High performance volume phase gratings

Information

  • Patent Grant
  • 9519089
  • Patent Number
    9,519,089
  • Date Filed
    Thursday, January 30, 2014
    11 years ago
  • Date Issued
    Tuesday, December 13, 2016
    9 years ago
Abstract
Provided in one embodiment is an apparatus, comprising: an optical substrate configured to manipulate light received from a light source; and at least one diffractive element in one layer in the optical substrate, each diffractive element comprising: a plurality of sub-substrate structures separated from one another by a plurality of valleys, the sub-substrate structures comprising a material having a first refractive index; and a filler material filling at least partially at least some of the plurality of valleys, the filler material having a second refractive index that is unequal to the first refractive index.
Description
BACKGROUND

The optical design benefits of diffractive optical elements (DOEs) include unique and efficient form factors and the ability to encode complex optical functions, such as optical power and diffusion into thin layers. Bragg gratings (also commonly termed volume phase gratings or holograms), which offer high diffraction efficiencies, have been used in devices such as Head Up Displays (HUDs) and Helm Mounted Displays (HMDs). An important class of Bragg gratings devices is known as a Switchable Bragg Gratings (SBG). An SBG is a diffractive device formed by recording a volume phase grating, or hologram, in a polymer dispersed liquid crystal (PDLC) mixture, or holographic polymer-dispersed liquid crystals (HPDLC) mixture.


One attribute of HPDLC is that the phase separation produces high modulation of the refractive index in a layer of material, which in turn enables wide fields of view and high optical efficiencies. Liquid crystals have high refractive index differences along their different molecular cross sections; thus by aligning the molecules correctly with respect to the gratings planes, an efficient and broadband hologram may be attained. However, HPDLC material is susceptible to haze. HPDLC undergoes a “phase separation” during recording of the holograms in which the liquid crystal molecules get squeezed out of the polymer matrix to form microdroplets. While these microdroplets are desirable in that they provide the desired modulation of phase, if the microdroplets are not small enough or not uniform enough haze may easily form. Haze creates haloes around HUD symbology, adding to the overall “green glow” of the display.


SUMMARY

In view of the foregoing, the Inventors have recognized and appreciated the advantages of an article or apparatus that has the beneficial functional properties of a high bandwidth volume phase hologram (e.g., HPDLC) without its drawbacks and a method of making same.


Accordingly, provided in one embodiment is an apparatus, comprising: an optical substrate configured to manipulate light received from a light source; and at least one diffractive element in one layer in the optical substrate. Each diffractive element comprises: a plurality of sub-substrate structures separated from one another by a plurality of valleys, the sub-substrate structures comprising a material having a first refractive index; and a filler material filling at least partially at least some of the plurality of valleys, the filler material having a second refractive index that is unequal to the first refractive index.


Provided in another embodiment is a method of making a diffractive element, comprising: disposing a photoresist over a first portion of a substrate, the substrate comprising a material having a first refractive index; developing the photoresist into a grating mask by recording an interference pattern of two coherent beams into the photoresist; etching a second portion of the substrate not covered by the gratings mask to create at least one valley in the substrate; filling at least partially the at least one valley with a filler material having a second refractive index that is unequal to the first refractive index; and removing the gratings mask from the substrate, thereby forming the diffractive element in one layer of an optical substrate.


Provided in another embodiment is an apparatus, comprising: an optical substrate configured to manipulate light received from a light source; and at least one diffractive element in one layer in the optical substrate. Each diffractive element comprises: a plurality of sub-substrate structures separated from one another by a plurality of valleys, the sub-substrate structures comprising a material having a first refractive index; and a filler material filling at least partially at least some of the plurality of valleys, the filler material having a second refractive index that is unequal to the first refractive index. The at least one diffractive element does not comprise a holographic polymer dispersed liquid crystal.


Provided in another embodiment is a method of making a diffractive element, the method comprising: forming a sub-substrate structure into a substrate comprising a material having a first refractive index; and filling at least partially at least one valley created as a result of the forming with a filler material having a second refractive index that is unequal to the first refractive index; thereby forming the diffractive element in one layer of an optical substrate. The forming may involve at least one of stamping, molding, and casting.


It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings primarily are for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein. The drawings are not necessarily to scale; in some instances, various aspects of the inventive subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements).



FIG. 1 is a diagram showing light passing through glass and air, in one exemplary embodiment.



FIG. 2 is a diagram showing light passing through glass and a diffraction coupling, in one exemplary embodiment.



FIGS. 3A-3B show efficiency vs. field of view for volume phase holograms in one exemplary embodiment: (A) shows a photopolymer hologram with index modulation of 0.02, thickness of 10 microns; and (B) shows HPDLC hologram with index modulation of 0.063, thickness of 3 microns.



FIG. 4 shows efficiency vs. field of view for a hologram with index modulation of 0.49 and thickness of 0.5 microns, in one exemplary embodiment.



FIGS. 5A-5B show surface relief gratings in one exemplary embodiment: (A) shows a schematic of a surface relief grating; and (B) shows efficiency vs. field of the surface relief grating.



FIGS. 6A-6B illustrate an etched grating in one exemplary embodiment: (A) shows a schematic of an etched grating with rotated angle and high index coating; and (B) illustrates the etched gratings analyzed using the computer software Grating Solver.



FIG. 7 illustrates a grating containing a liquid crystal as the filler material in one exemplary embodiment.





