HIGH NITROGEN AND OTHER INERT GAS ANTI-CORROSION PROTECTION IN WET PIPE FIRE PROTECTION SYSTEM

Information

  • Patent Application
  • 20130098640
  • Publication Number
    20130098640
  • Date Filed
    June 10, 2011
    13 years ago
  • Date Published
    April 25, 2013
    11 years ago
Abstract
A wet pipe fire protection sprinkler system and method of operating a wet pipe fire sprinkler system includes providing a sprinkler system having a pipe network, a source of water for the pipe network, at least one sprinkler head connected with the pipe network and a drain valve for draining the pipe network. An inert gas source, such as a nitrogen gas source, is connected with the pipe network. Inert gas is supplied from the inert gas source to the pipe network. Water is supplied to the pipe network thereby substantially filling the pipe network with water and compressing the inert gas in the pipe network.
Description
BACKGROUND OF THE INVENTION

The present invention is directed to anti-corrosion protection in a fire protection system and, in particular, to anti-corrosion in a wet pipe fire sprinkler system.


Wet pipe fire protection systems must be occasionally drained for maintenance, system upgrade, and the like. According to many fire protection codes, it is necessary to place the system back into operation daily, even if the maintenance or upgrade takes multiple days. Also, it is usually necessary to be able to place the system back into operation within a relatively short defined period that is usually measured in terms of a few minutes. This draining and refilling with water tends to create corrosion in the piping of the wet pipe fire sprinkler system. This is caused, at least in part, from the high oxygen content air that is introduced into the system upon refilling the system with water. Such corrosion can lead to system failure resulting in expensive repairs.


SUMMARY OF THE INVENTION

A wet pipe fire protection sprinkler system and method of operating a wet pipe fire sprinkler system, according to an aspect of the invention, includes providing a sprinkler system having a pipe network, a source of water for the pipe network, at least one sprinkler head connected with the pipe network and a drain valve for draining the pipe network. An inert gas source, such as a nitrogen gas source, is connected with the pipe network. Inert gas is supplied from the inert gas source to the pipe network. Water is supplied to the pipe network, thereby substantially filling the pipe network with water and compressing the inert gas in the pipe network.


At least some of the compressed gas may be vented from the pipe network. The compressed gas may be vented under particular circumstances, such as air pressure being above a particular pressure level, or for a particular time duration, or the like. Oxygen rich air may be prevented from entering the pipe network when emptying water from the pipe network.


Gas may be discharged from the pipe network after supplying inert gas and prior to said filling the system with water. The supplying and discharging of inert gas from said inert gas source to said pipe network may be repeated before supplying water to the pipe network, thereby increasing concentration of inert gas in the pipe network. The discharging of gas from the pipe network may include opening the drain valve.


The pipe network may include a riser, a generally horizontal main, at least one generally horizontal branch line connected to the main with the sprinkler head(s) being at the branch line. The venting may be performed at the main or branch line(s).


A venting assembly may be provided that is operable to vent air under particular circumstances, such as air pressure being above a particular pressure level. The pressure level may be fixed or adjustable. A gauge may be provided for setting an adjustable pressure level. The venting assembly may include an air vent and an airflow regulator. The air vent is connected with the pipe network and discharges to the airflow regulator. The air vent may further include a redundant air vent, with the air vent discharging to the airflow regulator through the redundant air vent. The airflow regulator may be in the form of a pressure relief valve, a back-pressure regulator, or a check valve. A sampling port may be provided for sampling air that is discharged from the airflow regulator.


Water may be drained from the pipe network by connecting the inert gas source to the pipe network and supplying inert gas to the pipe network during the draining in order to resist oxygen rich gas from entering the pipe network, such as through the drain valve.


A venting assembly is provided, according to another aspect of the invention, for use with a fire protection sprinkler system having a pipe network, a source of water for the pipe network, at least one sprinkler head connected with the pipe network and a drain valve for draining the pipe network. The sprinkler system may further include an inert gas source connected with the pipe network. The venting assembly includes an air vent and an airflow regulator. The air vent is adapted to be connected with the pipe network and adapted to vent gas, but not water. The airflow regulator is adapted to be connected with the air vent and is adapted to control gas flow to and/or from the air vent. The venting assembly may include a redundant air vent, with the air vent discharging to the airflow regulator through the redundant air vent. The airflow regulator may be in the form of a pressure relief valve, a back-pressure regulator or a check valve. A sampling port may be provided at the airflow regulator.


