This patent application relates generally to electrical cables used to transmit signals between electronic devices, such as servers and routers.
Cables are often terminated at their ends with electrical connectors that mate with corresponding connectors on the electronic devices, enabling quick interconnection of the electronic devices.
A cable provides signal paths with high signal integrity, particularly for high frequency signals, such as those above 40 Gbps using an NRZ protocol. Each cable has one or more signal conductors, which is surrounded by a dielectric material, which in turn is surrounded by a conductive layer. A protective jacket, often made of plastic, may surround these components. Additionally the jacket or other portions of the cable may include fibers or other structures for mechanical support.
The components of the cable that predominately impact signal propagation, i.e., the signal conductor, the dielectric and conductive layer, are generally uniform over the length of the cable. Non-uniformities on a signal path, such as might be created by changes in shape or material of the components, give rise to changes in impedance or promote mode conversion, which reduce signal integrity, as these effects are manifested as insertion loss, crosstalk or other undesirable effects.
The signal conductor, dielectric and conductive layer are flexible, giving rise to a desirable property of cables. The flexibility enables uniform cable properties to be maintained even if the cable is routed with many bends, promoting signal transmission with high integrity.
One type of cable, referred to as a “twinax cable,” is constructed to support transmission of a differential signal and has a balanced pair of signal wires, is embedded in a dielectric, and encircled by a conductive layer. In addition to uniform dimensions of the signal wires over the length of the cable, the spacing of the wires relative to each other and to the conductive layer is maintained over the length of the cable because those components are positioned by the dielectric. Such a cable may be formed by extruding the dielectric around the signal wires.
The conductive layer is usually formed using foil, such as aluminized Mylar, or wire braid wrapped around the surface of the dielectric. The conductive layer influences the characteristic impedance in the cable and provides shielding that reduces crosstalk between signal conductors in twinax cables that may be routed together as a cable bundle. The conductive layer also forms the cable ground reference.
A twinax cable can also have a drain wire. Unlike a signal wire, which is generally coated with a dielectric to prevent electrical contact with other conductors in the cable, the drain wire may be uncoated so that it contacts the conductive layer at multiple points over the length of the cable. At an end of the cable, where the cable is to be terminated to a connector or other terminating structure, the protective jacket, dielectric and the foil may be removed, leaving portions of the signal wires and the drain wire exposed at the end of the cable. These wires may be attached to a terminating structure, such as a connector. The signal wires may be attached to conductive elements serving as mating contacts in the connector structure. The drain wire may be attached to a ground conductor in the terminating structure. In this way, any ground return path may be continued from the cable to the terminating structure.
According to one aspect of the present application, a cable assembly is provided. The cable assembly may comprise a cable comprising an end, and an electrical termination. The electrical termination may comprise a conductive ground shield enclosing, at least in part, the end of the cable, and a conductive, compressible member disposed between, and in electrical contact with, the end of the cable and the conductive ground shield.
According to another aspect of the present application, an electrical connector is provided. The electrical connector may comprise a plurality of cable assemblies disposed in one or more columns, each one of the plurality of cable assemblies comprising an electrical termination for a cable, the cable comprising an end. The electrical termination may comprise the end of the cable, a conductive ground shield enclosing, at least in part, the end of the cable, and a conductive, compressible member disposed between, and in electrical contact with, the end of the cable and the conductive ground shield.
According to yet another aspect of the present application, a method for terminating an electrical cable with an electrical termination comprising a conductive, compressible member is provided. The method may comprise inserting an end of the electrical cable in an opening in the conductive, compressible member, the end of the cable comprising an exposed conductive layer surrounding at least one signal conductor. The method may further comprise securing a first portion of a conductive ground shield to a second portion of the conductive ground shield with the first portion contacting a first side of the conductive, compressible member and the second portion of the conductive ground shield contacting a second side of the conductive, compressible member such that the conductive, compressible member is compressed between the first portion and the second portion of the conductive ground shield so as to make electrical connection between the conductive layer and the conductive ground shield.
According to yet another aspect of the present application, a connector module for terminating a cable with an outer perimeter is provided. The connector module may comprise a conductive, compressible member having an opening there through, the opening being sized to have, in an uncompressed state, an interior perimeter greater than the outer perimeter of the cable and, in a compressed state, an interior perimeter less than or equal to the outer perimeter of the cable, and a conductive ground shield contacting and enclosing, at least in part, the conductive, compressible member.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
The inventors have recognized and appreciated that a conductive, compressible member used in a cable termination may provide a high performance cable interconnection system. The conductive, compressible member may be positioned between a conductive layer of a cable and a conductive member on a terminating structure, such as a connector. Any jacket or insulating covering on the conductive layer may be removed at the cable termination such that the conductive, compressible member may make an electrical connection to both the conductive layer of the cable and the conductive member of the terminating structure.
The conductive member, the conductive layer, and the conductive, compressible member may be mounted so that the conductive, compressible member is compressed between the conductive member and the conductive layer. The compression may create a reliable electrical connection between the conductive layer of the cable and the conductive, compressible member of the terminating structure via the conductive, compressible member. When compressed between the conductive member and the conductive layer, the conductive compressible member may form a contact with the conductive layer of less than 100 Ohms in some embodiments, less than 75 Ohms in some embodiments, less than 50 Ohms in some embodiments, less than 25 Ohms in some embodiments, less than 10 Ohms in some embodiments, less than 5 Ohms in some embodiments or less than 1 Ohm in some embodiments. When compressed between the conductive member and the conductive layer, the conductive compressible member may form a contact with the conductive layer of at least 0.5 Ohms in some embodiments, at least 1 Ohm in some embodiments, at least 5 Ohms in some embodiments, at least 10 Ohms in some embodiments, at least 25 Ohms in some embodiments or at least 50 Ohms in some embodiments. In such embodiments, the connection may be suitable for grounding.
The compressive force may be created by members in the terminating structure, which may be a separate structure or may be the conductive member. In some embodiments, the conductive member may be a portion of a structure that encircles the cable termination with a perimeter smaller than the uncompressed perimeter of the conductive, compressible member.
In some embodiments, the terminating structure may be a cable connector, or a portion of a cable connector, and the conductive member may be a reference conductor or shielding member in the cable connector. As a specific example, the portion of the cable connector may be a module, holding a pair of signal conductors encircled by the conductive element. Multiple such modules may be positioned in an array to form a connector terminating a cable bundle.
Electrical terminations of the type described herein may be configured to terminate any suitable type of electric cable, such as twinax cables and coax cables.
The conductive element may be a portion of a multi-piece shell that encircles at least the cable termination of the module. That multi-piece shell may be conductive, forming shielding for the module.
In some embodiments, the conductive, compressible member may be a conductive elastomer. A conductive elastomer may be formed by adding conductive filler to an elastomer. In some embodiments, the elastomer may be configured to elongate by a percentage that is at least 90%. In some embodiments, the elastomer may be configured to elongate, without breaking, by a percentage that is less than 1120%. The elastomer, for example, may be a silicone rubber. The filler may be particles in any suitable form, including plates, spheres, fibers, or of any other suitable geometry. As a specific example, the conductive, compressible member may be made of silver-plated glass micro spheres suspended in high consistency rubber (HCR) silicone.
The filler may comprise a sufficient portion of the conductive, compressible member such that there is contact between conductive fillers when the conductive, compressible member is compressed. Such a conductive, compressible member may be formed by filling an elastomer or other suitable compressible matrix with conductive fillers at a volume percentage between 25% and 95% in an uncompressed state, in some embodiments. In some embodiments, the volume percentage may be between 45% and 90% or between 60% and 90%.
In some embodiments, the fillers may be of materials or present in an amount that results in a bulk resistivity in a range of 10−6 ohm-cm to 10−1 ohm-cm.
Cable assemblies, using a conductive, compressible member as part of a termination as described herein, may use cables without drain wires. Such cable assemblies may be lighter and more flexible. Moreover, the use of such cable assemblies may simplify the operation for terminating the cable.
According to one aspect of the present application, the flexibility of the cables and the cost associated with the termination of the cables may be reduced by using electrical terminations comprising a conductive, compressible material.
Cable termination 20 may mate with a connector mounted in an electronic device. For example, the connector may be mounted on a printed circuit board (PCB) in an electronic device. The opposite end of cable 202 may be similarly configured to mate with another electronic device. Cable 202 may be configured to connect any suitable electronic device to any other suitable device, such a first computer to a second computer, a computer to a server, or a peripheral device, such as a video card, to a motherboard within a computer. Cable 202 may have characteristics selected for the types of signals to pass between the connected devices. For example, cable 202 may comprise a pair of signal conductors 204 and 206, which may be configured to carry a differential signal in some embodiments. Cable 202 may be configured to support signals having any suitable electric bandwidth, such as more than 20 GHz, more than 30 GHz or more than 40 GHz.
Referring back to
As illustrated in
Conductive compressible material may be formed in any suitable way. In some embodiments, conductive, compressive material may comprise a combination of materials, some of which provide desired mechanical properties, and others of which provide desired electrical properties. Conductive, compressible material 210 may comprise a polymer or other compressible material filled with a plurality of conductive particulates, configured to collectively form electrically conductive paths.
Referring back to
Termination of cable 202 may be performed by contacting conductive ground shield portions 230 and 232 with a first side and a second side of conductive, compressible member 210 respectively. The ground shield portions may be integrated into the cable termination so that they press against the conductive, compressible member 210 and may cause a compression of the conductive, compressible member 210. Any suitable technique may be used to press one or more ground shield portions against conductive, compressible member 210. In some embodiments, ground shield portions 230 and 232 may be held within a housing. Alternatively or additionally, ground shield portions 230 and 232 may be secured to each other, to provide an interior perimeter partially or totally encircling conductive, compressible member 210. That inner perimeter may be smaller than an uncompressed outer perimeter of conductive, compressible member 210.