DETAILED DESCRIPTION

Following below are more detailed descriptions of various concepts related to, and embodiments of, an inventive article that has the beneficial functional properties of a high bandwidth volume phase hologram (e.g., HPDLC) without its drawbacks and a method of making same. It should be appreciated that various concepts introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.


Referring to FIG. 1, a light wave 100 may pass through a glass or plastic layer 102 and an air layer 104, according to an exemplary embodiment. The refractive index of glass/plastic 102 may be found using Snell's equation: Sine i/Sine r=refractive index. The largest angle of incidence in which light wave is refracted out of glass/plastic 102 is called the critical angle (rc). In air, when i=90°, Sine rc=1/refractive index, so for propagation in a waveguide (parallel surfaces of optical medium) the allowable angle range is rc to r=90°.


Referring to FIG. 2, light enters a substrate or waveguide 200 and is diffracted by a diffractive element (or diffraction grating) 202 between a glass layer 204 and another glass layer 206. Diffraction gratings 202 adjusts the angle of the light passing through glass 204 so that the angle of the light as it meets the upper surface of glass 206 is beyond the critical angle and it reflects internally in waveguide 200. This light ray will then pass back through gratings 202 and glass layer 204 and exit into the air at a different point than it entered glass layer 204. The diffractive element 202 may be a switchable diffractive element. The diffractive element 202 may alternatively be a non-switchable diffractive element. According to various exemplary embodiments, diffractive element 202 may be any of the diffractive elements described herein. For example, the diffractive element may comprise a volume phase grating.


Holograms may be made by interfering two coherent optical waves inside a photosensitive medium, such as sensitized gelatin or one of a wide range of photopolymers. The photosensitive medium may record the amplitude of the interference pattern such that it manifests as either an amplitude or phase modulating diffraction grating. These holograms may be referred to as volume phase gratings or volume phase holograms (“VPH”). However, photopolymers without liquid crystal molecules may be limited to low refractive index modulation, resulting in low optical efficiency, or in the case of thick films, narrow angular bandwidth (small field of view). Referring to FIG. 3A and FIG. 3B, a photopolymer hologram with index modulation of 0.02 and thickness of 10 microns and a HPDLC hologram with index modulation of 0.063 and a thickness of 3 microns, respectively, in one embodiment of pre-existing configuration are illustrated.


Kogelnik theory shows that the thinner the VPH the wider the angular bandwidth, but higher refractive index modulation is needed to achieve the same efficiency. Thus, it may be desirable to obtain materials capable of refractive index modulation value of 0.5 so that the thickness could be reduced to sub-micron values, resulting in wide angular bandwidths. In at least one embodiment, the index modulation value may be related to the difference between the refractive index of the optical substrate material and that of the filler material. For example, in accordance with Kogelnik, the index modulation between a first material and a second material may be determined by (n1−n2)/2, wherein n1 and n2 are refractive indices of the first and second materials, respectively. Different combinations of substrate and filler materials with various respective refractive indices may be employed to tailor the index modulation value of the apparatus described herein. For example, filler materials may have refractive indices of as much as 2.2, or they may be a birefringent material, such as liquid crystal with one refractive index matched to the substrate and the other much higher. In one embodiment, the diffractive element becomes switchable when the filler material comprises a liquid crystal.


The diffractive elements described herein may have an index modulation value that is at least about 0.05—e.g., at least about 0.1, at least about 0.15, at least about 0.2, at least about 0.25, at least about 0.3, at least about 0.35, at least about 0.4, at least about 0.45, at least about 0.46, at least about 0.47, at least about 0.48, at least about 0.49, at least about 0.5, at least about 1.0, or higher. In one embodiment, the diffractive elements described herein may have an index modulation value that is between about 0.05 and about 0.5—e.g., between about 0.08 and about 0.49; between about 0.1 and about 0.48; between about 0.15 and about 0.45; between about 0.2 and about 0.42; between about 0.25 and about 0.4; between about 0.3 and about 0.35, etc. Other values higher or lower than the aforementioned values are also possible.



FIG. 4 shows a graph of efficiency vs. field of view generated by a computer simulation software, representing a material which may produce a single grating capable of addressing the full field of view of a typical HUD, thereby simplifying the design (and reducing the cost) of current waveguide based HUDs.


Provided in one embodiment is an apparatus herein, the apparatus comprising: an optical substrate configured to manipulate light received from a light source; and at least one diffractive element in one layer in the optical substrate. Each diffractive element may comprise: a plurality of sub-substrate structures separated from one another by a plurality of valleys, the sub-substrate structures comprising a material having a first refractive index; and a filler material filling at least partially at least some of the plurality of valleys, the filler material having a second refractive index that is unequal to the first refractive index. The manipulation of light referred to herein may include, but need not be, propagation of light. For example, in one embodiment wherein the optical substrate is a part of a waveguide, the manipulation of light may include the propagation of light.


One of the apparatuses described herein may further comprise a first set of at least one of the at least one diffractive elements in the optical substrate; and a second set of at least one of the at least one diffractive elements in the optical substrate. Each diffractive element in the second set may correspond to a diffractive element in the first set. In one embodiment, each of the first set of at least one of the at least one diffractive elements is further configured to diffract the light at an angle for propagation in the optical substrate. In another embodiment, each of the second set of diffractive elements is further configured to diffract the light for display.


