The present invention relates to a filter, and in particular, a high pass filter.
Enhanced data rate for GSM evolution (EDGE) is a new specification for data transfer under the global system for mobile communications (GSM) protocol. The EDGE specification provides for higher data rates than GSM, thereby making greater demands on the performance of receivers and transmitters.
Referring to
The receiver 2 further comprises a circuitry block 4 for inter alia processing an incoming signal on the transmission medium 3. The circuitry block 4 is connected to a sampling system 5 which samples signals from the circuitry block 4 at a pre-determined sampling rate. The sampling system 5 provides the sampled signals to a processing module 6 for further processing. When the receiver 2 is switched on, even if it is not yet receiving an incoming signal on the transmission medium 3, the receiver's circuitry block 4 generates a DC offset signal. In the absence of an incoming signal on the transmission medium 3, the sampling system 5 samples the DC offset signal and transmits the resulting samples to the processing module 6. However, when an incoming signal is received on the transmission medium 3, the incoming signal is overlaid with the DC offset signal. Thus, the DC offset signal must be removed from the incoming signal so that it can be accurately processed by the processing module 6.
A DC offset signal can be removed by techniques such as high pass filtering or DC cancellation. In the high pass filtering approach, a high pass filter (HPF) 7 is inserted between the sampling system 5 and the processing module 6. The response of the HPF 7 to a DC offset comprises a transient component (whose duration is directly related to the sharpness of the HPF) followed by a steady state component. However, the receiver 2 cannot be used until the HPF 7 has reached steady state. Thus, the longer the duration of a HPF's transient component, the earlier the receiver 2 must be switched on in advance of its allocated slot. The DC cancellation scheme comprises the steps of estimating the DC offset of the receiver 2 and subtracting the estimate from subsequently received signals. This approach has the advantage that the receiver 2 can process an incoming signal without adding a delay to the signal itself (although the receiver will need to be activated for an interval prior to the arrival of the signal so the DC offset can be estimated). However, if the initial estimate of the DC offset is inaccurate, the DC cancellation scheme will not be successful and the receiver 2 will retain a DC offset.
U.S. Pat. No. 5,777,909 describes a scheme which reduces the duration of a HPF transient response by switching between two separate HPF coefficient sets.
However, the implementation of this scheme requires complex digital hardware.
Two embodiments of the invention will now be described by way of example only, with reference to the accompanying figures in which:
Referring to
Referring to
Referring to
Every sample received by the HPF 107 (from the receiver's sampling system) causes the counter 19 to increment by one. When the counter 19 attains a value greater than one (or more generally, the differentiator reaches its steady state DC ouput [i.e. 0] for higher order HPFs), the control device 20 transmits a control signal to the switch 18 to cause the switch 18 to connect the integrator 114 to the differentiator 112. Thus, for the first sample (n=1) received from the receiver's sampling system, the integrator is connected to zero and the output from the integrator 112 is therefore zero (i.e. INT(1)=0). For every sample received thereafter (i.e. n>1, wherein the differentiator has reached its steady state DC output) the integrator is connected to the differentiator 112 so that the output from the integrator is given by INT(n)=DIFF(n)+(1−α)INT(n−1). This in effect, allows the differentiator 112 to start (at least) one sample period earlier than the integrator 114. Thus, using the previous example of a DC input signal to the HPF 107, during the first sample of the signal, the switch 18 ensures that the pulse from the differentiator 112 has no effect on the output from the integrator 114. In other words referring to
A second embodiment of the HPF also comprises a differentiator and an integrator. Furthermore, the integrator is connected to a switch controlled by a control device and a counter within the HPF. However, in the second embodiment, the switch does not control the connection between the differentiator and the integrator, since the integrator and the differentiator are permanently connected. Instead, in the second embodiment, the switch controls the state of activation or deactivation of the integrator. More particularly, when a receiver comprising the HPF is first switched on, the counter is set to a value of one and the switch deactivates the integrator. As in the first embodiment, every sample received from the receiver's sampling system causes the counter to increment by one. When the counter attains a value of at least greater than one (wherein the differentiator has reached its steady state DC output), the control device transmits a control signal to the switch, to cause the switch to activate the integrator. Thus, for the first sample (n=1) the integrator is inactive and its output is therefore zero (i.e. INT(1)=0). For every sample received thereafter (i.e. n>1 wherein the differentiator has reached its steady state DC output) the integrator is activated. Consequently, the output from the integrator is given by INT(n)=DIFF(n)+(1−α)INT(n−1). Thus, in a similar fashion to the first embodiment, the arrangement of the second embodiment effectively allows the differentiator to start at least one sample period earlier than the integrator. Thus, the switch has the effect of removing the transient component from the output of the integrator.
It should be noted that in both embodiments, once the entire signal in an allocated slot has been received, the receiver is switched off until its next allocated slot. On switching the receiver on again (to receive a signal during the next slot), the counter is reset to one.
Referring to
Accordingly the present embodiment allows DC offset and low frequency noise to be removed from signals in a radio receiver without adding a substantial transient component to the response of the receiver. Thus, in a GSM system, a device can switch between transmit and receive slots and between disjoint receive slots more quickly. Further, the present embodiment reduces the power consumption of a radio receiver, by reducing the amount of time the receiver must be powered on before receiving an incoming burst.
Whilst the above description is primarily focused on a first order high pass filter, it should be realised that the present embodiments are not limited to such high pass filters and could instead, be employed with any order high pass filter. Similarly, whilst the above description is essentially directed to GSM/EDGE receivers, nonetheless it will be appreciated that the embodiment is not limited to this particular application. Instead, the embodiment could be used much more generally in any signal processing system which uses a high pass filter to remove a DC offset whilst minimizing the duration of the HPF transient response.
Alterations and modifications may be made to the above without departing from scope of the invention.