1. Technical Field
This invention pertains to network cable infrastructure maintenance. In particular, the present invention pertains to apparatus and techniques for isolating and analyzing operationally deployed segments of a network cable plant infrastructure.
2. Description of Related Art
One of the difficult challenges faced by Information Technology (IT) infrastructure network managers is determining how to diagnose with specificity network faults that are related to faults in a deployed cable plant infrastructure.
Faults associated with relatively short cables, such as patch panel cords used within network equipment closets, are often related to damaged or improperly installed cable terminators and/or internal cable shorts due to an inadvertent pinching or crushing of the cable. Poor connections can also be caused by damaged sockets in patch panels and/or network equipment. Unfortunately, faults associated with longer cable runs, typically associated with the horizontal (or distribution) cable plants, may be even more problematic. Although cables may perform adequately when first installed, over time, numerous faults may arise. For example, network connections supported by individual cables may begin to experience difficulties due to corrosion, or due to small nicks/cracks in the conductors (introduced during the installation process and/or introduced during subsequent maintenance) that develop into larger cracks or breaks in conductors. Further, shorts between wires may arise due to damage to conductors or damage to conductor insulation internal to a cable's protective casing. Such damage is typically caused by the stress of pulling a cable through conduits and tight locations, chafing of cable casings, melting of wire casings due to wires having been inadvertently placed near hot surfaces such as overhead lighting, damage due to rodents chewing cable casings, and a litany of other potential sources of physical damage. In addition, interference may be introduced to one or more cables in a cable segment by sources of electromagnetic radiation such as electric motors, electrical boxes, etc.
Typically, when a network manager suspects that a network problem involves contributions from a faulty network cable, the network manager will instruct a technician to physically locate and inspect the cable or cables in question. Unfortunately, such physical inspections take significant time on the part of the technician as the technician attempts to locate both ends of a cable, disconnect the cable from the network, attach test equipment, and proceed to analyze the cable. Further, such a test does not adequately test the connections between the cable and the cable plant jacks to which the cable connects. In addition, the process of disturbing a cable may result in the introduction of new problems which may have otherwise been avoided. The above process is more complicated in large IT networks involving cable plants within multiple physically distributed locations or remote locations.
Hence, a need remains for a method and apparatus for diagnosing segments of the deployed cable plant infrastructure, without requiring a technician to physically inspect cable plants and perfothi on-site analysis. Preferably, such an approach would allow a cable segment to be isolated and analyzed without physically disconnecting the cable from the deployed infrastructure. Further, such an approach would preferably be performed quickly and easily from a remote location. Preferably, the approach should be compatible with and capable of being integrated with a multipurpose network management system.
A method and apparatus are provided for isolating and analyzing segments of a deployed, operational cable plant from a remote location. Individual cables, or segments, within an operationally deployed cable plant infrastructure may be isolated and analyzed without requiring a technician to physically inspect and perform an on-site analysis. The approach allows a cable segment to be isolated and analyzed without physically disconnecting the cable from the deployed infrastructure. By isolating and analyzing selected cable plant segments, an entire deployed cable plant infrastructure may be discretely analyzed and specific problems within the cable plant infrastructure may be identified. The approach allows the analyses to be performed quickly and easily from a remote location. Further, the approach is compatible with and may be integrated within a multipurpose network management system.
A method is described for detecting faults present in a deployed network cabling infrastructure that includes isolating an identified cable segment from the network cabling infrastructure, executing diagnostics upon the isolated cable segment, and determining whether a fault exists in the isolated cable segment based upon a result of the executed diagnostics. The identified cable segment is isolated by physically redirecting a connectivity of the identified cable based upon a command issued from a remote network management system.
An apparatus is described for detecting faults present in a deployed network cabling infrastructure that includes an isolation module that isolates an identified cable segment from the network cabling infrastructure, a diagnostics module that executes diagnostics upon the isolated cable segment, and an analysis module that determines whether a fault exists in the isolated cable segment based upon a result of the executed diagnostics. The isolation module physically isolates the identified cable segment by redirecting connectivity of the identified cable segment based upon a command issued from a remote network management system.
A process capable of being implemented by program instructions executable by a computer is described for detecting faults present in a deployed network cabling infrastructure that includes an isolation module that isolates an identified cable segment from the network cabling infrastructure, a diagnostics module that executes diagnostics upon the isolated cable segment, and an analysis module that determines whether a fault exists in the isolated cable segment based upon a result of the executed diagnostics. The isolation module physically isolates the identified cable segment by redirecting connectivity of the identified cable segment based upon a command issued from a remote network management system.