The apparatuses described herein may comprise diffraction gratings implemented similarly to surface relief structures. In one embodiment, these structures are etched into transparent inorganic materials (such as glass, or high refractive index oxide layers evaporated onto glass). The gratings are etched into the material, as shown in the schematic of FIG. 5A. FIGS. 5A and 5B illustrate the configuration of a pre-existing surface grating.


Referring to FIG. 5A, a substrate 500 etched with valleys with rectangular cross sections 502 about 0.15 microns deep in one embodiment of a pre-existing surface grating may be employed. Since the gratings are thin, they may have a wide angular bandwidth, In this embodiment, the refractive index modulation is effectively 0.26 and the resulting efficiency is low, only about 10%. FIG. 5B shows the efficiency behavior of this surface grating in one embodiment.


Referring to FIG. 6A, the valleys with rectangular cross-sections that are about 0.5 microns deep into substrate 604 and overcoated with a high refractive index coating 603 in one embodiment may be employed to create a volume phase grating. The depth of the valleys in the diffractive elements described herein may be larger than that in the pre-existing surface gratings. Since the gratings are thin, they may have a wide angular bandwidth. In this embodiment, the refractive index modulation is effectively 0.5, and the resulting efficiency is high, >90%. FIG. 6B shows the efficiency behavior of this volume phase grating in one embodiment. Other index modulation values may be obtained. Other depth values may be employed.


At least some of the valleys 602 may be filled at least partially with a filler material 603. The valleys may be created by etching a certain portion of a substrate 604, resulting in a plurality of sub-substrate structures 605—the process of etching is described further below. The sub-substrate structure may be periodic, separately by a plurality of valleys of different sizes (e.g., width) as shown in FIG. 6A, or it may comprise a plurality of structures separated by a plurality of valleys of different sizes.


The sub-substrate structures need not be positioned perpendicularly to the surface of the optical substrate. Some, or all, of these sub-substrate structures may be positioned at an angle deviating from the normal of the optical substrate, as shown in, for example, FIG. 6A. The angles deviating from the normal may be of any suitable values, depending on the application. For example, the sub-substrate structures may be posited at an angle ranging from being parallel to the substrate to perpendicular to the substrate. In other words, the angle deviating from the normal may be any value between 0 degrees and 90 degrees.


These slanted sub-substrate structures may be created as a result of etching the valleys into the substrate at an angle. These sub-substrate structures may be slanted at the same angle or different angles. In one embodiment, the angles may vary along a top surface of the optical substrate. In one embodiment, as a result, the diffractive element may have a non-zero k-vector that varies along the respective direction of light propagation, as shown in FIG. 6A. The diffractive elements (and the apparatuses comprising same) described herein may be employed at the input and/or output gratings in the case of an optical display. For example, such employment of the diffractive elements herein may allow pupil expansion, particularly when the diffractive elements described herein are employed in the output grating.


The sub-substrate structure 605 may comprise the same material as the substrate 604 or they may comprise different materials. In one embodiment, the sub-substrate structure 605 may comprise an inorganic material, such as a glass, a metal oxide, and the like. In another embodiment, the sub-substrate material may comprise an organic material, such as an optical plastic, an adhesive, and the like.


The sub-substrate or substrate may comprise at least one of a glass, a plastic, and a metal oxide. Other suitable materials, such as any transparent inorganic materials, may also be used, depending on the application. The glass may comprise, or be, for example, N-Bk7, N-F2, or the like. The plastic may comprise, or be, for example, acrylic, polycarbonate, or the like. The metal oxide may comprise, or be, for example, titania, ceria, or the like. In one embodiment, the metal oxide may comprise a high refractive index oxide evaporated onto a glass.


In one embodiment, at least some of the valleys are filled completely with a filler material 603. In one embodiment, all of the valleys are filled completely with a filler material 603. While all of the valleys may be filled to the same extent by the filler material, in some embodiments the valleys 602 are filled to different extents by the filler material. The valleys may also be over-filled so that the filler material forms an overcoat over at least some of the sub-substrate structures. In another embodiment, the valleys are overfilled with the filler material 603 that the filler material becomes effectively an overcoat of all of the sub-substrate structures, as shown in FIG. 6A.


The valleys may have any desirable depth, depending on the application. In some embodiments, the depth of the valleys described herein may be larger than those in pre-existing surface gratings. The depth may be defined as the distance between the top 604 and bottom 605 of the diffractive structure 601. In one embodiment, the depth may be less than or equal to about 2 microns—e.g., less than or equal to about 1 micron, about 0.5 microns, about 0.4 microns, about 0.3 microns, about 0.2 microns, about 0.1 microns, or smaller. While all of the valleys may have the same depth, they do not need to have the same depth. In one embodiment, the valleys have the same depths across the optical substrate. In another embodiment, the valleys do not have the same depth across the optical substrate. The depth may be predetermined to suit the application and material chemistry. The determination process may be carried out using software, such as a simulation software and/or an optimization software. The software may also be customized and recorded as an algorithm of instruction on a non-transitory computer readable medium to be executed by at least one processor.


Each of the valleys may contain at least one filler material. The different valleys may have the same or different filler materials. The filler material may comprise any suitable material, depending on the application and the material chemistry. The filler material may comprise an inorganic material. The filler material may consist essentially of an inorganic material. The filler material may consist of an inorganic material. In one embodiment, the filler material may have a high refractive index, particularly relatively to the material of the sub-substrate structure. The refractive index of the filler material may be unequal to that of the sub-substrate and/or substrate material. In one embodiment, the refractive index of the filler material is higher than that of the sub-substrate and/or substrate material. One example of this embodiment provides the sub-substrate structures comprising a glass and the filler material having a higher refractive index than the glass, such as a metal oxide (e.g., titania). In another embodiment, the refractive index of the filler material is lower than that of the sub-substrate and/or substrate material. One example of this embodiment provides the sub-substrate structures comprising titania and the filler material having a lower refractive index than the glass, such as a polymer.