In some embodiments, such compression may cause a reduction in the volume of the conductive, compressible member 210. In some embodiments, such compression may cause a reduction in the volume of the opening 212. To ensure that there is compression, which aids in making good electrical contact, the conductive, compressible member may have an outer perimeter that is greater than an inner perimeter of the conductive ground shield formed from conductive ground shield portions 230 and 232. Materials and termination techniques may also be used to aid in electrical connection between conductive, compressible member 210 and conductive ground shield portions 230 and 232 or a conductive layer of a cable. The portions of the conductive ground shield portions 230 and 232 that contact conductive, compressible member 210 may be treated such that there is little or no oxide on the ground shield portions 230 and 232. Such a treatment, for example, may be chemical or mechanical, using known techniques that remove metal oxides. Alternatively or additionally, the treatment may entail applying gold, nickel, nickel/tin alloys or or other metal that resists oxidation.
While
Regardless of how attached, when conductive ground shield portion 230 is attached to conductive ground shield portion 232, as illustrated in
In some circumstances, it may be desirable to control the impedance of the electric termination, and impedance control may be achieved by the shape and/or position of conductive, compressible material. For example, impedance at any location along the length of a conductive element may depend on a distance to a ground conductor, among other factors. The conductive, compressible material may be shaped and positioned to act as the closest ground conductor to a signal conductor in the cable or connector terminating the cable. The conductive, compressible material may be shaped to provide the desired spacing between the signal conductors and the ground structure.
In some embodiments, each signal conductor of cable 602 may be connected to a corresponding conductive portion serving as a mating contact to mate with a signal conductor in a mating connector. For example, signal conductor 604 may be connected to conductive element 605 and signal conductor 606 may be connected to conductive portion 607. The conductive portions and the signal conductors may be connected by soldering, brazing welding or in any other suitable way.
Conductive, compressive member 610 may comprise an opening 612, which may be configured to receive cable 602 therethrough. In contrast to the embodiment of
In the embodiment illustrated, when assembled, conductive, compressive member 610 may be configured to contact dielectric member 620, which in this example represents a housing of a cable connector that supports mating contact portions of a cable connector. In some embodiments, the contacting surfaces of conductive, compressive member 610 and dielectric member 620 may comprise complementary features. For example, as illustrated in
Having complementary features formed on the contacting surfaces of the conductive, compressive member 610 and dielectric member 620 may mitigate variations in impedance caused by air gaps forming between the two members, which may be the case if conductive, compressive member 610 and dielectric member 620 are not properly contacted.
As shown in
However, it should be appreciated that other construction techniques alternatively or additionally may be used. For example, conductive, compressive member 610 is shown as a unitary structure with an opening to receive a cable. However, it should be appreciated that portions of the conductive, compressive material forming conductive, compressive member 610 may be attached to conductive ground shield portions 630 and 632, respectively. The material may be shaped such that, when conductive ground shield portions 630 and 632 are pressed together, the conductive, compressive material encircles cable 602.
In some embodiments, connector modules may be attached to cables, creating cable assemblies that may be used to connect electronic devices. Each module may comprise one or more conductive, compressible members configured to terminate one or more cables in the manner described above. A non-limiting example of such module is illustrated in
Termination 80 may comprise a module 150, terminating a pair of cables 810 and 811, which may be of the type described in connection to
Module 150 may include a housing portion 82. Housing portion 82 may be formed of a dielectric material, and may hold mating contact portions 812 and 814. In some embodiments, mating contact portions may be held by housing portion 82 with ends exposed. Those ends may be attached to wires within cables 810 and 811, using techniques such as welding, brazing or soldering. However, the specific attachment technique is not critical to the invention, and any suitable attachment technique may be used.
Module 150 may comprise a conductive, compressible member of the type described herein. In the embodiment illustrated, member 84 may be formed of a conductive, compressive material. In some embodiments, member 84 may be injected in a molding operation into an opening in housing portion 82. In this way, member 84 may be attached to housing portion 82. However, other assembly techniques may be used, including inserting a cable into an opening in member 84 or assembling member 84 from multiple separate pieces of conductive, compressive material. Regardless of how member 84 is integrated into module 152 it may be positioned to contact conductive layers exposed on exterior surfaces of cables 810 and 811 and grounding structures within module 152. In some embodiments, those grounding structures may be conductive ground shields (not shown in
In some embodiments, the conductive, compressible member may also make contact with conductive elements that form mating contact portions for grounds of module 150. In the embodiment of
In some embodiments, signal conductors 812 and 814 may be electrically connected to conductive elements 821 and 822, and signal conductors 816 and 818 may be electrically connected to conductive elements 824 and 825. Conductive elements 820, 823 and 826 may be connected to the conductive layers of cables 810 and 811 via conductive, compressible members disposed in the housing 82, such that conductive elements 820, 823 and 826 serve as aground conductors. Such a connection may be formed in any suitable way, including by having conductive elements 820, 823 and 826 integrally formed with or attached to grounding structures pressing against portion 84. However, it should be appreciated that other approaches for making connections using a conductive, compressive material may be used. In some embodiments, a conductive compressive member may be pressed into both a conductive outer layer of a cable and a portion of the conductive elements 820, 823 and 826. For example, portions of conductive elements 820, 823 and 826 within housing 82 may be widened with respect to the mating contact portions visible in
Each cable assembly 912 may comprise a conductive ground shield 914, which may be configured to compress a respective conductive, compressible member (not shown in
An opposite end of the cables may also be terminated. The nature of the termination may depend on the intended use of the cable assemblies. In some embodiments, the terminations at the opposite end may be the same as terminations 20 or 60 or other termination as described herein. In other embodiments, cables 916 may be configured to connect to a circuit board at a right angle by terminating the other end of the cable assemblies with modules that have contact tails adapted for attachment to a printed circuit board. In such embodiments, an end of the cable may be coupled to a connection portion 920, which may comprise a plurality of conductive tails 930. At least one of the conductive tails may be electrically connected to the conductive layer of a respective cable. That connection may be made through the use of compressive, conductive material as described herein, though any suitable attachment mechanism may be used. Additional conductive tails may each be electrically connected to a signal conductor. However, the application is not limited in this respect and electrical connector 910 may be configured to connect to an electronic device in any suitable way.
The cable assemblies of electrical connector 910 may be configured to be inserted into corresponding receptacles of electrical connector 960. Each receptacle may comprise a housing 964. In some embodiments, the housings 964 may be electrically connected to each other, and may be connected to a reference potential, such as a ground terminal. When inserted into a corresponding receptacle, a conductive ground shield may electrically contact an internal surface of a housing 964, thus placing the cable's conductive layer at the electric potential of the reference terminal. In some embodiments, a conductive ground shield may comprise one or more conductive tabs 918, which may be configured to bend when the cable assembly is inserted in the corresponding receptacle and to electrically contact a housing 964. Electrical connector 960 may be configured to be mounted on a printed circuit board, such as a motherboard, though conductive tails 966.
Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art.
For example, a compressive conductive member was illustrated as being a unitary structure with an opening slightly larger than the outer surface of a cable with an exposed conductive layer. Such a structure may be readily formed by extruding conductive compressive material in a tube and slicing segments of a desired length. However, it is not a requirement that the conductive compressive member be a unitary member, and other manufacturing techniques may be used, including forming separate pieces of conductive compressive material and adding them to a connector or molding conductive compressive material onto other components while still in an uncured or partially cured state and allowing the conductive compressive material to cure in place. Such an approach may be readily implemented with conductive compressive material implemented with a silicone matrix or matrix of any other polymer that might be cured, such as a result of adding a curing agent, passage of time, exposure to heat, UV light or other source of energy, or in any other way.
In some embodiments, conductive, compressive material may be attached to a portion of a cable assembly such that, when the cable is terminated, the conductive compressive material is compresses between the cable's conductive layer and the conductive ground shield. For example, conductive, compressive material may be attached to the conductive ground shield.
As illustrated, conductive, compressive member 1004 may be connected to the conductive ground shield 1002, and may at least partially be positioned inside opening 1010. Conductive, compressive member 1004 may be attached to conductive ground shield 1002 in any suitable way. For example, conductive, compressive member 1004 may be molded onto conductive ground shield 1002 while still in an uncured or partially cured state and may be cured in place. Any suitable molding techniques may be used, including but limited to two-shot injection molding, extrusion molding, compression molding, transfer molding, thermomolding, blow molding, rotational molding, structural foam molding, shrink wrap molding, and over molding.
In some embodiments, conductive, compressive material 1004 is attached to the inner wall of conductive ground shield 1002 (e.g., in opening 1010) and to the outer wall, as illustrated in
Conductive, compressive member 1004 may be arranged and sized such that, when conductive ground shield 1002 is mounted with a cable, conductive, compressive member 1004 is compressed between the cable and conductive ground shield 1002. In this way, a conductive path between the cable's conductive layer and the conductive ground shield may be formed. For example, conductive, compressive member 1004 may comprise one or more protrusions 1006 extending away from conductive ground shield 1002. When a cable is received in the opening 1010, protrusion(s) 1006 may be arranged to be compressed between the cable and the shield.
Conductive ground shield 1002 may be arranged such that a void 1110 is formed between the shield and the cable. In some embodiments, void 1110 may be filled, at least partially, with a conductive, compressive members of the type described herein (e.g., conductive, compressive member 210, 610 or 1004). When the cable is assembled with the shield, the conductive, compressive member may contact, physically and electrically, conductive layer 1012 and conductive ground shield 1002.
As another example, use of conductive, compressive material was illustrated in connection with specific connector configurations, and particularly in connection with making connections to a conductive layer of a cable. This approach may be used in other connector structures to connect members intended to be grounded.
Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Further, though advantages of the present invention are indicated, it should be appreciated that not every embodiment of the invention will include every described advantage. Some embodiments may not implement any features described as advantageous herein and in some instances. Accordingly, the foregoing description and drawings are by way of example only.
Various aspects of the present invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Also, the invention may be embodied as a method, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Also, circuits and modules depicted and described may be reordered in any order, and signals may be provided to enable reordering accordingly.
Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
Also, data structures may be stored in non-transitory computer-readable storage media in any suitable form. For simplicity of illustration, data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields with locations in a non-transitory computer-readable medium that convey relationship between the fields. However, any suitable mechanism may be used to establish relationships among information in fields of a data structure, including through the use of pointers, tags or other mechanisms that establish relationships among data elements.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This Application is a continuation of U.S. patent application Ser. No. 16/391,013, filed Apr. 22, 2019, and entitled “HIGH PERFORMANCE CABLE TERMINATION,” which is a continuation of U.S. application Ser. No. 15/610,376, filed May 31, 2017, and entitled “HIGH PERFORMANCE CABLE TERMINATION,” which claims priority to and the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/343,625, filed on May 31, 2016, and entitled “HIGH PERFORMANCE CABLE TERMINATION.” The entire contents of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2124207 | Carl | Jul 1938 | A |
2996710 | Pratt | Aug 1961 | A |
3002162 | Garstang | Sep 1961 | A |
3007131 | Dahlgren et al. | Oct 1961 | A |
3134950 | Cook | May 1964 | A |
3229240 | Harrison et al. | Jan 1966 | A |
3322885 | May et al. | May 1967 | A |
3594613 | Prietula | Jul 1971 | A |
3715706 | Michel et al. | Feb 1973 | A |
3786372 | Epis et al. | Jan 1974 | A |
3825874 | Peverill | Jul 1974 | A |
3863181 | Glance et al. | Jan 1975 | A |
4067039 | Gaicki | Jan 1978 | A |
4083615 | Volinskie | Apr 1978 | A |
4155613 | Brandeau | May 1979 | A |
4157612 | Rainal | Jun 1979 | A |
4195272 | Boutros | Mar 1980 | A |
4276523 | Boutros et al. | Jun 1981 | A |
4307926 | Smith | Dec 1981 | A |
4337989 | Asick | Jul 1982 | A |
4371742 | Manly | Feb 1983 | A |
4397516 | Koren et al. | Aug 1983 | A |
4408255 | Adkins | Oct 1983 | A |
4447105 | Ruehl | May 1984 | A |
4471015 | Ebneth et al. | Sep 1984 | A |
4484159 | Whitley | Nov 1984 | A |
4490283 | Kleiner | Dec 1984 | A |
4518651 | Wolfe, Jr. | May 1985 | A |
4519664 | Tillotson | May 1985 | A |
4519665 | Althouse et al. | May 1985 | A |
4615578 | Stadler et al. | Oct 1986 | A |
4632476 | Schell | Dec 1986 | A |
4636752 | Saito | Jan 1987 | A |
4639054 | Kersbergen | Jan 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4697862 | Hasircoglu | Oct 1987 | A |
4708660 | Claeys et al. | Nov 1987 | A |
4724409 | Lehman | Feb 1988 | A |
4728762 | Roth et al. | Mar 1988 | A |
4751479 | Parr | Jun 1988 | A |
4761147 | Gauthier | Aug 1988 | A |
4795375 | Williams | Jan 1989 | A |
4806107 | Arnold et al. | Feb 1989 | A |
4826443 | Lockard | May 1989 | A |
4846724 | Sasaki et al. | Jul 1989 | A |
4846727 | Glover et al. | Jul 1989 | A |
4871316 | Herrell et al. | Oct 1989 | A |
4878155 | Conley | Oct 1989 | A |
4889500 | Lazar et al. | Dec 1989 | A |
4913667 | Muz | Apr 1990 | A |
4924179 | Sherman | May 1990 | A |
4948922 | Varadan et al. | Aug 1990 | A |
4949379 | Cordell | Aug 1990 | A |
4970354 | Iwasa et al. | Nov 1990 | A |
4975084 | Fedder et al. | Dec 1990 | A |
4990099 | Marin et al. | Feb 1991 | A |
4992060 | Meyer | Feb 1991 | A |
5000700 | Masubuchi et al. | Mar 1991 | A |
RE33611 | Michaels et al. | Jun 1991 | E |
5066236 | Broeksteeg | Nov 1991 | A |
5091606 | Balsells | Feb 1992 | A |
5137471 | Verespej | Aug 1992 | A |
5141454 | Garrett et al. | Aug 1992 | A |
5150086 | Ito | Sep 1992 | A |
5168252 | Naito | Dec 1992 | A |
5168432 | Murphy et al. | Dec 1992 | A |
5176538 | Hansell, III et al. | Jan 1993 | A |
5184961 | Ramirez et al. | Feb 1993 | A |
5190473 | Mroczkowski et al. | Mar 1993 | A |
5197893 | Morlion et al. | Mar 1993 | A |
5266055 | Naito et al. | Nov 1993 | A |
5280257 | Cravens et al. | Jan 1994 | A |
5281150 | Bundga et al. | Jan 1994 | A |
5281762 | Long et al. | Jan 1994 | A |
5287076 | Johnescu et al. | Feb 1994 | A |
5306171 | Marshall | Apr 1994 | A |
5332979 | Roskewitsch et al. | Jul 1994 | A |
5334050 | Andrews | Aug 1994 | A |
5340334 | Nguyen | Aug 1994 | A |
5342211 | Broeksteeg | Aug 1994 | A |
5346410 | Moore, Jr. | Sep 1994 | A |
5387130 | Fedder et al. | Feb 1995 | A |
5402088 | Pierro et al. | Mar 1995 | A |
5429520 | Morlion et al. | Jul 1995 | A |
5429521 | Morlion et al. | Jul 1995 | A |
5433617 | Morlion et al. | Jul 1995 | A |
5433618 | Morlion et al. | Jul 1995 | A |
5435757 | Fedder et al. | Jul 1995 | A |
5441424 | Morlion et al. | Aug 1995 | A |
5453026 | Ikegami | Sep 1995 | A |
5456619 | Belopolsky et al. | Oct 1995 | A |
5461392 | Mott et al. | Oct 1995 | A |
5480327 | Zola | Jan 1996 | A |
5483020 | Hardie | Jan 1996 | A |
5484310 | McNamara et al. | Jan 1996 | A |
5486113 | Lundh | Jan 1996 | A |
5487673 | Hurtarte | Jan 1996 | A |
5495075 | Jonckheere et al. | Feb 1996 | A |
5496183 | Soes et al. | Mar 1996 | A |
5499935 | Powell | Mar 1996 | A |
5509827 | Huppenthal et al. | Apr 1996 | A |
5551893 | Johnson | Sep 1996 | A |
5554038 | Morlion et al. | Sep 1996 | A |
5562497 | Yagi et al. | Oct 1996 | A |
5580264 | Aoyama et al. | Dec 1996 | A |
5597328 | Mouissie | Jan 1997 | A |
5598627 | Saka et al. | Feb 1997 | A |
5632634 | Soes | May 1997 | A |
5651702 | Hanning et al. | Jul 1997 | A |
5669789 | Law | Sep 1997 | A |
5691506 | Miyazaki et al. | Nov 1997 | A |
5702258 | Provencher et al. | Dec 1997 | A |
5733148 | Kaplan et al. | Mar 1998 | A |
5743765 | Andrews et al. | Apr 1998 | A |
5781759 | Kashiwabara | Jul 1998 | A |
5785555 | O'Sullivan et al. | Jul 1998 | A |
5796323 | Uchikoba et al. | Aug 1998 | A |
5831491 | Buer et al. | Nov 1998 | A |
5924899 | Paagman | Jul 1999 | A |
5961348 | Murphy | Oct 1999 | A |
5981869 | Kroger | Nov 1999 | A |
5982253 | Perrin et al. | Nov 1999 | A |
6019616 | Yagi et al. | Feb 2000 | A |
6053770 | Blom | Apr 2000 | A |
6083046 | Wu et al. | Jul 2000 | A |
6095825 | Liao | Aug 2000 | A |
6095872 | Lang et al. | Aug 2000 | A |
6116926 | Ortega et al. | Sep 2000 | A |
6144559 | Johnson et al. | Nov 2000 | A |
6146202 | Ramey et al. | Nov 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6156975 | Roose | Dec 2000 | A |
6168466 | Chiou | Jan 2001 | B1 |
6168469 | Lu | Jan 2001 | B1 |
6174203 | Asao | Jan 2001 | B1 |
6174944 | Chiba et al. | Jan 2001 | B1 |
6203376 | Magajne et al. | Mar 2001 | B1 |
6217372 | Reed | Apr 2001 | B1 |
6217396 | Hwang et al. | Apr 2001 | B1 |
6273753 | Ko | Aug 2001 | B1 |
6273758 | Lloyd et al. | Aug 2001 | B1 |
6285542 | Kennedy, III et al. | Sep 2001 | B1 |
