A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
This disclosure relates to radio frequency filters using acoustic wave resonators, and specifically to bandpass filters with high power capability for use in communications equipment.
A radio frequency (RF) filter is a two-port device configured to pass some frequencies and to stop other frequencies, where “pass” means transmit with relatively low signal loss and “stop” means block or substantially attenuate. The range of frequencies passed by a filter is referred to as the “pass-band” of the filter. The range of frequencies stopped by such a filter is referred to as the “stop-band” of the filter. A typical RF filter has at least one pass-band and at least one stop-band. Specific requirements on a pass-band or stop-band depend on the specific application. For example, a “pass-band” may be defined as a frequency range where the insertion loss of a filter is less than a defined value such as 1 dB, 2 dB, or 3 dB. A “stop-band” may be defined as a frequency range where the rejection of a filter is greater than a defined value such as 20 dB, 30 dB, 40 dB, or greater depending on application.
RF filters are used in communications systems where information is transmitted over wireless links. For example, RF filters may be found in the RF front-ends of cellular base stations, mobile telephone and computing devices, satellite transceivers and ground stations, IoT (Internet of Things) devices, laptop computers and tablets, fixed point radio links, and other communications systems. RF filters are also used in radar and electronic and information warfare systems.
RF filters typically require many design trade-offs to achieve, for each specific application, the best compromise between performance parameters such as insertion loss, rejection, isolation, power handling, linearity, size and cost. Specific design and manufacturing methods and enhancements can benefit simultaneously one or several of these requirements.
Performance enhancements to the RF filters in a wireless system can have broad impact to system performance. Improvements in RF filters can be leveraged to provide system performance improvements such as larger cell size, longer battery life, higher data rates, greater network capacity, lower cost, enhanced security, higher reliability, etc. These improvements can be realized at many levels of the wireless system both separately and in combination, for example at the RF module, RF transceiver, mobile or fixed sub-system, or network levels.
High performance RF filters for present communication systems commonly incorporate acoustic wave resonators including surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators, film bulk acoustic wave resonators (FBAR), and other types of acoustic resonators. However, these existing technologies are not well-suited for use at the higher frequencies proposed for future communications networks.
The desire for wider communication channel bandwidths will inevitably lead to the use of higher frequency communications bands. Radio access technology for mobile telephone networks has been standardized by the 3GPP (3rd Generation Partnership Project). Radio access technology for 5th generation mobile networks is defined in the 5G NR (new radio) standard. The 5G NR standard defines several new communications bands. Two of these new communications bands are n77, which uses the frequency range from 3300 MHz to 4200 MHz, and n79, which uses the frequency range from 4400 MHz to 5000 MHz. Both band n77 and band n79 use time-division duplexing (TDD), such that a communications device operating in band n77 and/or band n79 use the same frequencies for both uplink and downlink transmissions. Bandpass filters for bands n77 and n79 must be capable of handling the transmit power of the communications device. The 5G NR standard also defines millimeter wave communication bands with frequencies between 24.25 GHz and 40 GHz.
Throughout this description, elements appearing in figures are assigned three-digit or four-digit reference designators, where the two least significant digits are specific to the element and the one or two most significant digit is the figure number where the element is first introduced. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously-described element having the same reference designator.
Description of Apparatus
The XBAR 100 is made up of a thin film conductor pattern formed on a surface of a piezoelectric plate 110 having parallel front and back surfaces 112, 114, respectively. The piezoelectric plate is a thin single-crystal layer of a piezoelectric material such as lithium niobate, lithium tantalate, lanthanum gallium silicate, gallium nitride, or aluminum nitride. The piezoelectric plate is cut such that the orientation of the X, Y, and Z crystalline axes with respect to the front and back surfaces is known and consistent. In the examples presented in this patent, the piezoelectric plates are Z-cut, which is to say the Z axis is normal to the front and back surfaces 112, 114. However, XBARs may be fabricated on piezoelectric plates with other crystallographic orientations.