The filler material 603 may comprise a metal oxide, such as an oxide of titanium or an oxide of cerium. The filler material may alternatively comprise a homogenous liquid crystal fluid. The filler material may consist essentially of a homogenous liquid crystal fluid. The filler material may consist of a homogenous liquid crystal fluid. In one embodiment, using liquid crystal as the filler material may enable the diffractive element to become switchable. The filler may alternatively comprise an optical adhesive. The filler material may alternatively comprise an optical plastic.


In one embodiment, the diffractive element does not comprise any dispersed material, such as a holographic polymer dispersed liquid crystal (HPDLC). In one embodiment, the diffractive element comprises a plurality of sub-substrate structures separated from one another by a plurality of valleys, and each of the sub-substrate structures comprises an inorganic material. In another embodiment, the sub-substrate structures comprise an organic material, such as a plastic.


An apparatus containing the aforedescribed diffractive elements may be employed in a variety of applications. Because of the suitability to be employed in an optical display, the apparatuses described herein may be a part of a device that is a part of at least one of HMD, HUD, and HDD. The apparatuses described herein need not be in an optical display. The apparatuses described herein also need not be a part of a waveguide. For example, the apparatus may be a part of a device that is employed to propagate any suitable waves. The device may be, for example a satellite.



FIG. 7 illustrates an alternative embodiment of a diffractive embodiment 701, in which the filler material 702 comprises a liquid crystal. In this embodiment, the sub-substrate structures 703 over a grating layer substrate 704 are illustrated. The diffractive element 701 may be sandwiched between two conductive coatings 705. The two conductive coatings 705 may comprise the same material or may comprise different materials. The conductive coatings may comprise transparent conductive coatings. The conductive coatings 705 may comprise a metal oxide, such as indium tin oxide. Any suitable materials may be used for the conductive coatings, depending on the application. Further disposed over the two conductive coatings 705 may be two layers 706 that comprise the material of the aforementioned substrate 604. Although FIG. 7 shows the layers 706 comprise a glass, the material of these layers 706 need not be a glass. For example, the material may comprise a glass, an optical plastic, and the like. Any of the layers may have any suitable thickness, depending on the application.


Method of Making


The apparatuses described herein may be fabricated by any suitable method, depending on the application and material chemistry. The fabrication method may, for example, be similar to (or in some instances the same as) techniques of fabricating surface relief gratings. In one embodiment, the technique may be similar to (or in some instances the same as) those used to fabricate integrated circuit on wafers. For example, the fabrication may involve generally creating surface relief gratings by etching into a glass-like material of refractive index material and then filling in that etched pattern, and/or even over-coating the structure, with a material of a different refractive index.


In one embodiment, a diffractive element is fabricated similarly to a surface relief gratings structure: depositing photoresist onto a suitable substrate (a wafer of glass, for example), recording the interference pattern of two coherent beams into the photoresist, developing the resist into a grating mask, etching the exposed substrate through the mask, and stripping the mask. Additional evaporative coatings optionally may then be applied to enhance performance. However, in this embodiment, the fabrication is identical to producing one layer of an integrated circuit and may be run in existing foundries.


Another embodiment herein provides a method of making a diffractive element, comprising: disposing a photoresist over a first portion of a substrate, the substrate comprising an inorganic material having a first refractive index; developing the photoresist into a grating mask by recording an interference pattern of two coherent beams into the photoresist; etching a second portion of the substrate not covered by the gratings mask to create at least one valley in the substrate; filling at least partially the at least one valley with a filler material having a second refractive index that is unequal to the first refractive index; and removing the gratings mask from the substrate, thereby forming the diffractive element in one layer of an optical substrate. One exemplary result of the method in this embodiment may be the apparatus shown in FIG. 6A.


Another embodiment herein provides a method of making a diffractive element, comprising: disposing a photoresist over a first portion of a substrate, the substrate comprising an inorganic material having a first refractive index; developing the photoresist into a grating mask by recording an interference pattern of two coherent beams into the photoresist; etching a second portion of the substrate not covered by the gratings mask to create at least one valley in the substrate; removing the gratings mask from the substrate; and filling at least partially the at least one valley with a liquid crystal filler material having a second refractive index that is unequal to the first refractive index, thereby forming the diffractive element in one layer of an optical substrate. The method may further include the processes of disposing a conductive coating over the diffractive element. The conductive coating may be any of the conductive coating described above. Additionally, the method may further including the processes of disposing a material over the conductive layers, and the material may comprise a glass, a metal oxide, and the like. One exemplary result of the method in this embodiment may be the apparatus shown in FIG. 7.