6293827 | Stokoe | Sep 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6322379 | Ortega et al. | Nov 2001 | B1 |
6328601 | Yip et al. | Dec 2001 | B1 |
6347962 | Kline | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6364711 | Berg et al. | Apr 2002 | B1 |
6364718 | Polgar et al. | Apr 2002 | B1 |
6366471 | Edwards et al. | Apr 2002 | B1 |
6371788 | Bowling et al. | Apr 2002 | B1 |
6375510 | Asao | Apr 2002 | B2 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6380485 | Beaman et al. | Apr 2002 | B1 |
6398588 | Bickford | Jun 2002 | B1 |
6409543 | Astbury, Jr. et al. | Jun 2002 | B1 |
6411506 | Hipp et al. | Jun 2002 | B1 |
6447337 | Anderson et al. | Sep 2002 | B1 |
6452789 | Pallotti et al. | Sep 2002 | B1 |
6482017 | Van Doorn | Nov 2002 | B1 |
6489563 | Zhao et al. | Dec 2002 | B1 |
6503103 | Cohen et al. | Jan 2003 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6517360 | Cohen | Feb 2003 | B1 |
6530790 | McNamara et al. | Mar 2003 | B1 |
6535367 | Carpenter et al. | Mar 2003 | B1 |
6537086 | Mac Mullin | Mar 2003 | B1 |
6537087 | McNamara et al. | Mar 2003 | B2 |
6551140 | Billman et al. | Apr 2003 | B2 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6565387 | Cohen | May 2003 | B2 |
6574115 | Asano et al. | Jun 2003 | B2 |
6575772 | Soubh et al. | Jun 2003 | B1 |
6579116 | Brennan et al. | Jun 2003 | B2 |
6582244 | Fogg et al. | Jun 2003 | B2 |
6592390 | Davis et al. | Jul 2003 | B1 |
6592401 | Gardner et al. | Jul 2003 | B1 |
6595802 | Watanabe et al. | Jul 2003 | B1 |
6602095 | Astbury, Jr. et al. | Aug 2003 | B2 |
6607402 | Cohen et al. | Aug 2003 | B2 |
6616864 | Jiang et al. | Sep 2003 | B1 |
6648676 | Lee | Nov 2003 | B1 |
6652296 | Kuroda et al. | Nov 2003 | B2 |
6652318 | Winings et al. | Nov 2003 | B1 |
6655966 | Rothermel et al. | Dec 2003 | B2 |
6685495 | Ko | Feb 2004 | B1 |
6685501 | Wu et al. | Feb 2004 | B1 |
6692262 | Loveless | Feb 2004 | B1 |
6705893 | Ko | Mar 2004 | B1 |
6709294 | Cohen et al. | Mar 2004 | B1 |
6713672 | Stickney | Mar 2004 | B1 |
6743057 | Davis et al. | Jun 2004 | B2 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6786771 | Gailus | Sep 2004 | B2 |
6797891 | Blair et al. | Sep 2004 | B1 |
6814619 | Stokoe et al. | Nov 2004 | B1 |
6824426 | Spink, Jr. | Nov 2004 | B1 |
6830489 | Aoyama | Dec 2004 | B2 |
6843657 | Driscoll et al. | Jan 2005 | B2 |
6872085 | Cohen et al. | Mar 2005 | B1 |
6896549 | Feuerreiter et al. | May 2005 | B2 |
6896556 | Wu | May 2005 | B1 |
6902688 | Narayan et al. | Jun 2005 | B2 |
6903934 | Lo et al. | Jun 2005 | B2 |
6916183 | Alger et al. | Jul 2005 | B2 |
6932649 | Rothermel et al. | Aug 2005 | B1 |
6955565 | Lloyd et al. | Oct 2005 | B2 |
6962499 | Yamamoto et al. | Nov 2005 | B2 |
6971887 | Trobough | Dec 2005 | B1 |
6979226 | Otsu et al. | Dec 2005 | B2 |
7025634 | Swantner et al. | Apr 2006 | B1 |
7044794 | Consoli et al. | May 2006 | B2 |
7056128 | Driscoll et al. | Jun 2006 | B2 |
7057570 | Irion, II et al. | Jun 2006 | B2 |
7070446 | Henry et al. | Jul 2006 | B2 |
7074086 | Cohen et al. | Jul 2006 | B2 |
7077658 | Ashman et al. | Jul 2006 | B1 |
7094102 | Cohen et al. | Aug 2006 | B2 |
7108556 | Cohen et al. | Sep 2006 | B2 |
7148428 | Meier et al. | Dec 2006 | B2 |
7158376 | Richardson et al. | Jan 2007 | B2 |
7163421 | Cohen et al. | Jan 2007 | B1 |
7214097 | Hsu et al. | May 2007 | B1 |
7223915 | Hackman | May 2007 | B2 |
7234944 | Nordin et al. | Jun 2007 | B2 |
7244137 | Renfro et al. | Jul 2007 | B2 |
7267515 | Lappohn | Sep 2007 | B2 |
7280372 | Grundy et al. | Oct 2007 | B2 |
7285018 | Kenny et al. | Oct 2007 | B2 |
7307293 | Fjelstad et al. | Dec 2007 | B2 |
7311552 | Ko | Dec 2007 | B1 |
7331816 | Krohn et al. | Feb 2008 | B2 |
7331830 | Minich | Feb 2008 | B2 |
7335063 | Cohen et al. | Feb 2008 | B2 |
7341474 | Clem | Mar 2008 | B2 |
7354274 | Minich | Apr 2008 | B2 |
7371117 | Gailus | May 2008 | B2 |
7384275 | Ngo | Jun 2008 | B2 |
7402048 | Meier et al. | Jul 2008 | B2 |
7422483 | Avery et al. | Sep 2008 | B2 |
7431608 | Sakaguchi et al. | Oct 2008 | B2 |
7445471 | Scherer et al. | Nov 2008 | B1 |
7462942 | Tan et al. | Dec 2008 | B2 |
7485012 | Daugherty et al. | Feb 2009 | B2 |
7494383 | Cohen et al. | Feb 2009 | B2 |
7510439 | Gordon et al. | Mar 2009 | B2 |
7534142 | Avery et al. | May 2009 | B2 |
7540781 | Kenny et al. | Jun 2009 | B2 |
7549897 | Fedder et al. | Jun 2009 | B2 |
7581990 | Kirk et al. | Sep 2009 | B2 |
7588464 | Kim | Sep 2009 | B2 |
7613011 | Grundy et al. | Nov 2009 | B2 |
7621779 | Laurx et al. | Nov 2009 | B2 |
7652381 | Grundy et al. | Jan 2010 | B2 |
7654831 | Wu | Feb 2010 | B1 |
7658654 | Ohyama et al. | Feb 2010 | B2 |
7686659 | Peng | Mar 2010 | B2 |
7690930 | Chen et al. | Apr 2010 | B2 |
7713077 | McGowan et al. | May 2010 | B1 |
7719843 | Dunham | May 2010 | B2 |
7722401 | Kirk et al. | May 2010 | B2 |
7731537 | Amleshi et al. | Jun 2010 | B2 |
7744414 | Scherer et al. | Jun 2010 | B2 |
7753731 | Cohen et al. | Jul 2010 | B2 |
7771233 | Gailus | Aug 2010 | B2 |
7775802 | Defibaugh et al. | Aug 2010 | B2 |
7789676 | Morgan et al. | Sep 2010 | B2 |
7794240 | Cohen et al. | Sep 2010 | B2 |
7794278 | Cohen et al. | Sep 2010 | B2 |
7811129 | Glover et al. | Oct 2010 | B2 |
7819675 | Ko et al. | Oct 2010 | B2 |
7824197 | Westman et al. | Nov 2010 | B1 |
7857630 | Hermant et al. | Dec 2010 | B2 |
7862344 | Morgan et al. | Jan 2011 | B2 |
7871296 | Fowler et al. | Jan 2011 | B2 |
7874873 | Do et al. | Jan 2011 | B2 |
7887371 | Kenny et al. | Feb 2011 | B2 |
7906730 | Atkinson et al. | Mar 2011 | B2 |
7914304 | Cartier et al. | Mar 2011 | B2 |
7976318 | Fedder et al. | Jul 2011 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
7993147 | Cole et al. | Aug 2011 | B2 |
8002581 | Whiteman, Jr. et al. | Aug 2011 | B1 |
8016616 | Glover et al. | Sep 2011 | B2 |
8018733 | Jia | Sep 2011 | B2 |
8036500 | Mccolloch | Oct 2011 | B2 |
8057267 | Johnescu | Nov 2011 | B2 |
8083553 | Manter et al. | Dec 2011 | B2 |
8100699 | Costello | Jan 2012 | B1 |
8157573 | Tanaka | Apr 2012 | B2 |
8162675 | Regnier et al. | Apr 2012 | B2 |
8167651 | Glover et al. | May 2012 | B2 |
8182289 | Stokoe et al. | May 2012 | B2 |
8192222 | Kameyama | Jun 2012 | B2 |
8197285 | Farmer | Jun 2012 | B2 |
8210877 | Droesbeke | Jul 2012 | B2 |
8215968 | Cartier et al. | Jul 2012 | B2 |
8226441 | Regnier et al. | Jul 2012 | B2 |
8251745 | Johnescu et al. | Aug 2012 | B2 |
8253021 | Adachi et al. | Aug 2012 | B2 |
8272877 | Stokoe et al. | Sep 2012 | B2 |
8308491 | Nichols et al. | Nov 2012 | B2 |
8308512 | Ritter et al. | Nov 2012 | B2 |
8337243 | Elkhatib et al. | Dec 2012 | B2 |
8338713 | Fjelstad et al. | Dec 2012 | B2 |
8360805 | Schwarz | Jan 2013 | B2 |
8371875 | Gailus | Feb 2013 | B2 |
8371876 | Davis | Feb 2013 | B2 |
8382524 | Khilchenko et al. | Feb 2013 | B2 |
8398433 | Yang | Mar 2013 | B1 |
8419472 | Swanger et al. | Apr 2013 | B1 |
8439704 | Reed | May 2013 | B2 |
8449312 | Lang et al. | May 2013 | B2 |
8449330 | Schroll et al. | May 2013 | B1 |
8465302 | Regnier et al. | Jun 2013 | B2 |
8469745 | Davis et al. | Jun 2013 | B2 |
8535065 | Costello | Sep 2013 | B2 |
8540525 | Regnier et al. | Sep 2013 | B2 |
8550861 | Cohen et al. | Oct 2013 | B2 |
8553102 | Yamada | Oct 2013 | B2 |
8556657 | Nichols | Oct 2013 | B1 |
8588561 | Zbinden et al. | Nov 2013 | B2 |
8588562 | Zbinden et al. | Nov 2013 | B2 |
8597055 | Regnier et al. | Dec 2013 | B2 |
