Not applicable.
Not applicable.
Not applicable.
The present invention relates generally to a high order mode electromagnetic wave coupler and coupling method using proportional distributing waves, and more particularly to a coupling technology that converts the rectangular waveguide TE10 mode to the circular waveguide TE01 mode.
The TE01 mode, having advantages of field azimuthal symmetry and low propagating loss, is widely used in microwave applications, such as in gyrotron microwave sources. When applied to microwave plasma heating, the symmetrical distribution of the circular TE01 mode is expected to make heating more evenly.
Two methods have been classified to generate the TE01 mode with a cylindrical waveguide. One method is in-line coupling, and another is sidewall coupling. The former uses a deformed waveguide structure to convert a wave into the desired mode gradually. The transition length is generally long, and multiple modes could be excited during the converting process, wherein a Tantawi converter is commonly used. The latter, sidewall coupling, often uses a long and straight waveguide with coupling holes on the sidewall. Like the in-line converter, this type of converter needs converter components with longer lengths so that the electric wave can be converted slowly to the desired mode. However, during the converting process, the waves of the unwanted modes will interact with the electron beam, which will result in serious mode competition. Therefore, shortening the transition length and improving the mode purity could effectively lower the possibility of mode competition.
Thus, to overcome the aforementioned problems of the prior art, it would be an advancement in the art to provide an improved structure that can significantly improve the efficacy.
To this end, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The primary objective of the present invention is to provide a high order mode electromagnetic wave coupler using proportional distributing waves. The invention comprises an electromagnetic wave power divider, being comprised of a Y-shaped bifurcated waveguide to divide the wave to one or more orders. The divided wave is proportional so that the electromagnetic wave has a symmetric magnitude after passing through the bifurcated rectangular waveguide, and so that the electromagnetic wave can distribute the waves to a position with a suitable angle after passing through the curved waveguide. The wave is then injected into the mode converter; therefore, the coupler features high converting efficiency, high mode purity, high bandwidth, and convenient operation.
Another objective of the present invention is to provide a high order mode electromagnetic wave coupling method using proportional distributing waves, being comprised of a power divider and mode-converter. The high order mode electromagnetic wave coupler, using a coupling method based upon proportional distributing waves, includes an electromagnetic wave power divider (section), having one or more Y-shaped bifurcated waveguides to divide the wave to one or more orders. The input end of the Y-shaped bifurcated waveguide is a rectangular waveguide, and the other end is split into two rectangular waveguides. Each Y-shaped bifurcated waveguide is connected to the power divider by a curved waveguide. The divided wave is proportional so that the electromagnetic wave has a symmetric magnitude after passing through the bifurcated rectangular waveguide, and so that the electromagnetic wave can distribute the waves to a position with a suitable angle, after passing through the curved waveguide. Then, the wave is injected into the mode converter (section). The other end of Y-shaped bifurcated waveguide is split into two rectangular waveguides, so that a slightly tapered section is connected to the end of the Y-shaped bifurcated waveguide through a curved waveguide.
The invention also includes a mode-converter (section), which comprises a main waveguide, which has corresponding coupling holes on the sidewall. The electromagnetic wave is coupled by the rectangular waveguides that are connected to the curved waveguide into a polarized wave.
The present invention provides a new high-efficiency TE01 mode coupler, specifically a high order mode electromagnetic wave coupler and coupling method. The coupler features reduced converting components (main waveguide 21), high converting efficiency (shortened transition length), high mode purity (99.99%), high bandwidth, and convenient operation.
For example, converting a linear polarized wave from rectangular waveguide TE10 mode to a circular waveguide TE01 mode is based on the above-mentioned principles. The method extends to other high order and microwave guide-shaped mode conversions. The TE01 mode has drawn much attention in a variety of applications, such as Electron Cyclotron Maser (ECM) based gyrotron microwave sources, microwave systems, electromagnetic input and output devices, including microwave equipment, microwave plasma sources, microwave material processing, as well as applications in telecommunications industry and national defense industry. Among a wide range of selection in couplers for microwave, the circular TE01 mode is commonly used due to its features of azimuthally symmetric electric field and low ohmic loss. The TE01 mode in the present invention has high mode purity of 99.9%, and the converting efficiency is 98.5%, which is superior to conventional methods.