The systems and methods of the present invention may be used to provide a network management system with information on Ethernet connections, such as information on connections between Ethernet switch ports and patch panel ports. The network management system may later use the systems and methods of the present invention to verify those connections.
Exemplary embodiments according to the present invention are described below with reference to the above drawings, in which like reference numerals designate like components.
The above description of patch panel 102 is exemplary only. The location and arrangement of specific ports on patch panel 102 may be changed as desired for easy access/use. For example, management port 106 may be placed upon rear patch panel face 112 rather than front patch panel face 108. Further, patch panel 102 is not limited to being configured with RJ-45 and punch down block connections. Patch panel 102 may be configured to support any type of network cable connection, including optical cabling as well cabling with electrical conductors.
As depicted in
Referring again to
Within patch panel 102, connectivity from RJ-45 port #3 to punch-down port #3 passes from RJ-45 port #3 to an isolation toggle switch module 126 for RJ-45 port #3 and through connection 140 to punch-down port #3. However, if isolation toggle switch #3 is activated, connectivity is redirected from toggle switch module 126 through connection 142 to controller/selector module 128.
In normal operation, connectivity within patch panel 102 between punch-down port 110 and RJ-45 port 104 is a straight pass-through connection. However, in response to a control signal from controller/selector module 128, isolation toggle switch 126 may disconnect connectivity between RJ-45 port 104 and punch-down port 110 and redirect the connection from RJ-45 port 104 to RJ-45 management port 106 on the front face panel of patch panel 102. By disconnecting connectivity internal to patch panel 102 the connectivity across patch cord 114 between RJ-45 port 104 and communication switch port 116 is effectively isolated from the deployed cable plant infrastructure and the isolated patch cord connection is made accessible to a network management system 134 for analysis.
As shown in
In another embodiment, multiple patch panels can be provided between the network communication switch 118 and the end-user devices 124. For example, a patch panel (not shown) may be provided between the switch 118 and the patch panel 102 or between the patch panel 102 and the end-user devices 124. The patch panel (not shown) may be configured similarly to patch panel 102. Alternatively, the patch panel (not shown) may be configured differently. For example, the patch panel (not shown) may be disposed between the switch 118 and the patch panel 102 and may be configured such that the isolation toggle switches isolate the punch-down ports while the isolation toggle switches 126 in the patch panel 102 isolate the RJ45 ports 104. Such an arrangement permits isolation of one of the patch cords connecting the patch panel with the patch panel 102 with or without including the patch cords 138 between the switch 118 and the patch panel. This permits determination of which patch cord, connecting the switch 118 with the patch panel or connecting the patch panel with the patch panel 102, is faulty. Alternatively, the patch panels may isolate the patch cords between the patch panel most proximate to the switch 118 and the switch 118 and the patch cords between the patch panel most proximate to the end-user devices 124 and the end-user devices 124, leaving the patch cords between the patch panels untested. In this case, if a fault exists in the patch cords between the patch panels, it can be tested indirectly by determining that a fault lies between the switch 118 and the end-user devices 124 and also determining that no fault lies between the patch cords between the patch panel most proximate to the switch 118 and the switch 118 and the patch cords between the patch panel most proximate to the end-user devices 124 and the end-user devices 124.
Deployed within a network infrastructure as shown in
Depending upon the number and location of patch panels 202 deployed within a network infrastructure, a network management system may isolate and analyze virtually any portion of the network cable plant located between patch panel 202 and a network device, any portion of a network cable plant located between patch panel 202 and an end-user device, and any portion of the network cable plant (e.g., cables in a bundle between equipment rooms) located between any two patch panels 202. Such portions may comprise any portion of the cable plant.
In analyzing a portion of the network cable plant between patch panel 202 and a network device, network management system 234 may run a series of diagnostic routines that communicate with the network device. For example, in the case of a network communication switch that supports internal self diagnostics, network management system 234 may execute the switch diagnostics and verify that the expected results are received at the patch panel 202 management port 206. Such a set of diagnostic routines may fully test the cable plant connection between the switch and patch panel 202 and, if successful, may allow the diagnostics process to proceed with the isolation and analysis of other segments within the deployed cable infrastructure.
Similarly, in analyzing a portion of the network cable plant between patch panel 202 and an end-user device, network management system 234 may run a series of diagnostic routines that communicate with the end-user device and verify that expected results are received via a patch panel management port 206. For example, diagnostic routines may be pre-loaded onto a workstation and may be activated by network management system 234 to test connectivity between the end-user workstation and patch panel 202.