8657627 | McNamara et al. | Feb 2014 | B2 |
8672707 | Nichols et al. | Mar 2014 | B2 |
8678860 | Minich et al. | Mar 2014 | B2 |
8690604 | Davis | Apr 2014 | B2 |
8696378 | Behziz et al. | Apr 2014 | B2 |
8715003 | Buck et al. | May 2014 | B2 |
8740644 | Long | Jun 2014 | B2 |
8753145 | Lang et al. | Jun 2014 | B2 |
8758051 | Nonen et al. | Jun 2014 | B2 |
8771016 | Atkinson et al. | Jul 2014 | B2 |
8772636 | Yamaguchi et al. | Jul 2014 | B2 |
8787711 | Zbinden et al. | Jul 2014 | B2 |
8804342 | Behziz et al. | Aug 2014 | B2 |
8814595 | Cohen et al. | Aug 2014 | B2 |
8845364 | Wanha et al. | Sep 2014 | B2 |
8864521 | Atkinson et al. | Oct 2014 | B2 |
8870597 | Kawakami | Oct 2014 | B2 |
D718253 | Zerebilov et al. | Nov 2014 | S |
8888531 | Jeon | Nov 2014 | B2 |
8888533 | Westman et al. | Nov 2014 | B2 |
8911255 | Scherer et al. | Dec 2014 | B2 |
D720698 | Zerebilov et al. | Jan 2015 | S |
8926377 | Kirk et al. | Jan 2015 | B2 |
8944831 | Stoner et al. | Feb 2015 | B2 |
8992236 | Wittig et al. | Mar 2015 | B2 |
8992237 | Regnier et al. | Mar 2015 | B2 |
8998642 | Manter et al. | Apr 2015 | B2 |
9004942 | Paniagua | Apr 2015 | B2 |
9011177 | Lloyd et al. | Apr 2015 | B2 |
9022806 | Cartier, Jr. et al. | May 2015 | B2 |
9028201 | Pummell et al. | May 2015 | B2 |
9028281 | Kirk et al. | May 2015 | B2 |
9035183 | Kodama et al. | May 2015 | B2 |
9035200 | Kato et al. | May 2015 | B2 |
9040824 | Guetig et al. | May 2015 | B2 |
9071001 | Scherer et al. | Jun 2015 | B2 |
9118151 | Tran et al. | Aug 2015 | B2 |
9119292 | Gundel | Aug 2015 | B2 |
9124009 | Atkinson et al. | Sep 2015 | B2 |
9142921 | Wanha et al. | Sep 2015 | B2 |
9160080 | Lienert et al. | Oct 2015 | B2 |
9160088 | Rossman et al. | Oct 2015 | B2 |
9203171 | Yu et al. | Dec 2015 | B2 |
9209539 | Herring | Dec 2015 | B2 |
9214768 | Pao et al. | Dec 2015 | B2 |
9219335 | Atkinson et al. | Dec 2015 | B2 |
9225085 | Cartier, Jr. et al. | Dec 2015 | B2 |
9232676 | Sechrist et al. | Jan 2016 | B2 |
9246251 | Regnier et al. | Jan 2016 | B2 |
9246278 | Dunwoody et al. | Jan 2016 | B1 |
D750030 | Zerebilov et al. | Feb 2016 | S |
9257778 | Buck et al. | Feb 2016 | B2 |
9257794 | Wanha et al. | Feb 2016 | B2 |
9281636 | Schmitt | Mar 2016 | B1 |
9312618 | Regnier et al. | Apr 2016 | B2 |
9350108 | Long | May 2016 | B2 |
9356401 | Horning et al. | May 2016 | B1 |
9362678 | Wanha et al. | Jun 2016 | B2 |
9373917 | Sypolt et al. | Jun 2016 | B2 |
9374165 | Zbinden et al. | Jun 2016 | B2 |
9385455 | Regnier et al. | Jul 2016 | B2 |
9391407 | Bucher et al. | Jul 2016 | B1 |
9413112 | Helster et al. | Aug 2016 | B2 |
9450344 | Cartier, Jr. et al. | Sep 2016 | B2 |
9490558 | Wanha et al. | Nov 2016 | B2 |
9509101 | Cartier, Jr. et al. | Nov 2016 | B2 |
9520689 | Cartier, Jr. et al. | Dec 2016 | B2 |
9531133 | Horning et al. | Dec 2016 | B1 |
9553381 | Regnier | Jan 2017 | B2 |
9559446 | Wetzel et al. | Jan 2017 | B1 |
9564696 | Gulla | Feb 2017 | B2 |
9608348 | Wanha et al. | Mar 2017 | B2 |
9651752 | Zbinden et al. | May 2017 | B2 |
9660364 | Wig et al. | May 2017 | B2 |
9666961 | Horning et al. | May 2017 | B2 |
9685736 | Gailus et al. | Jun 2017 | B2 |
9735484 | Brubaker et al. | Aug 2017 | B2 |
9735495 | Gross | Aug 2017 | B2 |
9741465 | Gross et al. | Aug 2017 | B2 |
9774144 | Cartier, Jr. et al. | Sep 2017 | B2 |
9801301 | Costello | Oct 2017 | B1 |
9806468 | Liao | Oct 2017 | B2 |
9841572 | Zbinden et al. | Dec 2017 | B2 |
9843135 | Guetig et al. | Dec 2017 | B2 |
9929512 | Trout et al. | Mar 2018 | B1 |
D816044 | Zerebilov et al. | Apr 2018 | S |
9966165 | Gross et al. | May 2018 | B2 |
9985367 | Wanha et al. | May 2018 | B2 |
9985389 | Morgan et al. | May 2018 | B1 |
10056706 | Wanha et al. | Aug 2018 | B2 |
10062984 | Regnier | Aug 2018 | B2 |
10069225 | Wanha et al. | Sep 2018 | B2 |
10096945 | Cartier, Jr. et al. | Oct 2018 | B2 |
10109937 | Zerebilov et al. | Oct 2018 | B2 |
10170869 | Gailus et al. | Jan 2019 | B2 |
10181663 | Regnier | Jan 2019 | B2 |
10205286 | Provencher et al. | Feb 2019 | B2 |
10305224 | Girard, Jr. | May 2019 | B2 |
10312638 | Girard, Jr. | Jun 2019 | B2 |
10944214 | Gailus et al. | Mar 2021 | B2 |
10992086 | Girard, Jr | Apr 2021 | B2 |
11070006 | Gailus et al. | Jul 2021 | B2 |
20010012730 | Ramey et al. | Aug 2001 | A1 |
20010031579 | Fujino et al. | Oct 2001 | A1 |
20010042632 | Manov et al. | Nov 2001 | A1 |
20010046810 | Cohen et al. | Nov 2001 | A1 |
20020042223 | Belopolsky et al. | Apr 2002 | A1 |
20020088628 | Chen | Jul 2002 | A1 |
20020089464 | Joshi | Jul 2002 | A1 |
20020098738 | Astbury et al. | Jul 2002 | A1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
20020111069 | Astbury et al. | Aug 2002 | A1 |
20020136519 | Tinucci et al. | Sep 2002 | A1 |
20020157865 | Noda | Oct 2002 | A1 |
20020187688 | Marvin et al. | Dec 2002 | A1 |
20030045140 | Syed et al. | Mar 2003 | A1 |
20030073331 | Peloza et al. | Apr 2003 | A1 |
20030119362 | Nelson et al. | Jun 2003 | A1 |
20030186580 | Dambach et al. | Oct 2003 | A1 |
20040002262 | Murayama et al. | Jan 2004 | A1 |
20040005815 | Mizumura et al. | Jan 2004 | A1 |
20040018757 | Lang et al. | Jan 2004 | A1 |
20040020674 | McFadden et al. | Feb 2004 | A1 |
20040092164 | Lee | May 2004 | A1 |
20040094328 | Fjelstad et al. | May 2004 | A1 |
20040110421 | Broman et al. | Jun 2004 | A1 |
20040115968 | Cohen | Jun 2004 | A1 |
20040121633 | David et al. | Jun 2004 | A1 |
20040121652 | Gailus | Jun 2004 | A1 |
20040127078 | Tondreault et al. | Jul 2004 | A1 |
20040155328 | Kline | Aug 2004 | A1 |
20040185708 | Kuwahara | Sep 2004 | A1 |
20040196112 | Welbon et al. | Oct 2004 | A1 |
20040224559 | Nelson et al. | Nov 2004 | A1 |
20040229510 | Lloyd et al. | Nov 2004 | A1 |
20040253974 | Kao et al. | Dec 2004 | A1 |
20040259419 | Payne et al. | Dec 2004 | A1 |
20040264894 | Cooke et al. | Dec 2004 | A1 |
20050006126 | Aisenbrey | Jan 2005 | A1 |
20050032430 | Otsu et al. | Feb 2005 | A1 |
20050070160 | Cohen et al. | Mar 2005 | A1 |
20050087359 | Tachibana et al. | Apr 2005 | A1 |
20050093127 | Fjelstad et al. | May 2005 | A1 |
20050118869 | Evans | Jun 2005 | A1 |
20050133245 | Katsuyama et al. | Jun 2005 | A1 |
20050142944 | Ling et al. | Jun 2005 | A1 |
20050153584 | Bartley et al. | Jul 2005 | A1 |
20050176835 | Kobayashi et al. | Aug 2005 | A1 |
20050233610 | Tutt et al. | Oct 2005 | A1 |
20050239339 | Pepe | Oct 2005 | A1 |
20050283974 | Richard et al. | Dec 2005 | A1 |
20050287869 | Kenny et al. | Dec 2005 | A1 |
20060001163 | Kolbehdari et al. | Jan 2006 | A1 |
20060068640 | Gailus | Mar 2006 | A1 |
20060079119 | Wu | Apr 2006 | A1 |
20060091507 | Fjelstad et al. | May 2006 | A1 |
20060194458 | Miyazaki | Aug 2006 | A1 |
20060216969 | Bright et al. | Sep 2006 | A1 |
20060216970 | Pavlovic | Sep 2006 | A1 |
20060228922 | Morriss | Oct 2006 | A1 |
20070004282 | Cohen et al. | Jan 2007 | A1 |
20070021001 | Laurx et al. | Jan 2007 | A1 |
20070021002 | Laurx et al. | Jan 2007 | A1 |
20070032104 | Yamada et al. | Feb 2007 | A1 |
20070037419 | Sparrowhawk | Feb 2007 | A1 |
20070042639 | Manter et al. | Feb 2007 | A1 |
20070054554 | Do et al. | Mar 2007 | A1 |
20070059961 | Cartier et al. | Mar 2007 | A1 |
20070099486 | Kameyama | May 2007 | A1 |
20070155241 | Lappohn | Jul 2007 | A1 |
20070197095 | Feldman et al. | Aug 2007 | A1 |
20070207641 | Minich | Sep 2007 | A1 |
20070218765 | Cohen et al. | Sep 2007 | A1 |