The electromagnetic wave power divider A of the present invention has two Y-shaped bifurcated waveguides 11 to divide the wave to one or more orders. The divided wave is proportional so that the electromagnetic wave has symmetric magnitude after passing through the bifurcated rectangular waveguide 111, and so that the electromagnetic wave can distribute the waves to a position with suitable angle after passing through the curved waveguide 110. Then, the wave is injected into the mode converter B. The coupler features high converting efficiency, high mode purity, high bandwidth, and convenient operation. The coupler can generate multiple coupling modes, TE01, TE21, TE31, TE41, TE51.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
a shows a cross-section view of the electric field distribution and the electric field direction with HFSS at the power dividing section.
b shows a schematic view of the reflection coefficient of the input port.
a shows a cross-section view of the electric field distribution with HFSS.
b shows a graph illustration of the transmission frequency reaction of the four rectangular TE10 modes to circular TE01 mode.
a shows a graph illustration of the distribution of the electric field strength of the converter coupler with HSFF.
b shows a graph illustration of the first five modes' transmission losses and the reflection loss.
a shows a perspective view of two similar electromagnetic wave couplers.
b shows a graph illustration of the transmission frequency reaction of the two similar electromagnetic wave couplers in connection.
a shows a graph illustration of the HFSS electromagnetic field intensity distribution of the two identical electromagnetic wave couplers with different angles.
b shows a graph illustration of the transmission frequency reaction of the two identical electromagnetic wave couplers with different angles.
The features and the advantages of the present invention will be more readily understood upon a thoughtful deliberation of the following detailed description of a preferred embodiment of the present invention with reference to the accompanying drawings.
As shown in
The invention includes an electromagnetic wave power divider A, which has one or more Y-shaped bifurcated waveguides 11 to divide the wave to one or more orders. The input end of the Y-shaped bifurcated waveguide 11 is a rectangular waveguide, and the other end is split into two rectangular waveguides. Each Y-shaped bifurcated waveguide 11 is connected to the power divider by a curved waveguide 110. The divided wave is proportional so that the electromagnetic wave has symmetric magnitude after passing through the bifurcated rectangular waveguide 111, and so that the electromagnetic wave can distribute the waves to a position with suitable angle after passing through the curved waveguide 110. Then, the wave is injected into the mode converter B. The other end of Y-shaped bifurcated waveguide 11 is split into two rectangular waveguides 111, so that a slightly tapered section 112 is connected to the end of the Y-shaped bifurcated waveguide 111 through a curved waveguide 110. The curved waveguide 110 is connected to the mode converter B, so that an optimized connector 113 could be set.
The invention also includes a mode-converter B, which has a main waveguide 21 with corresponding coupling holes 22 on the sidewall. The electromagnetic wave is coupled by the rectangular waveguides 111 that are connected to the curved waveguide 110 into a polarized wave.
The Y-shaped bifurcated waveguide 11 of the electromagnetic wave power divider A forms an included angle of less than 180. For the mode converter B, the cross-section shape of the main waveguide 21 is optimized for coupling efficiency between the rectangular and columnar waveguides.
Based on the structure, a high order mode electromagnetic wave coupling method uses proportional distributing waves.
A first section is the electromagnetic wave power dividing section, which has one or more Y-shaped bifurcated waveguides 11 to divide the wave to one or more orders. The divided wave is proportional. A slightly tapered section 112 is connected to the end of the Y-shaped bifurcated waveguide 11 so that the electromagnetic wave has a symmetric magnitude after passing through the bifurcated rectangular waveguide 111, which is then connected through a curved waveguide 110 to distribute the waves to a position with suitable angle. An optimized connector 113 can now be set.
A second section uses a main waveguide 21, in which the electromagnetic wave is coupled into a polarized wave by injecting into the rectangular waveguides 111 that are connected to the curved waveguide 110.