The methods described herein may include further processes of replicating the gratings. The replication of the gratings may be a part of the method of making an apparatus containing the diffractive elements described herein. Alternatively, the replication of the gratings may be a separate process from the method of making the apparatus. The replication process may comprise forming a sub-substrate structure into a substrate. The sub-substrate structure may comprise a periodic structure. Alternatively, the sub-substrate structure may comprise a plurality of structures separated from one another by a plurality of valleys. The forming process may include stamping, molding, casting, or other suitable forming techniques. The forming process may involve using a master grating. The substrate may comprise any suitable materials, such as those described above, and may have a first refractive index. In one embodiment, the substrate comprises a plastic material, such as a transparent plastic. The forming process may be followed by filling at least partially the at least one valley of the periodic structure with a filler material having a second refractive index to thereby form a diffractive element in one layer of a substrate. The second index may be unequal to the first refractive index. As described above, the second index may be higher or lower than the first refractive index.


The method may further comprise determining, and optionally and additionally optimizing, the etch depth and/or angle of the valleys to obtain the desired optical performance. The determination may be performed before the disposing step, or may be performed after the entire fabrication method is completed for one cycle so that the next cycle may be optimized. The determination and optimization may both be carried out using software that is commercially available or custom designed.


The fabrication in one embodiment is further illustrated by contrasting a pre-existing structure of FIG. 5 with the embodiment as shown in FIG. 6. The efficiency vs. field of view for the grating shown in FIG. 6 are designed to avoid the limitation of having gratings exposed to air (where the index modulation is the average difference between glass and air (0.26) and needing special protection of the gratings from handling). Instead, the gratings in FIG. 6 are designed by assuming the etch depth could go to 0.5 microns, only about 3 times deeper than the etched gratings in FIG. 5, and then coating the gratings with a very high refractive index material, such as titania (TiO2)—a common optical coating material with refractive index of about 2.5. This coating material is also known as the filler material in some embodiments herein. This method produces an index modulation of 0.49, which is twice that of the uncoated surface relief grating. This method also raises the average index of the grating, which prevents rapid drop-off in performance near the critical angle. Furthermore, by coating (and further filling) the gratings with hard TiO2 the gratings valleys are filled completely, providing protection from fingerprints and scratches. If desired, a cover glass may be cemented on top of the TiO2 layer to increase optical thickness of the waveguide or produce other desirable effects.


The valleys may be etched at an angle to produce a desirable rotated k-vector that is commonly observed in a volume phase holography. In other words, the fabrication methods described herein allow fabrication of a surface-based structure, as opposed to a volume phase holography, while obtaining the functionality and properties of a volume phase holography without its drawbacks, such as haze. In particular, because the diffractive elements described herein employ glass that is homogenous and without dispersed liquid droplets, as in the case of HPDLC, the diffractive elements described herein may avoid the drawback of haze. In one embodiment, the k-vector may be made to change direction gradually across the waveguide to produce a more uniform field of view illumination. Furthermore, the etch depth may be made to vary gradually across the surface of the apparatus (e.g., waveguide) to produce more uniform eyebox illumination. The etching may be controlled to create different etch depth across the apparatus. For example, the input and output of the apparatus may have different etched depths, thus resulting in a tapered efficiency.


An embodiment of the diffractive element with angled valleys (or corollary with the slanted sub-substrate structures) is illustrated in a computer simulation construct as shown in FIG. 6A. In FIG. 6A, the coating 601 is disposed on a substrate, and the coating comprises a plurality of sub-substrate structures 602 and filler material 603 that fills the valleys between the sub-substrate structures 602 and the remainder spaces of the coating 601. The efficiency results based on the simulation of the construct in FIG. 6A is shown in FIG. 6B. The coating in FIG. 6A has been analyzed using Grating Solver (using rigorous coupled wave theory) and is shown to produce results very similar to Kogelnik theory (FIG. 4)—this is important because the refractive index modulates as a step function, not as a sine function.


Additional Notes


All literature and similar material cited in this application, including, but not limited to, patents, patent applications, articles, books, treatises, and web pages, regardless of the format of such literature and similar materials, are expressly incorporated by reference in their entirety. In the event that one or more of the incorporated literature and similar materials differs from or contradicts this application, including but not limited to defined terms, term usage, described techniques, or the like, this application controls.


While the present teachings have been described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments or examples. On the contrary, the present teachings encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art.


While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


The above-described embodiments of the invention may be implemented in any of numerous ways. For example, some embodiments may be implemented using hardware, software or a combination thereof. When any aspect of an embodiment is implemented at least in part in software, the software code may be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers.


In this respect, various aspects of the invention may be embodied at least in part as a computer readable storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other tangible computer storage medium or non-transitory medium) encoded with one or more programs that, when executed on one or more computers or other processors, perform methods that implement the various embodiments of the technology discussed above. The computer readable medium or media may be transportable, such that the program or programs stored thereon may be loaded onto one or more different computers or other processors to implement various aspects of the present technology as discussed above.


The terms “program” or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that may be employed to program a computer or other processor to implement various aspects of the present technology as discussed above. Additionally, it should be appreciated that according to one aspect of this embodiment, one or more computer programs that when executed perform methods of the present technology need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present technology.


Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.


Also, the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” Any ranges cited herein are inclusive.


The terms “substantially” and “about” used throughout this Specification are used to describe and account for small fluctuations. For example, they may refer to less than or equal to ±5%, such as less than or equal to ±2%, such as less than or equal to ±1%, such as less than or equal to ±0.5%, such as less than or equal to ±0.2%, such as less than or equal to ±0.1%, such as less than or equal to ±0.05%.


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.


The claims should not be read as limited to the described order or elements unless stated to that effect. It should be understood that various changes in form and detail may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims. All embodiments that come within the spirit and scope of the following claims and equivalents thereto are claimed.