20070238358 | Akino | Oct 2007 | A1 |
20070243741 | Yang | Oct 2007 | A1 |
20070254517 | Olson et al. | Nov 2007 | A1 |
20070287332 | Gordon et al. | Dec 2007 | A1 |
20080026638 | Cohen et al. | Jan 2008 | A1 |
20080194146 | Gailus | Aug 2008 | A1 |
20080200955 | Tepic | Aug 2008 | A1 |
20080207023 | Tuin et al. | Aug 2008 | A1 |
20080246555 | Kirk et al. | Oct 2008 | A1 |
20080248658 | Cohen et al. | Oct 2008 | A1 |
20080248659 | Cohen et al. | Oct 2008 | A1 |
20080248660 | Kirk et al. | Oct 2008 | A1 |
20080264673 | Chi et al. | Oct 2008 | A1 |
20080267620 | Cole et al. | Oct 2008 | A1 |
20080297988 | Chau | Dec 2008 | A1 |
20080305689 | Zhang et al. | Dec 2008 | A1 |
20090011641 | Cohen et al. | Jan 2009 | A1 |
20090011645 | Laurx et al. | Jan 2009 | A1 |
20090011664 | Laurx et al. | Jan 2009 | A1 |
20090017682 | Amleshi et al. | Jan 2009 | A1 |
20090023330 | Stoner et al. | Jan 2009 | A1 |
20090051558 | Dorval | Feb 2009 | A1 |
20090098767 | Long | Apr 2009 | A1 |
20090117386 | Vacanti et al. | May 2009 | A1 |
20090130913 | Yi et al. | May 2009 | A1 |
20090130918 | Nguyen et al. | May 2009 | A1 |
20090166082 | Liu et al. | Jul 2009 | A1 |
20090176400 | Davis et al. | Jul 2009 | A1 |
20090188716 | Nagase | Jul 2009 | A1 |
20090205194 | Semba et al. | Aug 2009 | A1 |
20090215309 | Mongold et al. | Aug 2009 | A1 |
20090227141 | Pan | Sep 2009 | A1 |
20090239395 | Cohen et al. | Sep 2009 | A1 |
20090247012 | Pan | Oct 2009 | A1 |
20090291593 | Atkinson et al. | Nov 2009 | A1 |
20090305533 | Feldman et al. | Dec 2009 | A1 |
20090311908 | Fogg et al. | Dec 2009 | A1 |
20100009571 | Scherer et al. | Jan 2010 | A1 |
20100081302 | Atkinson et al. | Apr 2010 | A1 |
20100099299 | Moriyama et al. | Apr 2010 | A1 |
20100112850 | Rao et al. | May 2010 | A1 |
20100144167 | Fedder et al. | Jun 2010 | A1 |
20100144168 | Glover et al. | Jun 2010 | A1 |
20100144175 | Helster et al. | Jun 2010 | A1 |
20100144201 | Defibaugh et al. | Jun 2010 | A1 |
20100144203 | Glover et al. | Jun 2010 | A1 |
20100177489 | Yagisawa | Jul 2010 | A1 |
20100183141 | Arai et al. | Jul 2010 | A1 |
20100203768 | Kondo et al. | Aug 2010 | A1 |
20100221951 | Pepe et al. | Sep 2010 | A1 |
20100291806 | Minich et al. | Nov 2010 | A1 |
20100294530 | Atkinson et al. | Nov 2010 | A1 |
20110003509 | Gailus | Jan 2011 | A1 |
20110059643 | Kuwahara et al. | Mar 2011 | A1 |
20110067237 | Cohen et al. | Mar 2011 | A1 |
20110074213 | Schaffer et al. | Mar 2011 | A1 |
20110104948 | Girard, Jr. et al. | May 2011 | A1 |
20110130038 | Cohen et al. | Jun 2011 | A1 |
20110136373 | Friese et al. | Jun 2011 | A1 |
20110177699 | Crofoot et al. | Jul 2011 | A1 |
20110212632 | Stokoe et al. | Sep 2011 | A1 |
20110212633 | Regnier et al. | Sep 2011 | A1 |
20110212649 | Stokoe et al. | Sep 2011 | A1 |
20110212650 | Amleshi et al. | Sep 2011 | A1 |
20110223807 | Jeon et al. | Sep 2011 | A1 |
20110230095 | Atkinson et al. | Sep 2011 | A1 |
20110230096 | Atkinson et al. | Sep 2011 | A1 |
20110230104 | Lang et al. | Sep 2011 | A1 |
20110263156 | Ko | Oct 2011 | A1 |
20110287663 | Gailus et al. | Nov 2011 | A1 |
20110300757 | Regnier et al. | Dec 2011 | A1 |
20120003848 | Casher et al. | Jan 2012 | A1 |
20120034820 | Lang et al. | Feb 2012 | A1 |
20120061140 | Nonen et al. | Mar 2012 | A1 |
20120064762 | Muroi et al. | Mar 2012 | A1 |
20120064779 | Wu | Mar 2012 | A1 |
20120077369 | Andersen | Mar 2012 | A1 |
20120077380 | Minich et al. | Mar 2012 | A1 |
20120094531 | Mathews | Apr 2012 | A1 |
20120094536 | Khilchenko et al. | Apr 2012 | A1 |
20120135643 | Lange et al. | May 2012 | A1 |
20120145429 | Nordin et al. | Jun 2012 | A1 |
20120156929 | Manter et al. | Jun 2012 | A1 |
20120178293 | Mattozzi et al. | Jul 2012 | A1 |
20120178294 | Mattozzi et al. | Jul 2012 | A1 |
20120184136 | Ritter | Jul 2012 | A1 |
20120202363 | McNamara et al. | Aug 2012 | A1 |
20120202386 | McNamara et al. | Aug 2012 | A1 |
20120214344 | Cohen et al. | Aug 2012 | A1 |
20120252266 | Ling et al. | Oct 2012 | A1 |
20120329294 | Raybold et al. | Dec 2012 | A1 |
20130012038 | Kirk et al. | Jan 2013 | A1 |
20130017712 | Liu et al. | Jan 2013 | A1 |
20130017715 | Laarhoven et al. | Jan 2013 | A1 |
20130017733 | Kirk et al. | Jan 2013 | A1 |
20130034977 | Cina et al. | Feb 2013 | A1 |
20130056267 | Hatton et al. | Mar 2013 | A1 |
20130078870 | Milbrand, Jr. | Mar 2013 | A1 |
20130092429 | Ellison | Apr 2013 | A1 |
20130109232 | Paniaqua | May 2013 | A1 |
20130130547 | Simpson et al. | May 2013 | A1 |
20130143442 | Cohen et al. | Jun 2013 | A1 |
20130149899 | Schroll et al. | Jun 2013 | A1 |
20130188325 | Garman et al. | Jul 2013 | A1 |
20130196553 | Gailus | Aug 2013 | A1 |
20130210246 | Davis et al. | Aug 2013 | A1 |
20130223036 | Herring et al. | Aug 2013 | A1 |
20130225006 | Khilchenko et al. | Aug 2013 | A1 |
20130244482 | Kondo | Sep 2013 | A1 |
20130270000 | Buck et al. | Oct 2013 | A1 |
20130273781 | Buck et al. | Oct 2013 | A1 |
20130288521 | McClellan et al. | Oct 2013 | A1 |
20130288525 | McClellan et al. | Oct 2013 | A1 |
20130288539 | McClellan et al. | Oct 2013 | A1 |
20130340251 | Regnier et al. | Dec 2013 | A1 |
20140004724 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004726 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004746 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140017944 | Wu et al. | Jan 2014 | A1 |
20140030905 | Phillips et al. | Jan 2014 | A1 |
20140041937 | Lloyd et al. | Feb 2014 | A1 |
20140057493 | De Geest et al. | Feb 2014 | A1 |
20140057494 | Cohen | Feb 2014 | A1 |
20140057498 | Cohen | Feb 2014 | A1 |
20140065883 | Cohen et al. | Mar 2014 | A1 |
20140073174 | Yang | Mar 2014 | A1 |
20140073181 | Yang | Mar 2014 | A1 |
20140099844 | Dunham | Apr 2014 | A1 |
20140154927 | Nonen et al. | Jun 2014 | A1 |
20140182885 | Gross et al. | Jul 2014 | A1 |
20140182890 | Gross et al. | Jul 2014 | A1 |
20140206230 | Rost et al. | Jul 2014 | A1 |
20140242844 | Wanha et al. | Aug 2014 | A1 |
20140273551 | Resendez et al. | Sep 2014 | A1 |
20140273557 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140273627 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140287627 | Cohen | Sep 2014 | A1 |
20140308852 | Gulla | Oct 2014 | A1 |
20140335707 | Johnescu et al. | Nov 2014 | A1 |
20140335736 | Regnier et al. | Nov 2014 | A1 |
20150004826 | Starke | Jan 2015 | A1 |
20150056856 | Atkinson et al. | Feb 2015 | A1 |
20150079829 | Brodsgaard | Mar 2015 | A1 |
20150079845 | Wanha et al. | Mar 2015 | A1 |
20150180578 | Leigh et al. | Jun 2015 | A1 |
20150194751 | Herring | Jul 2015 | A1 |
20150200496 | Simpson et al. | Jul 2015 | A1 |
20150207247 | Regnier et al. | Jul 2015 | A1 |
20150214666 | Schumacher | Jul 2015 | A1 |
20150236450 | Davis | Aug 2015 | A1 |
20150236451 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150236452 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150255926 | Paniagua | Sep 2015 | A1 |
20150280351 | Bertsch | Oct 2015 | A1 |
20150288108 | Fischer | Oct 2015 | A1 |
20150303608 | Zerebilov et al. | Oct 2015 | A1 |
20150357736 | Tran et al. | Dec 2015 | A1 |
20150357761 | Wanha et al. | Dec 2015 | A1 |
20160013594 | Costello et al. | Jan 2016 | A1 |
20160013596 | Regnier | Jan 2016 | A1 |
20160018606 | Xue et al. | Jan 2016 | A1 |
20160028188 | Dunwoody | Jan 2016 | A1 |
20160028189 | Resendez et al. | Jan 2016 | A1 |
20160036170 | Dunwoody et al. | Feb 2016 | A1 |