Further, to analyze a portion of the network cable plant between two patch panels 202, network management system 234 may instruct the controller/selector modules to initiate a set of diagnostic signals over the isolated cable (i.e., controller/selector module to controller/selector module) to verify the integrity of the connection. Once completed, the respective controller/selector modules may return a message to network management system 234 via management port 206 that may include the results of the test routines. Such a set of diagnostic routines may fully test the selected cable between the respective patch panels 202.
Within such an exemplary embodiment, network management system 234 may isolate an individual cable within an operationally deployed cable plant infrastructure to determine (e.g., via communication between the network management system and the port) an identifier of a specific switch and an identifier of a specific switch port to which the cable is connected. Such an approach may be used by network management system 234 to discover port level connectivity information that may be stored by the network management system for later use. Once such connectivity information is stored, the network management system may later verify the previously detected information and/or discover configuration changes in the network cabling infrastructure by comparing the previously detected information with subsequently detected information.
For example, a network management system may use such an approach to monitor/verify the proper execution of network cable plant move/add/change instructions implemented by a technician in accordance with a work order. By comparing a detected change in network connectivity with a planned change described in the work order, the network management system may determine whether a work order has been properly implemented and/or may assist a technician in properly implementing the work order. Although this approach has been described with reference to patch panel 202, the approach also may be used with patch panel 102 or any combination thereof.
As shown in
Use of isolation toggle switch 302 is not limited to redirecting connections within a patch panel device. For example, an isolation toggle switch 302 may be integrated within a wall jack or other controlled device to allow a remote network management system to selectively redirect and/or disconnect connectivity at the wall jack in support of network diagnostics and/or trouble-shooting efforts. For example, by disconnecting cable connectivity at a selected wall jack, a network management system could run diagnostics between a patch panel, as described above, and a wall jack to assess the integrity of the horizontal cable between the patch panel and the wall jack. If the horizontal cabling is found to be operational, the network management system may reestablish connectivity at the wall jack and may proceed to execute additional diagnostics to analyze full connection between the patch panel and an end-user device connected to the network via the wall jack, as described above.
a and 4b are cross-sectional views of a first embodiment of a micro electronic mechanical system (MEMS) switch, or relay, which may be used within an embodiment of the isolation toggle switch depicted within
a and 5b are cross-sectional views of a second MEMS switch, or relay, which may be used within an embodiment of the isolation toggle switch 302 depicted within
When no current is passed through coil 504, metal plates 508 and 510 rest in physical contact with one another, thus forming a connection between nodes A and C. However, as shown in
For example, a Network Management System may receive a status report, e.g., a Simple Network Management Protocol (SNMP) trap message, from one or more controlled network devices that indicates a communication failure and/or a failure of Power-over-Ethernet (PoE) service at a network device/port identified in each of the respective one or more trap messages. In response, the Network Management System may identify controlled network device(s) and/or patch panel(s) that bracket a cable segment experiencing difficulty. Controlled network devices may be identified based upon, for example, an analysis of previously collected and maintained network connectivity information stored in the Network Management System's information base. Next, the Network Management System may instruct the one or more of the identified controlled device(s) and/or patch panel(s) to isolate the identified cable segment by connecting one or more connection ends of the identified cable segment to a network management port. Once the Network Management System has network connectivity to the isolated cable, at one or both ends of the isolated cable segment, the Network Management System may initiate or execute one or more diagnostic routines (e.g., such as a Time Domain Reflectometry, or TDR, routine) to analyze the isolated cable. Further, the Network Management System may request, e.g., via SNMP, configuration and status parameters associated with the controlled device connected to the isolated cable to assist in further trouble-shooting the problem.
For example, if the TDR routine is executed and returns a weak return reflection, Network Management System may determine that communication along the isolated cable segment is adversely affected by a kink in the isolated cable. If the TDR routine receives a strong return reflection, the Network Management System may determine that communication has been broken or cut. Further, the TDR routine may determine a distance of the kink or break in the cable from an isolated cable end based upon the time delay and magnitude of the received reflected signals. The results of any diagnostic routines executed by the Network Management System upon an isolated cable may be stored within the Network Management System's information base for later review and/or analysis.