The back surface 114 of the piezoelectric plate 110 is attached to a surface of the substrate 120 except for a portion of the piezoelectric plate 110 that forms a diaphragm 115 spanning a cavity 140 formed in the substrate. The portion of the piezoelectric plate that spans the cavity is referred to herein as the “diaphragm” 115 due to its physical resemblance to the diaphragm of a microphone. As shown in
The substrate 120 provides mechanical support to the piezoelectric plate 110. The substrate 120 may be, for example, silicon, sapphire, quartz, or some other material or combination of materials. The back surface 114 of the piezoelectric plate 110 may be bonded to the substrate 120 using a wafer bonding process. Alternatively, the piezoelectric plate 110 may be grown on the substrate 120 or attached to the substrate in some other manner. The piezoelectric plate 110 may be attached directly to the substrate or may be attached to the substrate 120 via one or more intermediate material layers (not shown in
“Cavity” has its conventional meaning of “an empty space within a solid body.” The cavity 140 may be a hole completely through the substrate 120 (as shown in Section A-A and Section B-B) or a recess in the substrate 120 under the diaphragm 115. The cavity 140 may be formed, for example, by selective etching of the substrate 120 before or after the piezoelectric plate 110 and the substrate 120 are attached.
The conductor pattern of the XBAR 100 includes an interdigital transducer (IDT) 130. The IDT 130 includes a first plurality of parallel fingers, such as finger 136, extending from a first busbar 132 and a second plurality of fingers extending from a second busbar 134. The first and second pluralities of parallel fingers are interleaved. The interleaved fingers overlap for a distance AP, commonly referred to as the “aperture” of the IDT. The center-to-center distance L between the outermost fingers of the IDT 130 is the “length” of the IDT.
The first and second busbars 132, 134 serve as the terminals of the XBAR 100. A radio frequency or microwave signal applied between the two busbars 132, 134 of the IDT 130 excites a primary acoustic mode within the piezoelectric plate 110. As will be discussed in further detail, the primary acoustic mode is a bulk shear mode where acoustic energy propagates along a direction substantially orthogonal to the surface of the piezoelectric plate 110, which is also normal, or transverse, to the direction of the electric field created by the IDT fingers. Thus, the XBAR is considered a transversely-excited film bulk wave resonator.
The IDT 130 is positioned on the piezoelectric plate 110 such that at least the fingers of the IDT 130 are disposed on the portion 115 of the piezoelectric plate that spans, or is suspended over, the cavity 140. As shown in
For ease of presentation in
A front-side dielectric layer 214 may optionally be formed on the front side of the piezoelectric plate 110. The “front side” of the XBAR is, by definition, the surface facing away from the substrate. The front-side dielectric layer 214 has a thickness tfd. The front-side dielectric layer 214 may be formed only between the IDT fingers (e.g. IDT finger 238b) or may be deposited as a blanket layer such that the dielectric layer is formed both between and over the IDT fingers (e.g. IDT finger 238a). The front-side dielectric layer 214 may be a non-piezoelectric dielectric material, such as silicon dioxide or silicon nitride. tfd may be, for example, 0 to 500 nm. tfd is typically less than the thickness ts of the piezoelectric plate. The front-side dielectric layer 214 may be formed of multiple layers of two or more materials.
The IDT fingers 238 may be aluminum, an aluminum alloy, copper, a copper alloy, beryllium, gold, tungsten, molybdenum or some other conductive material. The IDT fingers are considered to be “substantially aluminum” if they are formed from aluminum or an alloy comprising at least 50% aluminum. The IDT fingers are considered to be “substantially copper” if they are formed from copper or an alloy comprising at least 50% copper. Thin (relative to the total thickness of the conductors) layers of other metals, such as chromium or titanium, may be formed under and/or over and/or as layers within the fingers to improve adhesion between the fingers and the piezoelectric plate 110 and/or to passivate or encapsulate the fingers and/or to improve power handling. The busbars (132, 134 in
Dimension p is the center-to-center spacing or “pitch” of the IDT fingers, which may be referred to as the pitch of the IDT and/or the pitch of the XBAR. Dimension w is the width or “mark” of the IDT fingers. The geometry of the IDT of an XBAR differs substantially from the IDTs used in surface acoustic wave (SAW) resonators. In a SAW resonator, the pitch of the IDT is one-half of the acoustic wavelength at the resonance frequency. Additionally, the mark-to-pitch ratio of a SAW resonator IDT is typically close to 0.5 (i.e. the mark or finger width is about one-fourth of the acoustic wavelength at resonance). In an XBAR, the pitch p of the IDT is typically 2 to 20 times the width w of the fingers. In addition, the pitch p of the IDT is typically 2 to 20 times the thickness is of the piezoelectric slab 212. The width of the IDT fingers in an XBAR is not constrained to be near one-fourth of the acoustic wavelength at resonance. For example, the width of XBAR IDT fingers may be 500 nm or greater, such that the IDT can be readily fabricated using optical lithography. The thickness tm of the IDT fingers may be from 100 nm to about equal to the width w. The thickness of the busbars (132, 134 in
In
Considering
An acoustic resonator based on shear acoustic wave resonances can achieve better performance than current state-of-the art film-bulk-acoustic-resonators (FBAR) and solidly-mounted-resonator bulk-acoustic-wave (SMR BAW) devices where the electric field is applied in the thickness direction. In such devices, the acoustic mode is compressive with atomic motions and the direction of acoustic energy flow in the thickness direction. In addition, the piezoelectric coupling for shear wave XBAR resonances can be high (>20%) compared to other acoustic resonators. High piezoelectric coupling enables the design and implementation of microwave and millimeter-wave filters with appreciable bandwidth.
