This patent application is a continuation-in-part of U.S. patent application Ser. No. 11/619,944 filed on Jan. 4, 2007 by Michael P. Brady, et al. entitled “Oxidation Resistant High Creep Strength Austenitic Stainless Steel”, the entire disclosure of which is incorporated herein by reference.
None
Common austenitic stainless steels contain a maximum by weight percent of 0.15% carbon, a minimum of 16% chromium and sufficient nickel and/or manganese to retain a face-centered-cubic (fcc) austenitic crystal structure at cryogenic temperatures through the melting point of the alloy. Austenitic stainless steels are non-magnetic non-heat-treatable steels that are usually annealed and cold worked. Common austenitic stainless steels are widely used in power generating applications; however, they are becoming increasingly less desirable as the industry moves toward higher thermal efficiencies by increasing the working temperatures of the generators. Austenitic stainless steels for high temperature use rely on Cr2O3 scales for oxidation protection. These scales grow relatively quickly, and do not function well in environments containing species like water vapor, sulfur, carbon, etc due to inherent limitations of the Cr2O3 scales formed on these alloys. Creep failure of common austenitic stainless steels such as types 316, 321, and 347 has limited the use of these steels at higher working temperatures.
There have been a number of approaches to improving oxidation resistance of austenitic steels for high temperature use as described in the patent application referenced above.
In accordance with various aspects of the present invention, the foregoing and other objects are achieved by an austenitic stainless steel HTUPS alloy that includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims in connection with the above-described drawings.
The present invention is based on the surprising finding that higher Nb levels than that disclosed in the above referenced parent application can improve oxidation resistance. Moreover, higher levels of Al were found to be feasible while still maintaining a single phase austenitic matrix to achieve creep resistance. Higher Al and/or Nb levels should permit greater durability, and even higher operating temperatures. Based on their similar chemical behavior and reactivities, Ta additions can also be used in place of Nb, or in partial combination with Nb, to produce the desired oxidation resistance improvements, and MC carbide type strengthening additions (M=Nb, Ta, Ti, V).
The alloy HTUPS 3, Fe-20 Ni-14 Cr-3.8 Al base showed a two-phase austenitic (face centered cubic (fcc))+delta ferrite (body center cubic (bcc)) structure. The delta ferrite converts to brittle sigma phase when exposed in the intended operation range, and creep resistance is lost. It was therefore decided to limit Al level to 3.5 wt. % to maintain a single phase fcc austenitic structure to obtain creep resistance.
Moreover, HTUPS 4, Fe-20 Ni-14 Cr-2.5 Al base replaced typically used Ti and V strengthening additions with Nb at a level of 0.9 wt. % Nb. The substitution resulted in an excellent combination of creep resistance and alumina scale forming ability, and was based on the unexpected and new discovery that Ti and V additions degrade alumina forming ability in this class of alloys. About 1 wt. % of Nb resulted in Fe2Nb precipitates, and therefore it was originally thought that increasing Nb>1 wt. % would result in too high a fraction of Fe2Nb, as well as coarse primary NbC, causing brittleness and loss of oxidation resistance.
Two subsequent, surprising discoveries have been made concerning the austenitic stainless steel formulations under investigation:
The ability to form alumina is dependent on Nb content, with Nb content less than about 0.6 wt. % Nb severely degrading oxidation resistance. Moreover, increasing Nb content to about 3 wt. % Nb was proven to further improve oxidation resistance, without significantly increasing brittleness despite the increased volume fraction of Fe2Nb and primary NbC. The 3 Nb wt. % alloy, FNC 31 in below Table I, showed excellent creep rupture elongation (15-20%) despite the presence of Fe2Nb Laves phase precipitates, and excellent oxidation resistance despite containing only 2.5 wt. % Al. Therefore the upper limit of Nb content is extended to, for example, up to 5 wt. %, up to 4 wt. %, and/or up to 3 wt. %, the lower limit being 0.6 wt. % Nb, preferably greater than 1 wt. % Nb to obtain improved oxidation resistance. At higher levels of Nb, the volume fraction of Fe2Nb Laves phase would be too great, and adversely compromise the mechanical properties of the alloy.