A method of operating a wet pipe fire protection sprinkler system having a pipe network, a source of water for said pipe network, at least one sprinkler head connected with said pipe network and an inert gas source connected with said pipe network, according to an aspect of the invention, includes supplying inert gas from the inert gas source to the pipe network and supplying water to the pipe network, thereby substantially filling the pipe network with water and compressing the gas in the pipe network.


At least some of the compressed gas may be vented from the pipe network. The venting may include venting the compressed gas when gas pressure is above a particular pressure level. The pressure level may be fixed or adjustable. Gas that is vented may be sampled and analyzed. Oxygen rich air may be prevented from entering the pipe network when emptying water from the pipe network.


The method may further include discharging gas from the pipe network after supplying inert gas and prior to supplying water and repeating the supplying inert gas and discharging gas from the inert gas source to the pipe network prior to supplying water to the pipe network thereby increasing concentration of inert gas in the pipe network.


The pipe network may include a main drain valve for draining water from the piping network and wherein the discharging gas from the pipe network includes opening the main drain valve. The pipe network may include a riser and at least one generally horizontal branch line connected with the riser with the sprinkler head(s) being at the branch line. The venting assembly is at the riser or a branch line. The pipe network may be a multiple-zone piping network, including a drain line connected between the drain valve and each of the zones. Each of the zones further includes a horizontal branch line, a fill valve connecting the branch line with the riser, a zone drain valve connecting the horizontal branch line with the drain line and a venting assembly at the branch line.


The inert gas source may be connected with at least one of the zones while others of the zones remain in operation to provide fire protection. The connecting of the inert gas source with at least one of the zones may include (i) closing the fill valve and opening the zone drain valve for that zone to drain that zone, (ii) closing the main drain valve, and (iii) applying inert gas from the gas source to the branch line of that zone. The inert gas may be applied through the drain line. The method may further include (iv) discharging gas from the branch line and repeating (iii) and (iv) until a satisfactory reduction in oxygen is achieved.


The inert gas source may be connected to the pipe network and inert gas supplied to the pipe network during draining of water in order to resist oxygen rich gas from entering said pipe network during the draining.


These and other objects, advantages and features of this invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a wet pipe fire protection sprinkler system, according to an embodiment of the invention;



FIG. 2 is a front elevation of a venting assembly;



FIG. 3 is a flow diagram of an inerting process;



FIG. 4 is a flow diagram of a drain and refill process;



FIG. 5 is a schematic diagram of a multiple-zone wet pipe fire protection sprinkler system;



FIG. 6 is the same view as FIG. 5 of an alternative embodiment thereof; and



FIG. 7 is a front elevation of an alternative venting assembly.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawings and the illustrative embodiments depicted therein, a wet pipe fire protection sprinkler system 10 includes a pipe network 12, a source of water for the pipe network, such as a supply valve 14, one or more sprinkler heads 16 connected with the pipe network, a drain valve 18 for draining the pipe network and a source of inert gas, such as a nitrogen source 20 connected with the pipe network (FIG. 1). Nitrogen source 20 may include any type of nitrogen generator known in the art, such as a nitrogen membrane system, nitrogen pressure swing adsorption system, or the like. Such nitrogen generators are commercially available from Holtec Gas Systems, Chesterfield, Mo. Alternatively, nitrogen source 20 may be in the form of a cylinder of compressed nitrogen gas. Because such nitrogen cylinders are compressed to high pressures, an air maintenance device 21 may be provided to restrict flow and/or pressure supplied to pipe network 12 in order to prevent over-pressurization of the network. Alternatively, nitrogen source 20 may be a connection to a nitrogen system if one is used in the facility in which system 10 is located. Alternatively, nitrogen source 20 may be a transportable nitrogen generator of the type disclosed in commonly assigned U.S. patent application Ser. No. 61/383,546, filed Sep. 16, 2010, by Kochelek et al., the disclosure of which is hereby incorporated herein by reference.