Claims
  • 1. An apparatus, comprising: an optical substrate configured to manipulate light received from a light source; andat least one diffractive element in one layer in the optical substrate, each diffractive element being a volume phase grating, and comprising: a plurality of sub-substrate structures separated from one another by a plurality of valleys, the sub-substrate structures comprising a material having a first refractive index; anda filler material filling at least partially at least some of the plurality of valleys, the filler material having a second refractive index that is unequal to the first refractive index,wherein the at least one diffractive element has an index modulation value of at least about 0.3,wherein each of the plurality of valleys has a depth of between about 0.5 and 2.0 microns, the depth being from a top to a bottom of the sub-substrate structures,wherein the material of first refractive index comprises at least one of a glass, optical polymer, and a metal oxide.
  • 2. The apparatus of claim 1, wherein the at least one diffractive element does not comprise a holographic polymer dispersed liquid crystal.
  • 3. The apparatus of claim 1, wherein the filler material of second refractive index comprises at least one of titania, optical polymer, and a liquid crystal.
  • 4. The apparatus of claim 1, wherein the filler material completely fills at least some of the plurality of valleys.
  • 5. The apparatus of claim 1, wherein the plurality of sub-substrate structures is positioned at an angle deviating from a normal of a surface of the layer, and wherein each of the plurality of sub-substrate structures has a top face and two side faces.
  • 6. The apparatus of claim 1, further comprising: a first conductive coating disposed on the optical substrate, the at least one diffractive element disposed on the first conductive coating; anda second conductive coating disposed on the at least one diffractive element such that the at least one diffractive element is sandwiched between the first conductive coating and the second conductive coating.
  • 7. The apparatus of claim 1, wherein the at least one diffractive element has an index modulation value of at least about 0.4.
  • 8. An apparatus, comprising: an optical substrate configured to manipulate light received from a light source; andat least one diffractive element in one layer in the optical substrate, each diffractive element being a volume phase grating, and comprising: a plurality of sub-substrate structures separated from one another by a plurality of valleys, the sub-substrate structures comprising a material having a first refractive index; anda filler material filling at least partially at least some of the plurality of valleys, the filler material having a second refractive index that is unequal to the first refractive index;wherein the at least one diffractive element does not comprise a holographic polymer dispersed liquid crystal,wherein the at least one diffractive element has an index modulation value of at least about 0.3,wherein each of the plurality of valleys has a depth of between about 0.5 and 2.0 microns, the depth being from a top to a bottom of the sub-substrate structures,wherein the material of first refractive index comprises at least one of a glass, optical polymer, and a metal oxide.
  • 9. The apparatus of claim 8, wherein the sub-substrate structures are positioned at an angle with respect to a normal of a surface of the layer, and wherein each of sub-substrate structures has a top face and two side faces.
  • 10. The apparatus of claim 8, wherein the diffractive element has a k-vector that varies along the respective direction of light manipulation.
  • 11. The apparatus of claim 8, wherein the at least one diffractive element is switchable.
  • 12. A device comprising the apparatus of claim 8, wherein the device is a part of at least one of HMD, HUD, and HDD.
  • 13. The apparatus of claim 8, wherein the at least one diffractive element is not switchable.
  • 14. The apparatus of claim 8, further comprising: a first conductive coating disposed on the optical substrate, the at least one diffractive element disposed on the first conductive coating; anda second conductive coating disposed on the at least one diffractive element such that the at least one diffractive element is sandwiched between the first conductive coating and the second conductive coating.
  • 15. The apparatus of claim 8, wherein the at least one diffractive element has an index modulation value of at least about 0.4.
US Referenced Citations (521)
Number Name Date Kind
2141884 Sonnefeld Dec 1938 A
3620601 Waghorn Nov 1971 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4309070 St. Leger Searle Jan 1982 A
4647967 Kirschner et al. Mar 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4775218 Wood et al. Oct 1988 A
4854688 Hayford et al. Aug 1989 A
4928301 Smoot May 1990 A
4946245 Chamberlin et al. Aug 1990 A
5007711 Wood et al. Apr 1991 A
5035734 Honkanen et al. Jul 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5117285 Nelson et al. May 1992 A
5124821 Antier et al. Jun 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5243413 Gitlin et al. Sep 1993 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5317405 Kuriki et al. May 1994 A
5341230 Smith Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5369511 Amos Nov 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5418584 Larson May 1995 A
5438357 McNelley Aug 1995 A
5455693 Wreede et al. Oct 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5496621 Makita et al. Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5537232 Biles Jul 1996 A
5572248 Allen et al. Nov 1996 A
5579026 Tabata Nov 1996 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5682255 Friesem et al. Oct 1997 A
5694230 Welch Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5751452 Tanaka et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5812608 Valimaki et al. Sep 1998 A