20160049746 | Gross | Feb 2016 | A1 |
20160056553 | Brubaker et al. | Feb 2016 | A1 |
20160056585 | Dunwoody et al. | Feb 2016 | A1 |
20160104948 | Droesbeke et al. | Apr 2016 | A1 |
20160104956 | Santos et al. | Apr 2016 | A1 |
20160111825 | Wanha et al. | Apr 2016 | A1 |
20160118745 | Droesbeke et al. | Apr 2016 | A1 |
20160141807 | Gailus et al. | May 2016 | A1 |
20160149343 | Atkinson et al. | May 2016 | A1 |
20160149362 | Ritter et al. | May 2016 | A1 |
20160150633 | Cartier, Jr. | May 2016 | A1 |
20160150639 | Gailus et al. | May 2016 | A1 |
20160150645 | Gailus et al. | May 2016 | A1 |
20160181713 | Peloza et al. | Jun 2016 | A1 |
20160181732 | Laurx et al. | Jun 2016 | A1 |
20160190747 | Regnier et al. | Jun 2016 | A1 |
20160197423 | Regnier | Jul 2016 | A1 |
20160218455 | Sayre et al. | Jul 2016 | A1 |
20160233598 | Wittig | Aug 2016 | A1 |
20160268714 | Wanha et al. | Sep 2016 | A1 |
20160268739 | Zerebilov et al. | Sep 2016 | A1 |
20160274316 | Verdiell | Sep 2016 | A1 |
20160308296 | Pitten et al. | Oct 2016 | A1 |
20160322770 | Zerebilov | Nov 2016 | A1 |
20160344141 | Cartier, Jr. et al. | Nov 2016 | A1 |
20170025783 | Astbury et al. | Jan 2017 | A1 |
20170033478 | Wanha et al. | Feb 2017 | A1 |
20170042070 | Baumler et al. | Feb 2017 | A1 |
20170047692 | Cartier, Jr. et al. | Feb 2017 | A1 |
20170077643 | Zbinden et al. | Mar 2017 | A1 |
20170093093 | Cartier, Jr. et al. | Mar 2017 | A1 |
20170098901 | Regnier | Apr 2017 | A1 |
20170162960 | Wanha et al. | Jun 2017 | A1 |
20170294743 | Gailus et al. | Oct 2017 | A1 |
20170302011 | Wanha et al. | Oct 2017 | A1 |
20170302030 | Chiang et al. | Oct 2017 | A1 |
20170338595 | Girard, Jr. | Nov 2017 | A1 |
20170346234 | Girard, Jr. | Nov 2017 | A1 |
20170365942 | Regnier | Dec 2017 | A1 |
20170365943 | Wanha et al. | Dec 2017 | A1 |
20180006416 | Lloyd et al. | Jan 2018 | A1 |
20180034175 | Lloyd et al. | Feb 2018 | A1 |
20180034190 | Ngo | Feb 2018 | A1 |
20180040989 | Chen | Feb 2018 | A1 |
20180048078 | Wang et al. | Feb 2018 | A1 |
20180109043 | Provencher et al. | Apr 2018 | A1 |
20180145438 | Cohen | May 2018 | A1 |
20180219331 | Cartier, Jr. et al. | Aug 2018 | A1 |
20180219332 | Brungard et al. | Aug 2018 | A1 |
20180358751 | Laurx et al. | Dec 2018 | A1 |
20180366880 | Zerebilov et al. | Dec 2018 | A1 |
20190013625 | Gailus et al. | Jan 2019 | A1 |
20190020155 | Trout et al. | Jan 2019 | A1 |
20190044284 | Dunham | Feb 2019 | A1 |
20190044285 | Dunham | Feb 2019 | A1 |
20190157812 | Gailus et al. | May 2019 | A1 |
20190173236 | Provencher et al. | Jun 2019 | A1 |
20190252832 | Girard, Jr. | Aug 2019 | A1 |
20190288422 | Champion et al. | Sep 2019 | A1 |
20190337472 | Nakai | Nov 2019 | A1 |
20190379142 | Yamada et al. | Dec 2019 | A1 |
20200014123 | Takeuchi et al. | Jan 2020 | A1 |
20200021045 | Sato et al. | Jan 2020 | A1 |
20200274267 | Zerebilov et al. | Aug 2020 | A1 |
20200274301 | Manter et al. | Aug 2020 | A1 |
20210194182 | Gailus et al. | Jun 2021 | A1 |
20220013962 | Gailus et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
1168547 | Dec 1997 | CN |
101395768 | Mar 2000 | CN |
2519434 | Oct 2002 | CN |
1127783 | Nov 2003 | CN |
2667709 | Dec 2004 | CN |
1572048 | Jan 2005 | CN |
2682599 | Mar 2005 | CN |
101043111 | Sep 2007 | CN |
101164204 | Apr 2008 | CN |
101222781 | Jul 2008 | CN |
101312275 | Nov 2008 | CN |
101330172 | Dec 2008 | CN |
101752700 | Jun 2010 | CN |
201562814 | Aug 2010 | CN |
101841107 | Sep 2010 | CN |
201781115 | Mar 2011 | CN |
101505999 | Oct 2011 | CN |
102598430 | Jul 2012 | CN |
202678544 | Jan 2013 | CN |
103178408 | Jun 2013 | CN |
104011937 | Aug 2014 | CN |
105051978 | Nov 2015 | CN |
105390857 | Mar 2016 | CN |
105406286 | Mar 2016 | CN |
105531875 | Apr 2016 | CN |
105612671 | May 2016 | CN |
106030925 | Oct 2016 | CN |
106104933 | Nov 2016 | CN |
3447556 | Jul 1986 | DE |
0 997 756 | May 2000 | EP |
1 207 587 | May 2002 | EP |
1 779 472 | May 2007 | EP |
2 169 770 | Mar 2010 | EP |
2811584 | Dec 2014 | EP |
1272347 | Apr 1972 | GB |
02-079571 | Jun 1990 | JP |
H07-302649 | Nov 1995 | JP |
2000-311749 | Nov 2000 | JP |
2003-109708 | Apr 2003 | JP |
2003-208928 | Jul 2003 | JP |
2004-031257 | Jan 2004 | JP |
2004-071404 | Mar 2004 | JP |
2006-108115 | Apr 2006 | JP |
2006-260850 | Sep 2006 | JP |
2010-153191 | Jul 2010 | JP |
2010-211937 | Sep 2010 | JP |
2010-266729 | Nov 2010 | JP |
2011-018651 | Jan 2011 | JP |
2012-516021 | Jul 2012 | JP |
2013-021600 | Jan 2013 | JP |
2014-229597 | Dec 2014 | JP |
2016-528688 | Sep 2016 | JP |
10-1989-0007458 | Jun 1989 | KR |
10-2015-0067010 | Jun 2015 | KR |
10-2015-0101020 | Sep 2015 | KR |
10-2016-0038192 | Apr 2016 | KR |
M357771 | May 2009 | TW |
M441942 | Nov 2012 | TW |
201334318 | Aug 2013 | TW |
M517935 | Feb 2016 | TW |
WO 8805218 | Jul 1988 | WO |
WO 9712428 | Apr 1997 | WO |
WO 9956352 | Nov 1999 | WO |
WO 2004059794 | Jul 2004 | WO |
WO 2004059801 | Jul 2004 | WO |
WO 2006002356 | Jan 2006 | WO |
WO 2006039277 | Apr 2006 | WO |
WO 2007005597 | Jan 2007 | WO |
WO 2007005599 | Jan 2007 | WO |
WO 2008072322 | Jun 2008 | WO |
WO 2008124057 | Oct 2008 | WO |
WO 2010039188 | Apr 2010 | WO |
WO 2011073259 | Jun 2011 | WO |
WO 2012078434 | Jun 2012 | WO |
WO 2013006592 | Jan 2013 | WO |
WO 2013080646 | Jun 2013 | WO |
WO 2015013430 | Jan 2015 | WO |
WO 2015034047 | Mar 2015 | WO |
WO 2015112717 | Jul 2015 | WO |
WO 2015182500 | Dec 2015 | WO |
WO 2017015470 | Jan 2017 | WO |
Entry |
---|
U.S. Appl. No. 16/796,697, filed Feb. 20, 2020, Manter et al. |
U.S. Appl. No. 17/194,644, filed Mar. 8, 2021, Gailus et al. |
U.S. Appl. No. 17/353,649, filed Jun. 21, 2021, Gailus et al. |
CN 201580069567.7, Jun. 17, 2019, Chinese Office Action. |
CN 201580069567.7, Oct. 9, 2019, Chinese Office Action. |
CN 201780046854.5, Nov. 28, 2019, First Office Action. |
CN 201780046854.5, Oct. 10, 2020, Chinese Office Action. |
CN 201880064335.6, Oct. 20, 2020, Chinese Office Action. |
CN 201880064335.6, May 25, 2021, Chinese Office Action. |
CN 201880064336.0, Oct. 19, 2020, Chinese Office Action. |
EP 11166820.8, Jan. 24, 2012, Extended European Search Report. |
EP 14773438.8, Oct. 12, 2016, Extended European Search Report. |
EP 14855318.3, Apr. 21, 2017, Extended European Search Report. |
PCT/US2005/034605, Jan. 26, 2006, International Search Report and Written Opinion. |
PCT/US2006/025562, Oct. 31, 2007, International Search Report and Written Opinion. |
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion. |
PCT/US2010/056495, Jan. 25, 2011, International Search Report and Written Opinion. |
PCT/US2011/026139, Nov. 22, 2011, International Search Report and Written Opinion. |
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion. |
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion. |
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion. |
PCT/US2014/026381, Aug. 12, 2014, International Search Report and Written Opinion. |
PCT/US2014/031448, Jul. 10, 2014, International Search Report and Written Opinion. |
PCT/US2014/031448, Oct. 8, 2015, International Preliminary Report on Patentability. |
PCT/US2014/061681, Jan. 27, 2015, International Search Report and Written Opinion. |
PCT/US2014/061681, May 6, 2016, International Preliminary Report on Patentability. |
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion. |
PCT/US2015/012542, Apr. 30, 2015, International Search Report and Written Opinion. |