Wet pipe fire sprinkler system 10 further includes a venting assembly 32 for selectively venting air from pipe network 12. In the illustrative embodiment, venting assembly 32 vents air and not water from the pipe network in order to remove at least some of the air from the pipe network when the pipe network is filled with water in the manner described in U.S. patent application Ser. No. 12/615,738, filed on Nov. 10, 2009, entitled AUTOMATIC AIR VENT FOR FIRE SUPPRESSION WET PIPE SYSTEM AND METHOD OF VENTING A FIRE SUPPRESSION WET PIPE SYSTEM, the disclosure of which is hereby incorporated herein by reference. Venting assembly 32 further prevents substantial air from entering pipe network 12 when the pipe network is drained of water in a manner that will be explained in more detail below. This avoids oxygen rich air from entering the pipe network at venting assembly 32 in response to a relative vacuum drawn on pipe network 12 by the draining of water, thereby displacing high nitrogen air in the pipe network. Venting assembly 32 may further be configured to vent air from the pipe network only under particular circumstances, such as air pressure in the pipe network being above a particular set point pressure level, thereby facilitating an inerting process, to be described in detail below, which may be carried out below the set point pressure level of the venting assembly. However, the venting may be based on other circumstances, such as based upon timing using a time-operated valve.


Pipe network 12 includes a generally vertical riser 24 to which drain valve 18 and supply valve 14 are connected and one or more generally horizontal mains 26 extending from riser 24. Drain valve 18, supply valve 14 and nitrogen source 20 may be conveniently located in a riser room 25 that is readily available to maintenance personnel. Pipe network 12 further includes a plurality of generally horizontal branch lines 28 connected with main 26, either above the main, such as through a riser nipple 30 or laterally from the side of the main. Sprinkler heads 16 extend from a branch line 28 via a drop 29.


In the illustrated embodiment, venting assembly 32 is connected with pipe network 12 at main 26 distally from the portion of the main that is connected with riser 24. This ensures that the main is vented. However, venting assembly 32 could be connected with a branch line 28. The venting assembly does not always need to be the highest point in pipe network 12. Venting assembly 32 does not need to be conveniently located in riser room 25 because its operation, once configured, is automatic so it does not need to be readily accessible to maintenance personnel.


In the illustrated embodiment, venting assembly 32 is made up of an air vent 34 and an airflow regulator 35 (FIG. 2). Air vent 34 is connected with main 26 and discharges to airflow regulator 35. In embodiment illustrated in FIG. 2, airflow regulator 35 is in the form of a back-pressure regulator 36. Back-pressure regulator 36 responds to the pressure in main 26 by discharging air through air vent 34 that is above a set point pressure of the back-pressure regulator. In order to assist in field-setting the set point pressure, back-pressure regulator 36 includes a pressure gauge 37 that displays the pressure supplied to the back-pressure regulator and an adjustment knob 38 that allows the set point to be adjusted. In addition, a sample port 40 may be provided at back-pressure regulator 36 to allow the relative oxygen concentration (and, therefore, the nitrogen concentration) to be measured. Sample port 40 may be connected with a narrow gauge metal or plastic tube 42 to a port 44 at a more accessible location that is not in the floor or roof structure where fire sprinkler piping is generally located. Thus, by connecting an oxygen meter to port 44 at ground level, a technician can measure the relative oxygen/nitrogen makeup of the air being discharged from main 26 to determine if additional fill and purge cycles are necessary to adequately inert the fire sprinkler system piping.


Venting assembly 32 may further include a redundant air vent 46 that provides redundant operation in case of failure of primary air vent 34. Such redundancy avoids water from being discharged to back-pressure regulator 36 and to the environment upon failure of the primary air vent where it may cause damage before the failure is discovered. Such redundant air vent is as disclosed in U.S. patent application Ser. No. 12/615,738, filed on Nov. 10, 2009, entitled AUTOMATIC AIR VENT FOR FIRE SUPPRESSION WET PIPE SYSTEM AND METHOD OF VENTING A FIRE SUPPRESSION WET PIPE SYSTEM, the disclosure of which is hereby incorporated herein by reference. In particular, primary air vent 34 discharges to redundant air valve 46 which, in turn, discharges to back pressure regulator 36.