The three series resonators X1, X3, X5 and the two shunt resonators X2, X4 of the filter 500 maybe formed on a single plate 530 of piezoelectric material bonded to a silicon substrate (not visible). Each resonator includes a respective IDT (not shown), with at least the fingers of the IDT disposed over a cavity in the substrate. In this and similar contexts, the term “respective” means “relating things each to each”, which is to say with a one-to-one correspondence. In
Each of the resonators X1 to X5 has a resonance frequency and an anti-resonance frequency. In over-simplified terms, each resonator is effectively a short circuit at its resonance frequency and effectively an open circuit at its anti-resonance frequency. Each resonator X1 to X5 creates a “transmission zero”, where the transmission between the in and out ports of the filter is very low. Note that the transmission at a “transmission zero” is not actually zero due to energy leakage through parasitic components and other effects. The three series resonators X1, X3, X5 create transmission zeros at their respective anti-resonance frequencies (where each resonator is effectively an open circuit). The two shunt resonators X2, X4 create transmission zeros at their respective resonance frequencies (where each resonator is effectively a short circuit). In a typical band-pass filter using acoustic resonators, the anti-resonance frequencies of the series resonators are above the passband, and the resonance frequencies of the shunt resonators are below the passband.
A band-pass filter for use in a communications device, such as a cellular telephone, must meet a variety of requirements. First, a band-pass filter, by definition, must pass, or transmit with acceptable loss, a defined pass-band. Typically, a band-pass filter for use in a communications device must also stop, or substantially attenuate, one or more stop band(s). For example, a band n79 band-pass filter is typically required to pass the n79 frequency band from 4400 MHz to 5000 MHz and to stop the 5 GHz WiFi™ band and/or the n77 band from 3300 MHz to 4200 MHz. To meet these requirements, a filter using a ladder circuit would require series resonators with anti-resonance frequencies about or above 5100 MHz, and shunt resonators with resonance frequencies about or below 4300 MHz.
The resonance and anti-resonance frequencies of an XBAR are strongly dependent on the thickness is of the piezoelectric membrane (115 in
The resonance and anti-resonance frequencies of an XBAR are also dependent on the pitch (dimension p in
where Fa is the antiresonance frequency and Fr is the resonance frequency. Large values for gamma correspond to smaller separation between the resonance and anti-resonance frequencies. Low values of gamma indicate strong coupling which is good for wideband ladder filters.
In this example, the piezoelectric diaphragm is z-cut lithium niobate, and data is presented for diaphragm thicknesses of 300 nm, 400 nm, and 500 nm. In all cases the IDT is aluminum with a thickness of 25% of the diaphragm thickness, the duty factor (i.e. the ratio of the width w to the pitch p) of the IDT fingers is 0.14, and there are no dielectric layers. The “+” symbols, circles, and “x” symbols represent diaphragm thicknesses of 300 nm, 400 nm, and 500 nm, respectively. Outlier data points, such as those for relative IDT pitch about 4.5 and about 8, are caused by spurious modes interacting with the primary acoustic mode and altering the apparent gamma. The relationship between gamma and IDT pitch is relatively independent of diaphragm thickness, and roughly asymptotic to Γ=3.5 as the relative pitch is increased.
