The present disclosure relates generally to a heating, ventilation, and air conditioning (HVAC) system and more particularly, but not by way of limitation, to housings for backward-curved blowers.
HVAC systems include fans or blowers (e.g., that include blower wheels) that circulate air between the HVAC system and an enclosed space associated with the HVAC system. Some fans and blowers are designed to operate at different speeds so that conditioned air can be supplied to the enclosed space at different flow rates. For example, in multi-zone systems, less air flow is needed to supply one zone of the multi-zone system with conditioned air as compared to supplying conditioned air to two or more zones of the multi-zone system. The airflow from the fan or blower is varied by supplying the fan or blower with different amounts of power. For example, reducing the amount of power supplied to the fan or blower reduces the speed of the fan or blower and increasing the amount of power supplied to the fan or blower increases the speed of the fan or blower. While adjusting the amount of power supplied to the blower helps tailor the amount of airflow produced by the blower, increasing fan speed can result in operating conditions that are inefficient.
In an embodiment, a blower for a heating, ventilation, and air conditioning system includes a blower wheel and a housing. The blower wheel includes backward-curved blades configured to rotate in a rotational plane. The housing forms an at least hexagonal cross-section around at least a portion of the rotational plane, where the blower wheel is positioned within the housing such that there exists a first distance and a second distance. The first distance is measured radially outward from a center of the blower wheel to a first side of the at least hexagonal cross-section. The second distance is measured radially outward from the center of the blower wheel to a second side of the at least hexagonal cross-section. The second distance forms a first angle with the first distance, the first angle being an acute angle. The first distance and the second distance are unequal and less than a diameter of the blower wheel.
In an embodiment, a method of assembling a blower includes providing a housing and a blower wheel. The blower wheel includes backward-curved blades configured to rotate in a rotational plane. The method also includes positioning the blower wheel in the housing such that the housing forms an at least hexagonal cross-section around at least a portion of the rotational plane and such that there exists a first distance and a second distance. The first distance is measured radially outward from a center of the blower wheel to a first side of the at least hexagonal cross-section. The second distance is measured radially outward from the center of the blower wheel to a second side of the at least hexagonal cross-section. The second distance forms a first angle with the first distance, the first angle being an acute angle. The first distance and the second distance are unequal and less than a diameter of the blower wheel.
In an embodiment, a heating, ventilation, and air conditioning system includes an evaporator coil and a blower coupled to the evaporator coil. The blower includes a blower wheel and a housing. The blower wheel includes backward-curved blades configured to rotate in a rotational plane. The housing forms an at least hexagonal cross-section around at least a portion of the rotational plane, where the blower wheel is positioned within the housing such that there exists a first distance and a second distance. The first distance is measured radially outward from a center of the blower wheel to a first side of the at least hexagonal cross-section. The second distance is measured radially outward from the center of the blower wheel to a second side of the at least hexagonal cross-section. The second distance forms a first angle with the first distance, the first angle being an acute angle. The first distance and the second distance are unequal and less than a diameter of the blower wheel.
Embodiment(s) of the invention will now be described more fully with reference to the accompanying Drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiment(s) set forth herein. The invention should only be considered limited by the claims as they now exist and the equivalents thereof.