5822127 Chen et al. Oct 1998 A
5856842 Tedesco Jan 1999 A
5868951 Schuck et al. Feb 1999 A
5892598 Asakawa et al. Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5903395 Rallison et al. May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5966223 Friesem et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5991087 Rallison Nov 1999 A
5999314 Asakura et al. Dec 1999 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6115152 Popovich et al. Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6169613 Amitai et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6195206 Yona et al. Feb 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6285813 Schultz Sep 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366378 Tervonen et al. Apr 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6524771 Maeda et al. Feb 2003 B2
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6563648 Gleckman et al. May 2003 B2
6580529 Amitai et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6598987 Parikka Jul 2003 B1
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6646810 Harter et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6674578 Sugiyama et al. Jan 2004 B2
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6805490 Levola Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6853491 Ruhle et al. Feb 2005 B1
6864927 Cathey Mar 2005 B1
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6987908 Bond et al. Jan 2006 B2
7003187 Frick et al. Feb 2006 B2
7018744 Otaki et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7095562 Peng et al. Aug 2006 B1
7101048 Travis Sep 2006 B2
7110184 Yona et al. Sep 2006 B1
7123418 Weber et al. Oct 2006 B2
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184615 Levola Feb 2007 B2
7190849 Katase Mar 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7230767 Walck et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7259906 Islam Aug 2007 B1
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7289069 Ranta Oct 2007 B2
7299983 Piikivi Nov 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7375870 Schorpp May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7415173 Kassamakov et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7500104 Goland Mar 2009 B2
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7618750 Ueda et al. Nov 2009 B2
7629086 Otaki et al. Dec 2009 B2
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733572 Brown et al. Jun 2010 B1
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7872804 Moon et al. Jan 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7944428 Travis May 2011 B2
7969644 Tilleman et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7999982 Endo et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8016475 Travis Sep 2011 B2
8022942 Bathiche et al. Sep 2011 B2
RE42992 David Dec 2011 E
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8186874 Sinbar et al. May 2012 B2
8188925 DeJean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8321810 Heintze Nov 2012 B2
8351744 Travis et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8472119 Kelly Jun 2013 B1
8477261 Travis et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8547638 Levola Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8767294 Chen et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8938141 Magnusson Jan 2015 B2
20020021461 Ono et al. Feb 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040089842 Sutehrland et al. May 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050269481 David et al. Dec 2005 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080106775 Amitai et al. May 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186604 Amitai Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080278812 Amitai Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080309586 Vitale Dec 2008 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100039796 Mukawa Feb 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100214659 Levola Aug 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130069850 Mukawa et al. Mar 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20150010265 Popovich et al. Jan 2015 A1
20150289762 Popovich et al. Oct 2015 A1
Foreign Referenced Citations (27)
Number Date Country
101881936 Nov 2010 CN
1020060 03 785 Jul 2007 DE
2 110 701 Oct 2009 EP
2 225 592 Sep 2010 EP
2 381 290 Oct 2011 EP
2 733 517 May 2014 EP
2677463 Dec 1992 FR
2 115 178 Sep 1983 GB
2004-157245 Jun 2004 JP
WO-9952002 Oct 1999 WO
WO-03081320 Oct 2003 WO
WO-2006002870 Jan 2006 WO
WO-2007130130 Nov 2007 WO
WO-2007130130 Nov 2007 WO
WO-2009013597 Jan 2009 WO
WO-2009077802 Jun 2009 WO
WO-2010067114 Jun 2010 WO
WO-2010067117 Jun 2010 WO
WO-2010125337 Nov 2010 WO
WO-2011012825 Feb 2011 WO
WO-2011051660 May 2011 WO
WO-2011055109 May 2011 WO
WO-2011107831 Sep 2011 WO
WO-2013027006 Feb 2013 WO
WO-2013033274 Mar 2013 WO
WO-2013163347 Oct 2013 WO
WO-2014091200 Jun 2014 WO
Non-Patent Literature Citations (88)
Entry
Cameron, A., The Application of Holographic Optical Waveguide Technology to Q-Sight Family of Helmet Mounted Displays, Proc. of SPIE, vol. 7326, 7326OH-1, 2009, 11 pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 Dated May 28, 2014, 16 pages.
Wisely, P.L., Head up and head mounted display performance improvements through advanced techniques in the manipulation of light, Proc. of SPIE vol. 7327, 732706-1, 2009, 10 pages.
U.S. Appl. No. 61/796,795, filed Nov. 20, 2012.
Amendment and Reply for U.S. Appl. No. 12/571,262, mail date Dec. 16, 2011, 7 pages.
Amitai, Y., et al. “Visor-display design based on planar holographic optics,” Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Ayras, et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, 17/8, 2009, pp. 659-664.
Caputo, R. et al., POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application; Journal of Display Technology, vol. 2, No. 1, Mar. 2006, pp. 38-51, 14 pages.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pages.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pages.