Another typical requirement on a band-pass filter for use in a communications device is the input and output impedances of the filter have to match, at least over the pass-band of the filter, the impedances of other elements of the communications device to which the filter is connected (e.g. a transmitter, receiver, and/or antenna) for maximum power transfer. Commonly, the input and output impedances of a band-pass filter are required to match a 50-ohm impedance within a tolerance that may be expressed, for example, as a maximum return loss or a maximum voltage standing wave ratio. When necessary, an impedance matching network comprising one or more reactive components can be used at the input and/or output of a band-pass filter. Such impedance matching networks add to the complexity, cost, and insertion loss of the filter and are thus undesirable. To match, without additional impedance matching components, a 50-Ohm impedance at a frequency of 5 GHz, the capacitances of at least the shunt resonators in the band-pass filter need to be in a range of about 0.5 picofarads (pF) to about 1.5 picofarads.
For any aperture, the IDT length required to provide a desired capacitance is greater for an IDT pitch of 5 microns than for an IDT pitch of 3 microns. The required IDT length is roughly proportional to the change in IDT pitch. The design of a filter using XBARs is a compromise between somewhat conflicting objectives. As shown in
As will be discussed is greater detail subsequently, the metal fingers of the IDTs provide the primary mechanism for removing heat from an XBAR resonator. Increasing the aperture of a resonator increases the length and the electrical and thermal resistance of each IDT finger. Further, for a given IDT capacitance, increasing the aperture reduces the number of fingers required in the IDT, which, in turn, proportionally increases the RF current flowing in each finger. All of these effects argue for using the smallest possible aperture in resonators for high-power filters.
Conversely, several factors argue for using a large aperture. First, the total area of an XBAR resonator includes the area of the IDT and the area of the bus bars. The area of the bus bars is generally proportional to the length of the IDT. For very small apertures, the area of the IDT bus bars may be larger than the area occupied by the interleaved IDT fingers. Further, some electrical and acoustic energy may be lost at the ends of the IDT fingers. These loss effects become more significant as IDT aperture is reduced and the total number of fingers is increased. These losses may be evident as a reduction in resonator Q-factor, particularly at the anti-resonance frequency, as IDT aperture is reduced.
As a compromise between conflicting objectives, resonators apertures will typically fall in the range from 20 μm and 60 μm.
The resonance and anti-resonance frequencies of an XBAR are also dependent on the thickness (dimension tfd in
In
Communications devices operating in time-domain duplex (TDD) bands transmit and receive in the same frequency band. Both the transmit and receive signal paths pass through a common bandpass filter connected between an antenna and a transceiver. Communications devices operating in frequency-domain duplex (FDD) bands transmit and receive in different frequency bands. The transmit and receive signal paths pass through separate transmit and receive bandpass filters connected between an antenna and the transceiver. Filters for use in TDD bands or filters for use as transmit filters in FDD bands can be subjected to radio frequency input power levels of 30 dBm or greater and must avoid damage under power.
The insertions loss of acoustic wave bandpass filters is usually not more than a few dB. Some portion of this lost power is return loss reflected back to the power source; the rest of the lost power is dissipated in the filter. Typical band-pass filters for LTE bands have surface areas of 1.0 to 2.0 square millimeters. Although the total power dissipation in a filter may be small, the power density can be high given the small surface area. Further, the primary loss mechanisms in an acoustic filter are resistive losses in the conductor patterns and acoustic losses in the IDT fingers and piezoelectric material. Thus, the power dissipation in an acoustic filter is concentrated in the acoustic resonators. To prevent excessive temperature increase in the acoustic resonators, the heat due to the power dissipation must be conducted away from the resonators through the filter package to the environment external to the filter.
In traditional acoustic filters, such as surface acoustic wave (SAW) filters and bulk acoustic wave (BAW) filters, the heat generated by power dissipation in the acoustic resonators is efficiently conducted through the filter substrate and the metal electrode patterns to the package. In an XBAR device, the resonators are disposed on thin piezoelectric membranes that are inefficient heat conductors. The large majority of the heat generated in an XBAR device must be removed from the resonator via the IDT fingers and associated conductor patterns.
To minimize power dissipation and maximize heat removal, the IDT fingers and associated conductors should be formed from a material that has low electrical resistivity and high thermal conductivity. Metals having both low resistivity and high thermal conductivity are listed in the following table:
Silver offers the lowest resistivity and highest thermal conductivity but is not a viable candidate for IDT conductors due to the lack of processes for deposition and patterning of silver thin films. Appropriate processes are available for copper, gold, and aluminum. Aluminum offers the most mature processes for use in acoustic resonator devices and potentially the lowest cost, but with higher resistivity and reduced thermal conductivity compared to copper and gold. For comparison, the thermal conductivity of lithium niobate is about 4 W/m-K, or about 2% of the thermal conductivity of aluminum. Aluminum also has good acoustic attenuation properties which helps minimize dissipation.