The effects can also be obtained with Ta instead of Nb, or in combination of Ta with Nb, with the Ta or Ta+Nb content is the same as above: up to 5 wt. %, up to 4 wt. %, and/or up to 3 wt. %. The Ta or Ta+Nb lower limit is also the same as above, about 0.6 wt. %.
2) The ability to maintain alumina scale formation depends on Al content, the higher the Al content the longer alumina scale formation can be maintained, resulting in improved component durability and lifetimes. It was discovered that Al contents to 4 wt. % Al are possible at relatively low levels of Ni to keep alloy cost low (as low as 20 wt. % Ni), by decreasing the Cr level from 14 wt. % range to 12 wt. % Cr range (both Al and Cr stabilize weak bcc phases such as delta ferrite). The presence of Cr is critical to aiding formation of an alumina scale. The reduced level of Cr was found to be sufficient to still aide alumina scale formation, in alloys that remain single phase austenitic matrix for creep resistance. By increasing Ni content to 30 wt. %, it was found possible to further increase Cr content to 14 wt. %, at 4 wt. % Al, while maintaining a single-phase austenitic matrix microstructure (AFA 13). At 30 wt. % Ni and 12 wt. % Cr (AFA 14), single-phase austenitic matrix microstructure could also be obtained at 5 wt. % Al.
The higher levels of Al, for example, up to 4 wt. %, up to 4.5 wt. % and/or up to 5 wt. %, result in increased volume fraction of NiAl second phase precipitates, which help maintain alumina scale formation by acting as an Al reservoir. Thermochemical calculations indicate that the 4 Al-12 Cr alloys can also tolerate the increase to at least 3 wt. % Nb (and/or Ta), without forming weak bcc phases.
Table I discloses some experimentally produced alloy compositions in accordance with the present invention. Nominal alloy compositions include (balance Fe). Compositions AFA 3 and AFA 9 also contain 0.07 Y and 0.15 Hf wt. %. Composition AFA 8 also contains 0.2 wt. % Zr. Based on their similar chemical behavior and reactivities, Ta additions can also be used in place of Nb in the alloys shown in Table I, or in partial combination with Nb, to produce the desired oxidation resistance improvements.
(Table 1 is on next page)
Data for HTUPS 12 (4 Al and 0.6 Nb) is also shown. As with the trends observed in air, HTUPS 12 exhibited good oxidation resistance over the course of the exposure shown in
It was also found that high levels of Nb also improved the ability of the alloys to tolerate small additions of Ti or V. For example, FNC 31 contained 2.5Al/3Nb/0.2V but was highly oxidation resistant, even in water vapor. AFA 2 and AFA 4 3Al/1Nb/0.2V exhibited nodule formation and accelerated attack at 800° C. in water vapor. Such accelerated attack was not observed for AFA 7 and AFA 8, which contained 25 wt. % Ni and 4 wt. % Al, instead of 20 wt. % Ni and 3 wt. % Al in AFA 2 and 4.
Small additions of Ti and V can be used to further enhanced creep resistance, but are still limited to no more than about 0.3 wt. % total, preferably with only Ti or V, not both added, particularly when the Nb level is between 1 and 3 wt. % Nb. The “synergistic” degradation in oxidation resistance by combined Ti and V additions is shown below in
The ability of the alloys to form a protective alumina scale is degraded with increasing oxidation temperature. Alloys with 20 wt. % Ni, despite their Al and Nb contents, lose the ability to form a protective alumina scale between approximately 800 and 900° C. in air. The alloys with compositions equal to or greater than 25 wt. % Ni, 1 wt. % Nb, and 3 wt. % Al show the ability to form protective alumina scales up to around 900° C. in air. Alloys AFA 13 and 14, with 30 wt. % Ni and 4 to wt. % Al show somewhat improved oxidation resistance and alumina forming ability up to about 1000° C.
While there has been shown and described what are at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications can be prepared therein without departing from the scope of the inventions defined by the appended claims.
The United States Government has rights in this invention pursuant to contract no. DE-AC05-00OR22725 between the United States Department of Energy and UT-Battelle, LLC.
Number | Date | Country | |
---|---|---|---|
Parent | 11619944 | Jan 2007 | US |
Child | 12103837 | US |