HVAC system 100 includes an indoor fan or blower 110, a gas heat 103 typically associated with blower 110, and an evaporator coil 120, also typically associated with blower 110. For the purposes of this disclosure, gas heat 103 is a single-stage gas furnace. HVAC system 100 includes an expansion valve 112. Expansion valve 112 may be a thermal expansion valve or an electronic expansion valve. Blower 110, gas heat 103, expansion valve 112, and evaporator coil 120 are collectively referred to as an indoor unit 102. In a typical embodiment, indoor unit 102 is located within, or in close proximity to, enclosed space 101. HVAC system 100 also includes a compressor 104, an associated condenser coil 124, and an associated condenser fan 115, which are collectively referred to as an outdoor unit 106. In various embodiments, outdoor unit 106 and indoor unit 102 are, for example, a rooftop unit or a ground-level unit. Compressor 104 and associated condenser coil 124 are connected to evaporator coil 120 by a refrigerant line 107. Refrigerant line 107 includes, for example, a plurality of copper pipes that connect condenser coil 124 and compressor 104 to evaporator coil 120. Compressor 104 may be, for example, a single-stage compressor, a multi-stage compressor, a single-speed compressor, or a variable-speed compressor. Blower 110 is configured to operate at different capacities (e.g., variable motor speeds) to circulate air through HVAC system 100, whereby the circulated air is conditioned and supplied to enclosed space 101. Blower 110 operates at different speeds depending on the demand. Blower 110 operates at lower speeds for lower demands and at higher speeds for higher demands. In some embodiments, indoor unit 102 includes a pressure sensor 111 that measures static pressure at an exit of blower 110. Pressure sensor 111 may be any of a variety of pressure sensor types, such as a pressure transmitter, magnehelic gauge, and the like. Static pressure describes the air resistance that blower 110 operates against. The static pressure is the result of numerous aspects of the HVAC system, such as, for example, the size and length of the ductwork in the system. HVAC system 100 includes an expansion valve 112. Expansion valve 112 may be a thermal expansion valve or an electronic expansion valve.
Still referring to
HVAC controller 170 may be an integrated controller or a distributed controller that directs operation of HVAC system 100. HVAC controller 170 includes an interface to receive, for example, thermostat calls, temperature setpoints, blower control signals, environmental conditions, and operating mode status for various zones of HVAC system 100. The environmental conditions may include indoor temperature and relative humidity of enclosed space 101. In a typical embodiment, HVAC controller 170 also includes a processor and a memory to direct operation of HVAC system 100 including, for example, a speed of blower 110.
Still referring to
HVAC system 100 is configured to communicate with a plurality of devices such as, for example, a monitoring device 156, a communication device 155, and the like. In a typical embodiment, and as shown in
In a typical embodiment, communication device 155 is a non-HVAC device having a primary function that is not associated with HVAC systems. For example, non-HVAC devices include mobile-computing devices configured to interact with HVAC system 100 to monitor and modify at least some of the operating parameters of HVAC system 100. Mobile computing devices may be, for example, a personal computer (e.g., desktop or laptop), a tablet computer, a mobile device (e.g., smart phone), and the like. In a typical embodiment, communication device 155 includes at least one processor, memory, and a user interface such as a display. One skilled in the art will also understand that communication device 155 disclosed herein includes other components that are typically included in such devices including, for example, a power supply, a communications interface, and the like.
Zone controller 172 is configured to manage movement of conditioned air to designated zones of enclosed space 101. Each of the designated zones includes at least one conditioning or demand unit such as, for example, gas heat 103 and user interface 178, only one instance of user interface 178 being expressly shown in
A data bus 190, which in the illustrated embodiment is a serial bus, couples various components of HVAC system 100 together such that data is communicated therebetween. Data bus 190 may include, for example, any combination of hardware, software embedded in a computer readable medium, or encoded logic incorporated in hardware or otherwise stored (e.g., firmware) to couple components of HVAC system 100 to each other. As an example and not by way of limitation, data bus 190 may include an Accelerated Graphics Port (AGP) or other graphics bus, a Controller Area Network (CAN) bus, a front-side bus (FSB), a HYPERTRANSPORT (HT) interconnect, an INFINIBAND interconnect, a low-pin-count (LPC) bus, a memory bus, a Micro Channel Architecture (MCA) bus, a Peripheral Component Interconnect (PCI) bus, a PCI-Express (PCI-X) bus, a serial advanced technology attachment (SATA) bus, a Video Electronics Standards Association local bus (VLB), or any other suitable bus or a combination of two or more of these. In various embodiments, data bus 190 may include any number, type, or configuration of data buses 190, where appropriate. In particular embodiments, one or more data buses 190 (which may each include an address bus and a data bus) may couple HVAC controller 170 to other components of HVAC system 100. In other embodiments, connections between various components of HVAC system 100 are wired. For example, conventional cable and contacts may be used to couple HVAC controller 170 to the various components. In some embodiments, a wireless connection is employed to provide at least some of the connections between components of HVAC system 100 such as, for example, a connection between HVAC controller 170 and blower 110 or the plurality of environment sensors 176.