Levola, et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light” Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet at http://www.kirkmoffitt.com/hmd—image—configurations.pdf on Dec. 19, 2014, dated May 2008, 25 pages.
Nordin, G., et al., Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217, 12 pages.
Office Action for U.S. Appl. No. 12/571,262, mail date Sep. 28, 2011, 5 pages.
Office Action for U.S. Appl. No. 13/355,360, mail date Sep. 12, 2013, 7 pages.
Press Release, “USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, SBG Labs—DigiLens, Apr. 2013, 1 page.
Requirement for Restriction/Election on U.S. Appl. No. 13/844,456 Dated Sep. 12, 2014, 23 pages.
Schechter, et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Urey, “Diffractive exit pupil expander for display applications” Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
U.S. Appl. No. 10/555,661, filed Nov. 4, 2005, Popovich et al.
U.S. Appl. No. 13/844,456, filed Mar. 15, 2013, Brown et al.
U.S. Appl. No. 61/344,748, filed Sep. 28, 2010.
U.S. Appl. No. 61/457,835, filed Jun. 16, 2011.
U.S. Appl. No. 61/573,066, filed Aug. 24, 2012.
U.S. Appl. No. 61/573,082, filed Aug. 29, 2011.
U.S. Appl. No. 61/573,121, filed Sep. 7, 2011.
U.S. Appl. No. 61/573,156, filed Sep. 16, 2011.
U.S. Appl. No. 61/573,175, filed Sep. 19, 2011.
U.S. Appl. No. 61/573,176, filed Sep. 19, 2011.
U.S. Appl. No. 61/573,196, filed Sep. 25, 2011.
U.S. Appl. No. 61/627,202, filed Oct. 7, 2011.
U.S. Appl. No. 61/687,436, filed Apr. 25, 2012.
U.S. Appl. No. 61/689,907, filed Apr. 25, 2012.
U.S. Appl. No. 61/850,856, filed Feb. 25, 2013.
International Search Report and Written Opinion regarding PCT/US2013/038070, mail date Aug. 14, 2013, 14 pages.
Office Action for U.S. Appl. No. 13/250,621, mail date May 21, 2013, 10 pages.
Office Action for U.S. Appl. No. 13/250,940, mail date Aug. 28, 2013, 15 pages.
Office Action for U.S. Appl. No. 13/250,940, mail date Mar. 12, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/250,970, mail date Jul. 30, 2013, 4 pages.
Office Action for U.S. Appl. No. 13/250,994, mail date Sep. 16, 2013, 11 pages.
Ayras et al., Exit Pupil Expander with a Large Field of View Based on Diffractive Optics, Journal of the SID, 2009, 6 pages.
Crawford, “Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Final Office Action in U.S. Appl. No. 13/864,991, dated Apr. 2, 2015, 16 pages.
Final Office Action on U.S. Appl. No. 13/250,858 Dated Feb. 4, 2015, 18 pages.
Final Office Action on U.S. Appl. No. 13/250,940 Dated Oct. 17, 2014, 15 pages.
Final Office Action on U.S. Appl. No. 13/892,026 Dated Apr. 3, 2015, 17 pages.
Final Office Action on U.S. Appl. No. 13/892,057 Dated Mar. 5, 2015, 21 pages.
Frist office action received in Chinese patent application No. 201380001530.1, dated Jun. 30, 2015, 9 pages with English translation.
Irie, Masahiro, Photochromic diarylethenes for photonic devices, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Jun. 12, 2015, 20 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 Dated Sep. 15, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,940 Dated Mar. 18, 2015, 17 pages.
Non-Final Office Action on U.S. Appl. No. 13/432,662 Dated May 27, 2015, 15 pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456 Apr. 1, 2015, XX Pages.
Non-Final Office Action on U.S. Appl. No. 13/864,991 Dated Oct. 22, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 14/038,400 Dated Feb. 5, 2015, 18 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676 Dated Apr. 9, 2015, 13 pages.
Non-Final Office Action on U.S. Appl. No. 14/225,062 Dated May 21, 2015, 11 pages.
Notice of Allowance for U.S. Appl. No. 12/700,557, mail date Oct. 22, 2013, 9 pages.
Notice of Allowance on U.S. Appl. No. 13/250,970 dated Sep. 16, 2014, 7 pages.
Notice of Allowance on U.S. Appl. No. 13/251,087 Dated Jul. 17, 2014, 8 pages.
Office Action for U.S. Appl. No. 12/700,557, mail date Aug. 9, 2013, 12 pages.
Office Action for U.S. Appl. No. 12/700,557, mail date Feb. 4, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/250,858 Dated Feb. 19, 2014, 13 page.
Office Action for U.S. Appl. No. 13/250,858, mail date Oct. 28, 2013, 9 pages.
Office Action for U.S. Appl. No. 13/250,940, mail date Aug. 28, 2013, 10 pages.
Office Action on U.S. Appl. No. 13/250,940 Dated Mar. 25, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/251,087 Dated Mar. 28, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/892,026 Dated Dec. 8, 2014, 19 pages.
Office Action on U.S. Appl. No. 13/892,057 Dated Nov. 28, 2014, 17 pages.
Plastic has replaced glass in photochromic lens, www.plastemart.com, 2003, 1 page.
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internat at http://www.digilens.com/pr10-2012.2.php. 2 pages.
Webster's Third New International Dictionary 433 (1986), 3 pages.
Final Office Action on U.S. Appl. 13/869,866 Dated Oct. 3, 2014, 17 pages.
Final Office Action on U.S. Appl. No. 14/038,400 Dated Aug. 10, 2015, 32 pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 Dated Jul. 22, 2015, 28 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,026 Dates Aug. 6, 2015, 22 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,057 dated Jul. 30, 2015, 29 pages.
Non-Final Office Action on U.S. Appl. No. 14/109,551 Dated Jul. 14, 2015, 32 pages.
Notice of Allowance on U.S. Appl. No. 13/355,360 Dated Apr. 10, 2014, 7 pages.
Restriction Requirement for U.S. Appl. No. 12/700,557, mail date Oct. 17, 2012, 5 pages.
Second office action received in Chinese patent application No. 201380001530.1, dated Oct. 12, 2015, 5 pages with English translation.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Jan. 15, 2016, 16 Pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676, dated Jan. 20, 2016, 21 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858, dated Mar. 18, 2016, 20 pages.
Notice of Allowance for U.S. Appl. No. 14/109,551, dated Nov. 20, 2015, 8 pages.
Notice of Allowance on U.S. Appl. No. 13/432,662, dated Feb. 18, 2016, 10 pages.