For example, individual results from the testing of individual cable segments may be stored and later viewed collectively to assess the cumulative, or net, effect of, for example, distortion and impedance of the individual cable segments upon a selected source-to-destination physical cable path within the network that includes multiple cable segments. Further, stored results for one or more cable segments, collected over a period of time, may be later viewed collectively to assess a rate of change over time in the one or more cable segments with respect to distortion or impedance. Such a cumulative analysis may be used to optimize cable maintenance/replacement planning by helping to identify cable segment replacements that would result in acceptable end-to-end physical cable plant performance and/or by identifying cable segments likely to require replacement in the near future.
Upon determining that the isolated cable segment is damaged, the Network Management System may take measures to correct the identified problem. For example, the Network Management System may redirect a connection over another cable that physically connects the network devices affected by the failed cable. This redirection can be intermittent or constant, e.g., in the former case if the connection is shared temporally (i.e. in use by different end-user devices at different times) or in the latter case if one or more unused backup connections are present between the patch panel and the network switch. The isolation switch may be, in other embodiments, a tri-state switch or have more than three connection possibilities to enable the redirection. For example, in the default configuration, an RJ-45 port and corresponding punch-down port are connected together; in a test configuration, the RJ-45 port and/or corresponding punch-down port are connected to the NMS via the controller/selector module and management port, and in a bypass configuration; a different RJ-45 port and the same punch-down port are connected together. Alternatively, one or more cross-connect switches can be disposed in the patch panel along the signal path between the RJ-45 ports and the punch-down ports to permit different RJ-45 ports and punch-down ports to be connected in the event of a cable problem. In another embodiment, in which isolation switches are disposed both between the controller/selector module and the RJ-45 port and between the controller/selector module and the punch-down port (similar to
It will be appreciated that the exemplary embodiments described above and illustrated in the drawings represent only a few of the many ways of isolating and analyzing operational segments of a deployed network cable plant infrastructure. The present invention is not limited to analysis of the specific IT network cable infrastructure configurations disclosed herein, but may be applied to any deployed IT network infrastructure.
The network cable plant segment isolation and analysis process may be implemented in any number of modules and is not limited to any specific software module architecture. Each module can be implemented in any number of ways and is not limited in implementation to execute process flows precisely as described above. The network cable plant segment isolation and analysis processes described above and illustrated in the flow charts and diagrams may be modified in any manner that accomplishes the functions described herein.
It is to be understood that various functions of the network cable plant segment isolation and analysis methods and apparatus may be distributed in any manner among any quantity (e.g., one or more) of hardware and/or software modules or units, computer or processing systems or circuitry.
A patch panel that supports the cable plant segment isolation and analysis process may support patching of any type of network cabling, including but not limited to copper and/or optical fiber cabling. Patch panel ports on the face plate of a patch panel and/or patch panel network management ports may support any type of cable and cable connector, including but not limited to RJ-45 based connectors and optical fiber connectors. Patch panel ports on the rear plate of a patch panel may support any type of cable and cable connector, including but not limited to punch-down ports, RJ-45 ports, optical fiber connections, etc. The patch panel may also have circuitry other than that shown.
A controlled device, such as a wall jack, that supports the cable plant segment isolation and analysis process may support physical connections of any type of network cabling, including but not limited to copper and/or optical fiber cabling. Ports on a front face plate of a controlled device, such as a wall jack, may support any type of cable and cable connector, including but not limited to RJ-45 based connectors and optical fiber connectors. Ports on a rear plate of a controlled device may support any type of cable and cable connector, including but not limited to punch-down ports, RJ-45 ports, optical fiber connections, etc.
An isolation toggle switch module that supports the cable plant segment isolation and analysis process may support the redirection of any type of network cabling, including but not limited to copper and/or optical fiber cabling. Although an exemplary isolation toggle switch module may be configured to redirect cable conductors associated with an RJ-45 connector, such an embodiment is exemplary only and should not be interpreted as limiting an isolation toggle switch module to redirecting RJ-45 based conductors exclusively.
A relay module that supports the cable plant segment isolation and analysis process may support the redirection of any type of network cabling, including but not limited to copper and/or optical fiber cabling. Although an exemplary relay module may be configured to redirect cable conductors associated with an RJ-45 connector, such an embodiment is exemplary only and should not be interpreted as limiting a relay module to redirecting RJ-45 based conductors exclusively.
A relay, such as a MEMS switch, that supports the cable plant segment isolation and analysis process may support the redirection of any type of network cabling, including but not limited to copper and/or optical fiber cabling. Although an exemplary MEMS switch based embodiment of the relay may be configured to redirect cable conductors associated with an RJ-45 connector, such an embodiment is exemplary only and should not be interpreted as limiting a relay to redirecting RJ-45 based conductors exclusively.