The electric resistance of the IDT fingers can be reduced, and the thermal conductivity of the IDT fingers can be increased, by increasing the cross-sectional area of the fingers to the extent possible. As described in conjunction with
Given the complex dependence of spurious mode frequency and amplitude on diaphragm thickness ts, IDT metal thickness tm, IDT pitch p and IDT finger width w, the inventors undertook an empirical evaluation, using two-dimensional finite element modeling, of a large number of hypothetical XBAR resonators. For each combination of diaphragm thickness ts, IDT finger thickness tm, and IDT pitch p, the XBAR resonator was simulated for a sequence of IDT finger width w values. A figure of merit (FOM) was calculated for each value of finger width w to estimate the negative impact of spurious modes. The FOM is calculated by integrating the negative impact of spurious modes across a defined frequency range. The FOM and the frequency range depend on the requirements of a particular filter. The frequency range typically includes the passband of the filter and may include one or more stop bands. Spurious modes occurring between the resonance and anti-resonance frequencies of each hypothetical resonator were given a heavier weight in the FOM than spurious modes at frequencies below resonance or above anti-resonance. Hypothetical resonators having a minimized FOM below a threshold value were considered potentially “useable”, which is to say probably having sufficiently low spurious modes for use in a filter. Hypothetical resonators having a minimized cost function above the threshold value were considered not useable.
As previously discussed, wide bandwidth filters using XBARs may use a thicker front-side dielectric layer on shunt resonators than on series resonators to lower the resonance frequencies of the shunt resonators with respect to the resonance frequencies of the series resonators. The front-side dielectric layer on shunt resonators may be as much as 150 nm thicker than the front side dielectric on series resonators. For ease of manufacturing, it may be preferable that the same IDT finger thickness be used on both shunt and series resonators.
Assuming that a filter is designed with no front-side dielectric layer on series resonators and 100 nm of front-side dielectric on shunt resonators,
Assuming that a filter is designed with no front-side dielectric layer on series resonators and 100 nm of front-side dielectric on shunt resonators,
Charts similar to
Although the combinations of IDT thickness and pitch that result in useable resonators on 500 nm diaphragms (shaded regions 1610, 1615, 1620), 400 nm diaphragms (regions enclosed by solid lines), and 300 nm diaphragms (regions enclosed by dashed lines) are not identical, the same general trends are evident. For diaphragm thicknesses of 300, 400, and 500 nm, useable resonators may be made with IDT metal thickness less than about 0.375 times the diaphragm thickness. Further, for diaphragm thicknesses of 300, 400, and 500 nm, useable resonators may be made with IDT aluminum thickness greater than about 0.85 times the diaphragm thickness and up to at least 1.5 times the diaphragm thickness. Although not shown in
Experimental results indicate that thin IDT fingers (i.e. tm/ts≤0.375) cannot adequately transport heat out of the resonator area and IDTs with such thin IDT fingers are unsuitable for high power applications. Thick IDT conductors (i.e. tm/ts≥0.85) provide greatly improved heat transport. Experimental results indicate that filters using XBAR resonators with 500 nm aluminum IDT fingers and 400 nm diaphragm thickness (tm/ts=1.25) can tolerate 31 dBm CW (continuous wave) RF power input at the upper edge of the filter passband (commonly the frequency with the highest power dissipation within a filter passband).
In addition to having high thermal conductivity, large cross-section, IDT fingers and a reasonably small aperture, the various elements of an XBAR filter may be configured to maximize heat flow between the diaphragms and the environment external to the filter package.
An IDT (130 in
As previously discussed, the metal conductors of the IDT (and the second conductor layer where present) provide a primary mechanism for removing heat from an XBAR device as indicated by the bold dashed arrows 1750, 1760, 1770. Heat generated in the XBAR device is conducted along the IDT fingers (arrow 1750) to the bus bars. A portion of the heat is conducted away from the bus bars via the conductor layers 1720, 1725 (arrows 1760). Another portion of the heat may pass from the bus bars through the piezoelectric plate 110 and the dielectric layer 1730 to be conducted away through the substrate 120 (arrow 1770).