With reference to
More particularly,
In the illustrated embodiment, distance parameters 326 form angles 328a, 328b, 328c and 328d (collectively, angles 328) with each other. In particular, distance parameter 326b forms an angle 328a with distance parameter 326a, distance parameter 326c forms an angle 328b with distance parameter 326b, distance parameter 326d forms an angle 328c with distance parameter 326c, and distance parameter 326e forms an angle 328d with distance parameter 326d. It should be appreciated that distance parameters 326b, 326c, and 326d and 326e each form an angle with distance parameter 326a. As already stated, distance parameter 326b forms angle 328a with distance parameter 326a. Additionally, distance parameter 326c forms a cumulative angle 330a with distance parameter 326a, where cumulative angle 330a includes angles 328a and 328b. Similarly, distance parameter 326d forms a cumulative angle 330b with distance parameter 326a, where cumulative angle 330b includes angles 328a, 328b and 328c. In like fashion, distance parameter 326e forms a cumulative angle 330c with distance parameter 326a, where cumulative angle 330c includes angles 328a, 328b, 328c and 328d.
In some cases, angles 328 can each be acute angles of the same or different sizes. In one example, as illustrated in
In certain embodiments, distance parameters 326 can be configured as a function of a diameter of blower wheel 306. In one example, distance parameters 326 can each define a distance approximately equal to a configurable value times the diameter of blower wheel 306. In some embodiments, the configurable value that is multiplied by the diameter of blower wheel 306 can be less than one, such that distance parameters 326 are each a proportion of the diameter of blower wheel 306. Table 1 below illustrates an example of ranges of values for distance parameters 326 as a function of the diameter of blower wheel 306. Table 2 below illustrates a second example of ranges of values for distance parameters 326 as a function of the diameter of blower wheel 306. In some embodiments, the narrower ranges of Table 2 produce performance improvements. Table 3 illustrates an example optimal profile for housing 302, where a specific formula is listed for each of distance parameters 326.
More particularly,
As with distance parameters 326, distance parameters 726 can be at least partially defined according to angles that are formed in cross-section 724. In the illustrated embodiment, distance parameter 726f forms an angle 728e with distance parameter 326e while distance parameter 726g forms an angle 728f with distance parameter 726f It should be appreciated that distance parameters 726f and 726g also each form an angle with distance parameter 326a. As shown, distance parameters 726f and 726g form cumulative angles 730d and 730e, respectively, with distance parameter 326a.
Angles 728e and 728f can be, for example, angles of the same or different sizes. In the example of
In similar fashion to the methods described relative to
In this patent application, reference to encoded software may encompass one or more applications, bytecode, one or more computer programs, one or more executables, one or more instructions, logic, machine code, one or more scripts, or source code, and vice versa, where appropriate, that have been stored or encoded in a computer-readable storage medium. In particular embodiments, encoded software includes one or more application programming interfaces (APIs) stored or encoded in a computer-readable storage medium. Particular embodiments may use any suitable encoded software written or otherwise expressed in any suitable programming language or combination of programming languages stored or encoded in any suitable type or number of computer-readable storage media. In particular embodiments, encoded software may be expressed as source code or object code. In particular embodiments, encoded software is expressed in a higher-level programming language, such as, for example, C, Python, Java, or a suitable extension thereof. In particular embodiments, encoded software is expressed in a lower-level programming language, such as assembly language (or machine code). In particular embodiments, encoded software is expressed in JAVA. In particular embodiments, encoded software is expressed in Hyper Text Markup Language (HTML), Extensible Markup Language (XML), or other suitable markup language.
Depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. Although certain computer-implemented tasks are described as being performed by a particular entity, other embodiments are possible in which these tasks are performed by a different entity.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, the processes described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. The scope of protection is defined by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. patent application Ser. No. 17/230,037, filed on Apr. 14, 2021. U.S. patent application Ser. No. 17/230,037 is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2857747 | MacCracken et al. | Oct 1958 | A |
4565075 | Drucker | Jan 1986 | A |
20050042107 | Liu et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
2336574 | Jun 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20240085038 A1 | Mar 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17230037 | Apr 2021 | US |
Child | 18512410 | US |