Alternatively, airflow regulator 35 can be made up of a pressure relief valve. A pressure relief valve functions in a similar manner to a back-pressure regulator, except that its set point is fixed at the factory and cannot be field adjusted. Alternatively, the airflow regulator can be in the form of a check valve which allows air to be discharged from air vent 34 to atmosphere, but prevents high oxygen content atmospheric air from being drawn through air vent 34 to main 26 when the pipe network is drained of water. Back-pressure regulator 36 and the alternative pressure relief valve are commercially available from multiple sources, such as Norgren Company of Littleton, Colo., USA.


Airflow regulator 35 operates by allowing air vented by air vent 34 to be discharged to atmosphere. However, airflow regulator 35 prevents atmospheric air, which is oxygen rich, from flowing through air vent 34 into pipe network 12, such as when it is being drained. In the illustrated embodiment in which airflow regulator 35 is made up of a back-pressure regulator or a pressure relief valve, airflow regulator 35 functions by opening above a set point pressure and closing below that set point pressure. Air vent 34 functions by opening in the presence of air alone (or other gaseous mixture) and closing in the presence of water. In this embodiment, venting assembly 32 will be open to vent gas from main 26 during filling of the fire sprinkler system with water which raises the pressure of the gas in pipe network 12 above the set point of the back-pressure regulator. Once substantially all of the gas is vented, the presence of water at air vent 34 will close the air vent resulting in closing of the back-pressure regulator. Then, when the fire sprinkler system is being emptied of water, the air pressure within main 26 will decrease as a result of water being drained, as would be understood by the skilled artisan, thereby maintaining airflow regulator 35 closed to prevent drawing in a substantial amount of high oxygen content atmospheric air. This will prevent substantial amounts of oxygen rich atmospheric air from entering pipe network 12 during draining of sprinkler system 10 of water.


The wet pipe fire sprinkler system operates as follows. When system 10 is initially set up or undergoes extensive maintenance, an inerting process 50 is carried out with nitrogen or other inert gas (FIG. 3). Process 50 starts (52) by the technician setting (54) the set point pressure on back-pressure regulator 36. Nitrogen source 20 is connected with pipe network 12, such as to riser 24, and nitrogen pressure of air maintenance device 21 is set (56). Typically, the nitrogen pressure is set below the set point pressure of back-pressure regulator 36 to prevent back-pressure regulator 36 from opening during inerting process 50. For example, nitrogen pressure may be set to approximately 30 PSIG and set point pressure of back-pressure regulator set to approximately 50 PSIG. Drain valve 18 is closed and nitrogen valve 22 opens to fill pipe network 12 with nitrogen rich air (58). Nitrogen valve 22 is then closed to prevent additional gas injection. The technician may then sample the relative concentration of oxygen and nitrogen at sample port 40 by opening port 44 and allowing air to flow through tube 42 for a sufficient time, such as several minutes, to allow levels to stabilize (60). A manual or automatic oxygen meter can then be connected to port 44 to achieve continuous or intermittent oxygen readings. Nitrogen concentration may be inferred at 60 by subtracting the oxygen concentration percentage from 100%.


It is then determined if the nitrogen concentration is at a desired level (62). If it is not, drain valve 18 is opened (64). After a delay (66) to allow pressure in pipe network 12 to drop to atmospheric pressure, the drain valve is again closed and steps 58 through 62 repeated until it is determined at 62 that the concentration of nitrogen in the pipe network is high enough. It should be understood that steps 60 and 62 are optional and may be eliminated once process 50 has been performed one or more times. Once it is determined at 62 that the nitrogen concentration is sufficient, source valve 14 is then opened (68) to admit water to the pipe network. The relatively high pressure of the water, such as between approximately 76 PSIG and 150 PSIG, compresses the nitrogen rich air in pipe network 12 to a fraction of its volume and raises the pressure of the air above the set point of back-pressure regulator 36. This causes back-pressure regulator 36 to discharge the nitrogen rich air until essentially all, or a substantial portion, of the air is depleted from the system at which time air vent 34 closes in the presence of water. Back-pressure regulator 36 then closes to prevent high oxygen rich air from entering the pipe network when it is subsequently drained of water.


