers and above which would include all of the visible spectrum.
B. Electrical Properties
A three one-thousandths of an inch (3 mil) film was prepared as above from the polymers of Examples I and II and was found to have the following electrical properties shown in Table 2.
C. Mechanical Properties Films of 2.2 mil and 2.5 mil thickness respectively were prepared and Instron tested for elongation at break, stress at break and Young's Modulus. Data appears below for polymers prepared in accordance with Examples I and II.
TABLE 2__________________________________________________________________________ELECTRICAL PROPERTIES DIELECTRIC DIELECTRIC DISSIPATION VOLUME SURFACE CONSTANT STRENGTH FACTOR RESISTIVITY RESISTIVITYPOLYMER @ 1 MHz @ 10 MHz VOLT/MIL @ 1 MHz @ 10 MHz Ohm. Cm. Ohm.__________________________________________________________________________Example I 2.78 2.58 1500 4 .times. 10.sup.-4 1.8 .times. 10.sup.-3 1.92 .times. 10.sup.16 3.14 .times. 10.sup.14Example II 2.78 2.58 1933 6 .times. 10.sup.-4 1.5 .times. 10.sup.-3 1.97 .times. 10.sup.16 3.14 .times. 10.sup.14__________________________________________________________________________
TABLE 3______________________________________Mechanical Properties Elongation Stress at Young's ModulusPolymer (%) Break (psi) (Ksi)______________________________________Example I 8 15,000 400Example II 5 14,000 401______________________________________
D. Oxidation and Solubility
Films of 2.2 and 2.5 thickness were also tested for limiting oxygen index (LOI). Polymers of Example I required 47.4% per cent excess oxygen over air oxygen content (LOI 47.4); while polymers of Example II had an LOI of 50.7, and less than 1% per cent smoke generation when burning. So also, films of the present invention are base stable, after annealing at 350.degree. C. for two hours, in sodium hydroxide, and exhibit no loss in weight or change in optical characteristics after treatment at room temperature with 5.0 and 10.0 weight to weight sodium hydroxide to water solutions for one hour.
COMPRESSION MOLDABILITY
Polymers prepared in accordance with the present invention may be compression molded at surprisingly low temperatures, well below their glass transition temperatures. Polymer of Examples I and II were prepared in granular form, having an average partical size of 500 microns. Molding trials were conducted using a standard 21/4" diameter tool-steel mold, equipped with a thermocouple cavity and coated with Freekote #44 mold release agent. The press used was a Dake 30-ton laboratory press, equipped with top and bottom electrically heated platens. Temperature was controlled using Eurotherm microprocessor-based digital temperature controller, monitoring temperature via thermocouples embedded inside both platens. Temperature in the mold was monitored by a type K thermocouple embedded in the mold thermowell and attached to an Omega digital thermometer. The mold was insulated by solid Fiberfrax insulation; temperature difference, at equilibrium, between the platens and the mold was less than 2.degree. C.
Pressure (5000 psi) was applied to the mold at the beginning of the heat-up cycle, and was maintained at 5000 psi throughout the cycle. Temperature was increased smoothly and rapidly (approximately 1 hour) up to the set point, held for 1 hour, then cooled to ambient temperature (2 hours). The disk was then removed from the mold.
Blanks for tensile testing were made by cutting from the disk with a band saw. ASTM D638 type V microntensile bars were then machined from the blanks using a Tensilkut router. Due to the surface smoothness of the specimens, further surface polishing was deemed unnecessary. Tensile properties were determined on an Instron tensilometer with a 1000 lb load cell, 0.05"/min crossheadspeed, with an extensiometer attached to the specimen. Additional information on the specimens and molding appears below. The molded polymer of Examples I and II machined easily in a manner similar to plexiglass.
TABLE 4______________________________________Molding DataPOLYMER EXAMPLE II EXAMPLE I______________________________________Glass Transition Temp. 255.degree. C. 322.degree. C.Tg .degree.C.Molding Temp. .degree.C. 220.degree. C. 250.degree. C.Molding Pressure psi 5000 psi 5000 psiSpecimen Transparent Transparent light amber light yellow color color disk diskDimension 21/4" 21/4" diameter, diameter, 1/8" 1/8" thick thickDensity 1.49 gms/cc 1.47 gms/ccTensile Strength 11.4 Kpsi 12.8 Kpsi (79 MPa) (88 MPa)Strain % 2.1% 3.0%Modulus 0.55 Mpsi 0.47 Mpsi (3800 Mpa) (3200 MPa)______________________________________
The invention has been described in detail hereinabove with respect to several embodiments and accordingly, further explanation, data and examples is deemed unnecessary. Various modifications will be obvious to those of ordinary skill in the art; which modifications are within the spirit and scope of the present invention which is limited only by the appended claims.
Claims
  • 1. A composition essentially of polyimide of the formula: ##STR5## wherein R is ##STR6## and wherein said composition has a weight average molecular weight, M.sub.w of at least about 100,000 and a polydispersity of from about 1.8 to about 2.6; said weight average molecular weight being measured by gel permeation chromatography using a polystyrene calibration standard ranging in molecular weight from 1,250 to 470,000.