PCT/US2015/060472, May 26, 2017, International Preliminary Report on Patentability. |
PCT/US2015/060472, Mar. 11, 2016, International Search Report and Written Opinion. |
PCT/US2016/043358, Nov. 3, 2016, International Search Report and Written Opinion. |
PCT/US2016/065271, Mar. 24, 2017, International Search Report and Written Opinion. |
PCT/US2016/065271, Jun. 21, 2018, International Preliminary Report on Patentability. |
PCT/US2017/033122, Nov. 29, 2018, International Preliminary Report on Patentability. |
PCT/US2017/033122, Aug. 8, 2017, International Search Report and Written Opinion. |
PCT/US2017/035178, Aug. 18, 2017, International Search Report and Written Opinion. |
PCT/US2017/035178, Dec. 13, 2018, International Preliminary Report on Patentability. |
PCT/US2017/057402, May 2, 2019, International Preliminary Report on Patentability. |
PCT/US2017/057402, Jan. 19, 2018, International Search Report and Written Opinion. |
PCT/US2018/045201, Nov. 26, 2018, International Search Report and Written Opinion. |
PCT/US2018/045201, Feb. 13, 2020, International Preliminary Report on Patentability. |
PCT/US2018/045207, Feb. 13, 2020, International Preliminary Report on Patentability. |
PCT/US2018/045207, Nov. 29, 2018, International Search Report and Written Opinion. |
PCT/US2020/019019, Sep. 2, 2021, International Preliminary Report on Patentability. |
PCT/US2020/019019, Jun. 26, 2020, International Search Report and Written Opinion. |
TW 110139076, Mar. 10, 2022, Taiwanese Office Action. |
Chinese communication in connection with Chinese Application No. 201780046854.5 dated Nov. 28, 2019. |
Chinese Office Action for Application No. CN201580069567.7 dated Jun. 17, 2019. |
Chinese Office Action for Chinese Application No. 201480017853.4 dated Feb. 4, 2017. |
Chinese Office Action for Chinese Application No. 201780046854.5, dated Oct. 10, 2020. |
Chinese Office Action for Chinese Application No. 201880064335.6, dated Oct. 20, 2020. |
Chinese Office Action for Chinese Application No. 201880064335.6, dated May 25, 2021. |
Chinese Office Action for Chinese Application No. 201880064336.0, dated Oct. 19, 2020. |
Chinese Office Action for Application No. CN201580069567.7 dated Oct. 9, 2019. |
Extended European Search for European Application No. 14773438.8 dated Oct. 12, 2016. |
Extended European Search Report for European Application No. 14855318.3 dated Apr. 21, 2017. |
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/035178 dated Dec. 13, 2018. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/045201 dated Feb. 13, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/031448 dated Oct. 8, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/061681 dated May 6, 2016. |
International Preliminary Report on Patentability for International Application No. PCT/US2016/065271 dated Jun. 21, 2018. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/060472 dated May 26, 2017. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/033122 dated Nov. 29, 2018. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/057402 dated May 2, 2019. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/045207 dated Feb. 13, 2020. |
International Preliminary Report on Patentability dated Sep. 2, 2021 in connection with International Application No. PCT/US2020/019019. |
International Search Report and Written Opinion for International Application No. PCT/US2017/035178 dated Aug. 18, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2018/045201 dated Nov. 26, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2014/031448 dated Jul. 10, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/061681 dated Jan. 27, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2016/065271 dated Mar. 24, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/060472 dated Mar. 11, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012542 dated Apr. 30, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2016/043358 dated Nov. 3, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2017/033122 dated Aug. 8, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2014/026381 dated Aug. 12, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2017/057402 dated Jan. 19, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2006/25562 dated Oct. 31, 2007. |
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056495 dated Jan. 25, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2018/045207 dated Nov. 29, 2018. |
International Search Report and Written Opinion dated Jun. 24, 2020 in connection with International Application No. PCT/US2020/019019. |
Taiwanese Office Action dated Mar. 10, 2022 in connection with Taiwanese Application No. 110139076. |
[No Author Listed], Amphenol TCS expands the Xcede Platform with 85 Ohm Connectors and High-Speed Cable Solutions. Press Release. Published Feb. 25, 2009. http://www.amphenol.com/about/news_archive/2009/58 [Retrieved on Mar. 26, 2019 from Wayback Machine]. 4 pages. |
[No Author Listed], Agilent. Designing Scalable 10G Backplane Interconnect Systems Utilizing Advanced Verification Methodologies. White Paper, Published May 5, 2012. 24 pages. |
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013. 2 pages. |
[No Author Listed], Difference Between Weld Metal and Heat Affected Zone (HAZ). Minaprem.com. 2021. 7 pages. URL:http://www.difference.minaprem.com/joining/difference-between-weld-metal-and-heat-affected-zone-haz [date retrieved Dec. 20, 2021]. |
[No Author Listed], File:Wrt54gl-layout.jpg Sep. 8, 2006. Retrieved from the Internet: https://xinu.mscs.mu.edu/File:Wrt54gl-layout.jpg [retrieved on Apr. 9, 2019]. 2 pages. |
[No Author Listed], Hitachi Cable America Inc. Direct Attach Cables. 8 pages. Retrieved Aug. 10, 2017 from http://www.hca.hitachi-cable.com/products/hca/catalog/pdfs/direct-attach-cable-assemblies.pdf [last accessed Mar. 6, 2019]. |
[No Author Listed], Size 8 High Speed Quadrax and Differential Twinax Contacts for Use in MIL-DTL-38999 Special Subminiature Cylindrical and ARINC 600 Rectangular Connectors. Published May 2008. 10 pages. Retrieved from https://www.peigenesis.com/images/content/news/amphenol_quadrax.pdf. |
[No Author Listed], What is the Heat Affected Zone (HAZ)? TWI Ltd. 2021. 8 pages. URL:https://www.twi-global.com/technical-knowledge/faqs/what-is-the-heat-affected-zone [date retrieved Dec. 20, 2021]. |
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7. |
Fjelstad, Flexible Circuit Technology. Third Edition. BR Publishing, Inc. Sep. 2006. 226 pages. ISBN 0-9667075-0-8. |
Lehto et al., Characterisation of local grain size variation of welded structural steel. Weld World. 2016;60:673-688. 16 pages. URL:https://link.springer.com/content/pdf/10.1007/s40194-016-0318-8.pdf. |
Lloyd et al., High Speed Bypass Cable Assembly, U.S. Appl. No. 15/271,903, filed Sep. 21, 2016. |
Lloyd et al., High Speed Bypass Cable Assembly, U.S. Appl. No. 15/715,939, filed Sep. 26, 2017. |
Montemayor, Electrically Conductive Silicone Adhesive. Dow Corning Corp. SMTA International Conference, Sep. 2002. 7 pages. |
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56. |
Number | Date | Country | |
---|---|---|---|
20210391673 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62343625 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16391013 | Apr 2019 | US |
Child | 17240118 | US | |
Parent | 15610376 | May 2017 | US |
Child | 16391013 | US |