Once inerting process 50 is carried out, wet pipe sprinkler system 10 may be able to be drained and refilled using a drain and refill process 80 without the need to repeat inerting process 50. Drain and refill process 80 begins (82) with system 10 filled with water either using inerting process 50 or by a conventional process. Nitrogen source 20 is connected with riser 24 and the nitrogen pressure adjusted (84), such as by adjusting air maintenance device 21. Nitrogen valve 22 is opened (86) in order to allow nitrogen gas to flow into the riser. Drain valve 18 is opened (88) to drain water from the pipe network. When the pressure in the riser falls below the nitrogen pressure, nitrogen gas will enter the riser to resist high oxygen rich air from entering the riser through drain valve 18 in response to a vacuum that occurs as the piping network is emptied of water. The airflow regulator of venting assembly 32 will prevent a substantial amount of oxygen rich air from entering main 26 through air vent 34. Once any maintenance is performed at 90 the pipe network can be refilled with water at 92. Any air in pipe network 12 will be discharged through venting assembly 32 in the manner previously described.


By varying the purity of the source of nitrogen gas, the fill pressure and the number of times that steps 58 through 62 are repeated, the concentration of nitrogen can be established at a desired level. For example, by choosing a nitrogen source of concentration between 98% and 99.9% and by filling and purging the piping network at approximately 50 PSIG for four (4) cycles, a concentration of nitrogen of between 97.8% and 99.7% can be theoretically achieved in system 10. A fewer number of cycles will result in a lower concentration of nitrogen and vice versa.


Inerting of sprinkler system 10 with nitrogen or other inert gas tends to result in an inert-rich gas present in branch lines 28 and riser nipples 30 because oxygen rich air that may enter during the draining of the system tends to stay relatively close to drain valve 18 and not enter the branch lines or riser nipples. Depending on fire protection system design, venting assembly 32 may be positioned at main 26 or at one or more branch lines 28. Also, venting assembly 32 should be positioned away from the nitrogen source connection to pipe network 12. Although illustrated as connected with riser 24, nitrogen source 20 can be connected at other portions of the pipe network.


The wet pipe fire protection sprinkler system and method of operation disclosed herein provides many advantages as would be understood by the skilled artisan. The filing of pipe network 12 with water either during or after it is filled with high nitrogen air tends to reduce corrosion in pipe network 12. This is because most air is removed from the pipe network and the amount that remains is low in oxygen. It is further believed that only a small amount of oxygen is supplied with the water. Because corrosion is believed to begin primarily at the water/air interface in a wet pipe fire sprinkler system and little oxygen is present in the high nitrogen environment, corrosion formation is inhibited.


Moreover, a high nitrogen, or other inert gas, wet pipe fire protection sprinkler system may be provided in certain embodiments without the need to apply a vacuum to the system after draining in order to remove high oxygen air. This reduces the amount of time required to place the system back into operation after being taken down for maintenance. Maximum time of restoration is often dictated by code requirements and may be very short. Also, the elimination of a vacuum on the system avoids potential damage to valve seals, and the like, which allows a greater variety of components to be used in the fire sprinkler system.


Variations will be apparent to the skilled artisan. For example, although illustrated with a single riser and main, it should be understood that multiple risers and/or mains may be used particularly with multiple story buildings, as disclosed in commonly assigned International Patent Application Publication No. WO 2010/030567 A1 entitled FIRE PROTECTION SYSTEMS HAVING REDUCED CORROSION, the disclosure of which is hereby incorporated herein by reference. Also, while water source 14 may be city water mains, it may, alternatively, include a water reuse tank, as also disclosed in such international patent application publication. Such water reuse tank reduces the size of the nitrogen source by conserving water that is relatively high in dissolved nitrogen and relatively low in dissolved oxygen.