  • 2. The composition according to claim 1, wherein said composition is prepared from equimolar amounts of 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane and a diamine selected from the group consisting of 2,2-bis(4-aminophenyl) hexafluoropropane and 2,2-bis(3-aminophenyl) hexafluoropropane.
  • 3. The composition according to claim 1, wherein the weight average molecular weight, M.sub.w, of said composition is at least about 150,000.
  • 4. The composition according to claim 3, wherein the weight average molecular weight, M.sub.w, is at least about 200,000.
  • 5. The composition according to claim 4, wherein the average molecular weight, M.sub.w, is at least about 250,000.
  • 6. A moldable composition containing the polyimide according to claim 1.
  • 7. The composition according to claim 1, wherein the polydispersity of said polymide is from about 1.9 to about 2.5.
  • 8. The composition according to claim 7, wherein the polydispersity of said composition is about 1.9 to about 2.4.
  • 9. The composition according to claim 1, formed into a shaped acticle.
  • 10. The composition according to claim 6, formed into a shaped article.
  • 11. A polymer composition consisting essentially of a polyimide of the formula: ##STR7## wherein R is ##STR8## prepared from equimolar amounts of 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride and a diamine selected from the group consisting of 2,2-bis(4-aminophenyl) hexafluoropropane and 2,2-bis(3-aminophenyl) hexafluoropropane wherein said polyimide has a weight average molecular weight, M.sub.w, of at least about 100,000 and wherein said composition is capable of being formed into a film of about two thousandths of an inch in thickness having as an essential characteristic at least about 80% optical transmission at electromagnetic wavelengths of 400 nanometers and above, said film being non-brittle; said weight average molecular weight being measured by gel permeation chromatography using a polystyrene standard ranging in molecular weight from 1,250 to 470,000.
  • 12. The composition according to claim 11, wherein said composition is capable of forming a film having as an essential characteristic at least about 85% optical transmission at wavelengths of 425 nanometers and above.
  • 13. The composition according to claim 11, wherein the weight average molecular weight, M.sub.w, of said composition is at least about 150,000.
  • 14. The composition according to claim 11, wherein the polydispersity of said polyimide is from about 1.8 to about 2.6.
  • 15. The composition according to claim 11, wherein the polydispersity of said polyimide is from about 1.8 to about 2.5.
  • 16. The composition according to claim 11, wherein the polydispersity of said composition is from about 1.9 to about 2.4.
  • 17. The composition according to claim 16, formed into a shaped article.
  • 18. The composition according to claim 11, formed into a shaped article.
  • 19. The composition according to claim 11, wherein said film is colorless.
  • 20. A composition comprising a polyamic acid of the formula: ##STR9## wherein R is ##STR10## prepared from equimolar amounts of 2,2-bis(3,4dicarboxyphenyl) hexafluoropropane dianhydride and a diamine selected from the group consisting of 2,2-bis(4-aminophenyl) hexafluoropropane and 2,2-bis(3-aminophenyl) hexafluoropropane and wherein said composition is capable of being cyclized into a polyimide composition consisting essentially of a polyimide of the formula: ##STR11## wherein R is ##STR12## and wherein said polyimide composition has a weight average molecular weight, M.sub.w of at least about 100,000 and a polydispersity of from about 1.8 to about 2.6; said molecular weight being measured by gel permeation chromatography using a polystyrene calibration standard ranging in molecular weight from 1,250 to 470,000.
US Referenced Citations (42)
Number Name Date Kind
3542735 Lynch Nov 1970
3639343 Chisu Feb 1972
3649601 Critchley et al. Mar 1972
3678005 Rabilloud et al. Jul 1972
3812082 Jones May 1974
3896083 Gerber Jul 1975
3899309 Hoehn et al. Aug 1975
3926913 Jones et al. Dec 1975
4061856 Hsu Dec 1977
4063984 Critchley Dec 1977
4079039 Gerber Mar 1978
4080319 Caporiccio Mar 1978
4111906 Jones et al. Sep 1978
4173700 Green et al. Nov 1979
4196277 Jones et al. Apr 1980
4206106 Heilman et al. Jun 1980
4218555 Antonoplos et al. Aug 1980
4220750 Reinhardt et al. Sep 1980
4251417 Chow et al. Feb 1981
4251418 Chow et al. Feb 1981
4251419 Heilman et al. Feb 1981
4251420 Antonoplos et al. Feb 1981
4255313 Antonoplos et al. Mar 1981
4284461 Frosch et al. Aug 1981
4299750 Antonoplos et al. Nov 1981
4336175 Gibbs Jun 1982
4454310 Oka et al. Jun 1984
4467000 Economy et al. Aug 1984
4535101 Lee et al. Aug 1985
4542257 Fraser et al. Sep 1985
4569988 Scola et al. Feb 1986
4588804 Fryd May 1986
4645824 Landis et al. Feb 1987
4654415 Ahne et al. Mar 1987
4656244 Ahne Apr 1987
4684714 Lubowitz et al. Aug 1987
4716216 Takekoshi et al. Dec 1987
4720539 Rabilloud et al. Jan 1988
4734464 Biensan Mar 1988
4735492 Sekine et al. Apr 1988
4736015 Rabilloud et al. Apr 1988
4742152 Scola May 1988
Foreign Referenced Citations (1)
Number Date Country
1062435 Mar 1967 GBX