Claims
- 1. A logical computer architecture for image and signal processing, and other related computations, using a data flow concept for performing operations of an image algebra having an algebraic set of operators; wherein the architecture comprises three tightly coupled processing components: a spatial configuration processor (process S), a weighting processor using a point-wise operation (process W), and an accumulation processor (process A), wherein the data flow and image processing operations are directed by a control buffer and pipelined to each of said three processing components;
- wherein the spatial configuration processor has an input for an original image and an input for a template, and in operation uses a step-wise discrete convolution of the original input image with each template location, with a unit value assigned to a template element for each convolution, a result of each convolution being a shift of an input image element, providing an output of the spatial configuration processor which is coupled to the weighting processor;
- wherein the output of the spatial configuration processor is combined point-wise in the weighting processor, using an appropriate binary associative operator from the algebraic set of operators, with the value of the respective template element, the operation of the weighting processor being an array process execution using said appropriate binary associative operator, the weighting processor having an output coupled to the accumulation processor;
- wherein the output of the weighting processor is accumulated point-wise in the accumulation processor, using an appropriate global reduce operator from the algebraic set of operators, the accumulation processor having an accumulator memory which, once the final template element is processed, contains the result of a generalized matrix product defined in the image algebra.
- 2. A logical computer architecture according to claim 1, wherein the spatial configuration processor is an optical system which comprises a light source providing a coherent collimated light beam which passes through a polarizer to provide a plane wave of polarized coherent light to a first spatial light modulator, said input for an original image being coupled to the first spatial light modulator, to provide a first phase modulated output which is passed to a first Fourier transform lens, light energy from the first Fourier transform lens being passed to a second spatial light modulator, said input for a template being coupled to the second spatial light modulator, to provide a second phase modulated output which is passed to a second Fourier transform lens, output from the second Fourier transform lens being passed through an analyzer which modifies the intensity of the second phase modulated light, with differing levels of intensity being intercepted by a charge coupled device (CCD) array and converted back to digital form, the CCD array having an output which is the output of the spatial configuration processor as a digital electronic signal.
- 3. A logical computer architecture according to claim 1,
- wherein the weighting processor comprises a plurality of weighting processor cells, each of which comprises first, second and third parallel shift registers, and an arithmetic logic unit (ALU) having a multiplier, an adder and a comparator, the first parallel shift register having a scalar input from the control buffer and a parallel output on an n-bit line to the ALU, the second parallel shift register having a digital input connected to the spatial configuration processor and a parallel output on an n-bit line connected to the ALU, and the third parallel shift register having an n-bit parallel input from an output of the ALU and a serial output to the accumulation processor.
- 4. A logical computer architecture according to claim 3,
- wherein the accumulation processor is a parallel processor having a plurality of accumulation processor cells, each of which comprises an accumulator and an arithmetic logic unit (ALU), each ALU of the accumulation processor having a directly connected input from the output of a weighting processor cell, an output connected to the accumulator, and an input from the accumulator.
- 5. A logical computer architecture according to claim 4, wherein the spatial configuration processor is an optical system which comprises a light source providing a coherent collimated light beam which passes through a polarizer to provide a plane wave of polarized coherent light to a first spatial light modulator, said input for an original image being coupled to the first spatial light modulator, to provide a first phase modulated output which is passed to a first Fourier transform lens, light energy from the first Fourier transform lens being passed to a second spatial light modulator, said input for a template being coupled to the second spatial light modulator, to provide a second phase modulated output which is passed to a second Fourier transform lens, output from the second Fourier transform lens being passed through an analyzer which modifies the intensity of the second phase modulated light, with differing levels of intensity being intercepted by a charge coupled device (CCD) array and converted back to digital form, the CCD array having an output which is the output of the spatial configuration processor as a digital electronic signal.
- 6. A logical computer architecture according to claim 4, wherein the spatial configuration processor is an acousto-optical analog image translation device which comprises a light source providing a coherent collimated light beam which passes through a liquid crystal light valve, first and second lenses, first and second acousto-optical devices, and third and fourth lenses to a charged coupled device (CCD) array;
- said input for an original image being coupled to the liquid crystal light valve, said input for a template being coupled to the first and second acousto-optical devices to provide digital electronic signals as vertical signals to one of the acousto-optical devices and horizontal signals to the other acousto-optical device, the acousto-optical devices being oriented 90 degrees apart; the CCD array having an output which is the output of the spatial configuration processor to provide an output image in digital form.
- 7. A logical computer architecture according to claim 4, wherein the spatial configuration processor is an all digital system which comprises a single instruction multiple data array of interconnected parallel shift registers that establishes inter-processor communication at the weighting processor, additional serial connections are made to each parallel shift register from the respective accumulator in each accumulation processor;
- said input for an original image being coupled to the array of parallel shift registers from a dedicated bus line, said input for a template being coupled to a correct single instruction shift of the contents of each parallel shift register in the array in cardinal directions north, south, east, and west to provide the appropriate input to the weighting processor.
RIGHTS OF THE GOVERNMENT
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
US Referenced Citations (6)