In an alternative embodiment, a multiple-zone fire protection sprinkler system 110 that is illustrated for use with a multiple story building, but could, likewise, be used in a large protected space on a single story, includes a main supply valve 114 connected with a combination supply riser 124 that feeds a plurality of zones 148, each having a branch line 128 and a venting assembly 132 at a distal end of the branch line with respect to the riser (FIG. 5). Sprinkler heads (not shown) are connected with branch line 228. Venting assembly 132 may be the same as venting assembly 32. System 110 may additionally include a venting assembly 132 at an upper portion of riser 124. Each branch line 128 is connected with riser 124 via a zone supply valve which, in the illustrated embodiment, is a manual valve. Each branch line 128 is connected with a drain riser 154 via a zone drain valve 152. A source of inert gas, such as a nitrogen source 120, is connected with drain riser 154 via a fitting, such as a quick disconnect 122. The nitrogen source may be any of the types previously set forth.


In operation, one or more of the zones 148 can be accessed, such as for maintenance, while the other zones remain in operation, by closing the supply valve 150 for that zone(s) and opening the zone drain valve 152 for that zone(s). After the water is drained, main drain valve 118 is closed and nitrogen source 120 is operated to apply nitrogen to drain riser 154. When the zone(s) is filled with nitrogen gas, the nitrogen source is cut off and drain valve 118 is opened to allow the zone to relax to atmospheric pressure, as provided in procedure 50 (FIG. 3). When the procedure set forth in FIG. 3 is complete, that zone (3) is inerted. Zone drain valve 152 is closed and zone supply valve 150 is opened resulting in water again filling branch line 128 and the excess gas being expelled via venting assembly 132. Because venting assembly 132 does not allow significant amounts of oxygen rich air to be drawn into the zone when it is drained, drain and refill process 80 may be used to perform future maintenance on that zone(s). An inerting process may be used to inert riser 124 using venting assembly 132.


Thus, it can be seen that multiple zone fire protection sprinkler system 110 can be inerted one or more zones at a time while leaving other zones in service. Only one nitrogen source and gas injection port are required and they can be located in a riser room 125.


An alternative venting assembly 332 may be provided for each zone to provide an alternative technique for venting the gas to atmosphere between inerting steps (FIG. 7). Assembly 332 includes a manual vent, such as a valve 356, that is connected via a Tee 358 to a connection 360 extending from riser 148 (not shown in FIG. 7). After the zone is filled with inert gas and the source of inert gas is cut off, manual vent 156 may be opened in order to perform method step 64 rather than opening drain valve 118.