For the electromagnetic wave power divider A, the possible converting modes based on different amounts of evenly distributed energy are shown below:
The present invention uses a polarized TE01 mode converter as an example. The mode converting process consists of two sections. The first section is the electromagnetic wave power dividing section, which has one or more Y-shaped bifurcated waveguides 11 to divide the wave to one or more orders. The input end of the Y-shaped bifurcated waveguide 11 is a rectangular waveguide, and the other end is split into two rectangular waveguides. Each Y-shaped bifurcated waveguide 11 is connected to the power divider by a curved waveguide 110. A slightly tapered section 112 is connected to the end of the Y-shaped bifurcated waveguide 11 to minimize the reflection. The divided wave is proportional so that the electromagnetic wave has symmetric magnitude after passing through the bifurcated rectangular waveguide 111, and so that the electromagnetic wave can distribute the waves to a position with a suitable angle after passing through the curved waveguide 110. Then, the wave is injected into the mode converter B, to generate multiple signals with equal amplitude and electric fields. The second section is the mode converting section, in which the signal is transmitted into a main waveguide 21 to form a pure polarized TE01 mode. The following discusses the operating principles and design details of each section.
A. Power Dividing Section: Minimize the Input Reflection
The reflection is minimized by optimizing the geometry of the Y-splitters. An input power is first divided into two equal amplitude signals through a Y-shaped bifurcated power divider 11. A slightly tapered section 112 is connected to the end of the Y-shaped bifurcated waveguide 11 to minimize the reflection. The signal is divided in the bifurcated rectangular waveguide 111 after passing through the curved waveguide 110. The curved waveguide 110 and slightly tapered horn 112 can be shut completely to minimize multiple reflections. Then, multiple signals are outputted with suitable angles and equal amplitudes after passing through the waveguide 11 or optimized connector 113.
B. Mode Converting Stage: Optimize the Transmission Effect
The first section generates multiple signals with equal magnitude but different electric field orientations. In the second section, the signals excite the desired TE01 mode, the size of the optimized connector 113 of the sidewall being optimized to provide effective coupling between the rectangular and cylindrical waveguide.
a shows the distribution of the electric field strength of the converter coupler with HSFF. The mode converting process can be seen in this figure. With a radius of 6.0 mm, the cutoff frequencies for the first five modes are 14.7, 19.1, 24.3, 30.5, and 30.5 GHz for TE 11, TM01, TE21, TM11, and TE01, respectively. Therefore, when exciting the desired TE01 mode, the concentration of the other four modes shall be kept as low as possible. The sidewall couplings rule out the possibility of exciting TM waves due to the electric field orientation. In addition, the quad-feed structure is unfavorable to TE11 and TE21 modes. Instead, it is suitable for a four-fold or a circular symmetric field pattern. Thus, in the operating frequency range, only the TE01 mode could be formed and high mode purity is expected.
b shows the first five modes' transmission losses and the reflection loss. A TE10 rectangular waveguide mode injected into port 1 can be converted to five different circular waveguide modes at port 2. The converting efficiency of a specific mode is defined as the output power of this mode at port 2 divided by the input power at port 1. The converting efficiency of the desired mode is very high, and those of the other four modes are extremely low (less than 0.1%). Close to the center frequency, the converting efficiency of the desired mode is about 98.5%, mainly due to the reflection and the ohmic loss. As to the spurious modes, all the concentrations are less than −40 dB, except for some ripples. These ripples are mainly due to the phase imbalance in the power-dividing section.
Two identical electromagnetic couplers are joined back-to-back to measure the mode (as seen in
Although the simulation and measurement results are consistent, further evidence is required to show the effectiveness of the converting coupler. One of the methods is to show the field mode of TE01.
Number | Name | Date | Kind |
---|---|---|---|
2730677 | Boissinot et al. | Jan 1956 | A |
3320553 | Howard | May 1967 | A |
3758880 | Morz | Sep 1973 | A |
6087908 | Haller et al. | Jul 2000 | A |
Number | Date | Country | |
---|---|---|---|
20070182507 A1 | Aug 2007 | US |