Network Management System processes associated with the cable plant segment isolation and analysis processes may be integrated within a stand-alone system or may execute separately and be coupled to any number of devices, workstation computers, server computers or data storage devices via any communication medium (e.g., network, modem, direct connection, etc.). The Network Management System processes associated with the cable plant segment isolation and analysis process can be implemented by any quantity of devices and/or any quantity of personal or other type of computers or processing systems (e.g., IBM-compatible, Apple, Macintosh, laptop, palm pilot, microprocessor, etc.). The computer system may include any commercially available operating system (e.g., Windows, OS/2, Unix, Linux, DOS, etc.), any commercially available and/or custom software (e.g., communication software, load-averaged smoothing process software, etc.) and any types of input devices (e.g., keyboard, mouse, probes, I/O port, etc.).
It is to be understood that the Network Management System software associated with the cable plant segment isolation and analysis process may be implemented in any desired computer language, and could be developed by one of ordinary skill in the computer and/or programming arts based on the functional description contained herein and the flow charts illustrated in the drawings. For example, in one exemplary embodiment the cable plant segment isolation and analysis process may be written using the C+programming language, however, the present invention is not limited to being implemented in any specific programming language. The various modules and data sets may be stored in any quantity or types of file, data or database structures. Moreover, the software associated with the cable plant segment isolation and analysis process may be distributed via any suitable medium (e.g., stored on devices such as CD-ROM and diskette, downloaded from the Internet or other network (e.g., via packets and/or carrier signals), downloaded from a bulletin board (e.g., via carrier signals), or other conventional distribution mechanisms).
The format and structure of internal structures used to hold intermediate information in support of the cable plant segment isolation and analysis process can include any and all structures and fields and are not limited to files, arrays, matrices, status and control booleans/variables.
The cable plant segment isolation and analysis process software may be installed and executed on a computer system in any conventional or other manner (e.g., an install program, copying files, entering an execute command, etc.). The functions associated with the cable plant segment isolation and analysis process may be performed on any quantity of computers or other processing systems. Further, the specific functions may be assigned to one or more of the computer systems in any desired fashion.
The cable plant segment isolation and analysis process may accommodate any quantity and any type of data set files and/or databases or other structures containing stored data sets, measured data sets and/or residual data sets in any desired format (e.g., ASCII, plain text, any word processor or other application format, etc.).
Cable plant segment isolation and analysis process output may be presented to the user in any manner using numeric and/or visual presentation formats. Cable plant analysis output may be presented as input to a numerical analysis tool in either numeric or visual form and can be processed by the numerical analysis tool in any manner and/or using any number of threshold values and/or rule sets.
Further, any references herein of software performing various functions generally refer to computer systems or processors performing those functions under software control. The computer system may alternatively be implemented by hardware or other processing circuitry. The various functions of the cable plant segment isolation and analysis process may be distributed in any manner among any quantity (e.g., one or more) of hardware and/or software modules or units, computer or processing systems or circuitry, where the computer or processing systems may be disposed locally or remotely of each other and communicate via any suitable communication medium (e.g., LAN, WAN, Intranet, Internet, hardwire, modem connection, wireless, etc.). The software and/or processes described above and illustrated in the flow charts and diagrams may be modified in any manner that accomplishes the functions described herein.
From the foregoing description it will be appreciated that a novel cable plant segment isolation and analysis system and method are disclosed that are capable of accurately assessing a deployed cable plant infrastructure based upon a segment-by-segment analysis of the respective isolatable segments within the deployed cable plant infrastructure.
Note that the above patch panel descriptions are exemplary only. The location and arrangement of specific ports on a patch panel may be changed in any manner desired for easy access/use. For example, a management port may be placed anywhere upon any accessible face of the patch panel. Further, the management port, or any other port supported by the patch panel, is not limited to being configured as an RJ-45 or punch down block connection. Patch panel ports may be configured to support any type of network cable connection, including optical cabling as well as cabling with electrical conductors.
While a cable plant segment isolation and analysis system is disclosed, any modifications, variations and changes within the skill of one of ordinary skill in the art fall within the scope of the present invention. Although specific terms are employed herein, they are used in their ordinary and accustomed manner only, unless expressly defined differently herein, and not for purposes of limitation.
This application is a continuation of U.S. patent application Ser. No. 11/954,489, filed Dec. 12, 2007, which claims priority to U.S. Provisional Patent Application No. 60/869,806, filed Dec. 13, 2006, the subject matter of which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60869806 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11954489 | Dec 2007 | US |
Child | 13103707 | US |