In another alternative embodiment, a multiple zone fire protection sprinkler system 210 includes a plurality of zones 248, each including at least one branch line 228 connected with a zone supply valve 252 with a supply riser 224 and through a zone drain valve 250 to a drain riser 254. Each zone includes a venting assembly 232, similar to venting assembly 132 or 332, at a distal end of the branch line. A venting assembly 232 may also be provided for riser 224. System 210 is similar to system 110, except that supply valves 252 and drain valves 250 are electrically controlled, such as from a control panel or programmable controller (not shown). Also, system 210 may include a main supply valve 214 and drain valve 218, either or both of Which may be electrically controlled. In this fashion, the inerting of zones 248 may be carried out either remotely or automatically thereby avoiding the need for a technician to visit the zone(s) being emptied and refilled. Other modifications will be apparent to the skilled artisan.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A wet pipe fire protection sprinkler system, comprising: a pipe network, a source of water for said pipe network, at least one sprinkler head connected with said pipe network;an inert gas source connected with said pipe network; anda venting assembly, said venting assembly venting at least some of the gas in said pipe network and not water from said pipe network, wherein said venting assembly substantially prevents air from re-entering said pipe network while water is being drained from said pipe network.
  • 2. The system as claimed in claim 1 wherein said pipe network includes a riser, a main drain valve for draining said pipe network and at least one generally horizontal branch line connected with said riser, said at least one sprinkler head being at said branch line, wherein said venting assembly is at said riser or said at least one generally horizontal branch line.
  • 3. The system as claimed in claim 2 wherein said pipe network comprises a multiple-zone piping network, each zone comprising a horizontal branch line, a fill valve connecting said branch line with said riser and a venting assembly at said branch line.
  • 4. The system as claimed in claim 3 including a drain line connected between said drain valve and each of said zones, wherein each zone comprises a zone drain valve connecting said horizontal branch line with said drain line, wherein said inert gas source is connected between said main drain valve and each of said zone drain valves, wherein said zones can be individually connected with said inert gas source.
  • 5. The system as claimed in claim 1 wherein said venting assembly is operable to vent gas when gas pressure is above a particular pressure level.
  • 6. (canceled)
  • 7. The system as claimed in claim 5 wherein said venting assembly includes a gas vent and a flow regulator, said flow regulator regulating gas flow between said gas vent and atmosphere wherein said flow regulator comprises a pressure relief valve, a back-pressure regulator or a check valve.
  • 8. (canceled)
  • 9. The system as claimed in claim 7 wherein said venting assembly further includes a redundant gas vent, said gas vent discharging to said pressure relief valve through said redundant gas vent.
  • 10. The system as claimed in claim 7 including a sample port, said sample port sampling gas discharged by said flow regulator to atmosphere.
  • 11. A method of operating a wet pipe fire protection sprinkler system having a pipe network, a source of water for said pipe network, at least one sprinkler head connected with said pipe network and an inert gas source connected with said pipe network, said method comprising: supplying inert gas from said inert gas source to said pipe network and supplying water to the pipe network, thereby substantially filling said pipe network with water and compressing the gas in said pipe network.
  • 12. The method as claimed in claim 11 including venting at least some of the compressed gas from said pipe network wherein said venting comprises venting the compressed gas when gas pressure is above a particular pressure level.
  • 13. (canceled)
  • 14. The method as claimed in claim 12 including preventing oxygen rich air from entering said pipe network when emptying water from said pipe network.
  • 15. The method as claimed in claim 11 including discharging gas from said pipe network after said supplying inert gas and prior to said supplying water and repeating said supplying inert gas and discharging gas from said inert gas source to said pipe network prior to supplying water to the pipe network thereby increasing concentration of inert gas in the said pipe network.
  • 16. The method as claimed in claim 15 wherein said pipe network includes a main drain valve for draining water from said piping network and wherein said discharging gas from said pipe network includes opening said main drain valve.
  • 17. The method as claimed in claim 16 wherein said pipe network includes a riser and at least one generally horizontal branch line connected with said riser, said at least one sprinkler head being at said branch line, wherein said venting assembly is at said riser or said at least one generally horizontal branch line.
  • 18. The method as claimed in claim 17 wherein said pipe network comprises a multiple-zone piping network including a drain line connected between said drain valve and each of said zones, each of said zones further including a horizontal branch line, a fill valve connecting said branch line with said riser, a zone drain valve connecting said horizontal branch line with said drain line and a venting assembly at said branch line.
  • 19. The method as claimed in claim 18 including connecting said inert gas source with at least one of said zones while others of said zones remain in operation to provide fire protection.
  • 20. The method as claimed in claim 19 wherein said connecting said inert gas source with at least one of said zones includes (i) closing the fill valve and opening the zone drain valve for that zone to drain that zone, (ii) closing the main drain valve, and (iii) applying inert gas from said gas source to the branch line of that zone.
  • 21. The method as claimed in claim 20 including applying the inert gas through the drain valve.
  • 22. The method as claimed in claim 20 including (iv) discharging gas from the branch line and repeating (iii) and (iv) until a satisfactory reduction in oxygen is achieved.
  • 23. (canceled)
  • 24. The method as claimed in claim 12 including sampling gas that is vented.
  • 25. The method as claimed in claim 11 including connecting said inert gas source to said pipe network and supplying inert gas to said pipe network during draining of water in order to resist oxygen rich air from entering said pipe network during the draining.
  • 26. A venting assembly for use with a fire protection sprinkler system, said system having a pipe network, a source of water for said pipe network, at least one sprinkler head connected with said pipe network, a drain valve for draining said pipe network and an inert gas source connected with said pipe network, said venting assembly comprising: gas vent and flow regulator;said gas vent adapted to be connected with the pipe network and adapted to vent gas, but not water; andsaid flow regulator connected with said gas vent and adapted to control gas flow between said gas vent and ambient when said regulator substantially prevents air from re-entering said pipe network while water is being drained from said pipe network.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US11/40003 6/10/2011 WO 00 12/20/2012
Provisional Applications (1)
Number Date Country
61357297 Jun 2010 US