To facilitate heat transfer from the conductors to the substrate, at least portions of the bus bars extend off of the diaphragm onto the part of the piezoelectric plate 110 that is bonded to the substrate 120. This allows heat generated by acoustic and resistive losses in the XBAR device to flow through the parallel fingers of the IDT to the bus bars and then through the piezoelectric plate to the substrate 120. For example, in
To further facilitate heat transfer from the conductors to the substrate, a thickness of the bonding layer 1730 may be minimized. Presently, commercially available bonded wafer (i.e. wafers with a lithium niobate or lithium tantalate film bonded to a silicon wafer) have an intermediate SiO2 bonding layer with a thickness of 2 microns. Given the poor thermal conductivity of SiO2, it is preferred that the thickness of the bonding layer be reduced to 100 nm or less.
The primary path for heat flow from a filter device to the outside world is through the conductive bumps that provide electrical connection to the filter. Heat flows from the conductors and substrate of the filter through the conductive bumps to a circuit board or other structure that acts as a heat sink for the filter. The location and number of conductive bumps will have a significant effect on the temperature rise within a filter. For example, resonators having the highest power dissipation may be located in close proximity to conductive bumps. Resonators having high power dissipation may be separated from each other to the extent possible. Additional conductive bumps, not required for electrical connections to the filter, may be provided to improve heat flow from the filter to the heat sink.
The series resonators correspond to the filled circle 1240 in
In
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
This patent is a continuation of application Ser. No. 17/167,909, filed Feb. 4, 2021, entitled HIGH FREQUENCY, HIGH POWER ACOUSTIC RESONATORS, which is continuation of application Ser. No. 16/996,381, filed Aug. 18, 2020, entitled FILTER DEVICE HAVING HIGH POWER TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATORS, now U.S. Pat. No. 10,985,730, which is a continuation of application Ser. No. 16/829,617, filed Mar. 25, 2020, entitled HIGH POWER TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATORS ON Z-CUT LITHIUM NIOB ATE, now U.S. Pat. No. 10,868,512, which is a continuation of application Ser. No. 16/578,811, filed Sep. 23, 2019, entitled TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATORS FOR HIGH POWER APPLICATIONS, now U.S. Pat. No. 10,637,438, which is a continuation-in-part of application Ser. No. 16/230,443, filed Dec. 21, 2018, entitled TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATOR, now U.S. Pat. No. 10,491,192, which claims priority from the following provisional patent applications: Application No. 62/685,825, filed Jun. 15, 2018, entitled SHEAR-MODE FBAR (XBAR); Application No. 62/701,363, filed Jul. 20, 2018, entitled SHEAR-MODE FBAR (XBAR); Application No. 62/741,702, filed Oct. 5, 2018, entitled 5 GHZ LATERALLY-EXCITED BULK WAVE RESONATOR (XBAR); application 62/748,883, filed Oct. 22, 2018, entitled SHEAR-MODE FILM BULK ACOUSTIC RESONATOR; and Application No. 62/753,815, filed Oct. 31, 2018, entitled LITHIUM TANTALATE SHEAR-MODE FILM BULK ACOUSTIC RESONATOR. All these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5446330 | Eda et al. | Aug 1995 | A |
5552655 | Stokes et al. | Sep 1996 | A |
5726610 | Allen et al. | Mar 1998 | A |
5853601 | Krishaswamy | Dec 1998 | A |
6377140 | Ehara et al. | Apr 2002 | B1 |
6516503 | Ikada et al. | Feb 2003 | B1 |
6540827 | Levy et al. | Apr 2003 | B1 |
6707229 | Martin | Mar 2004 | B1 |
6710514 | Kada et al. | Mar 2004 | B2 |
7042132 | Bauer et al. | May 2006 | B2 |
7345400 | Nakao et al. | Mar 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7535152 | Ogami et al. | May 2009 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7728483 | Tanaka | Jun 2010 | B2 |
7868519 | Umeda | Jan 2011 | B2 |
7939987 | Solal et al. | May 2011 | B1 |
7941103 | Iwamoto et al. | May 2011 | B2 |
7965015 | Tai et al. | Jun 2011 | B2 |
8278802 | Lee et al. | Oct 2012 | B1 |
8294330 | Abbott et al. | Oct 2012 | B1 |
8344815 | Yamanaka | Jan 2013 | B2 |
8816567 | Zuo et al. | Aug 2014 | B2 |
8829766 | Milyutin et al. | Sep 2014 | B2 |
8932686 | Hayakawa et al. | Jan 2015 | B2 |
9093979 | Wang | Jul 2015 | B2 |
9112134 | Takahashi | Aug 2015 | B2 |
9130145 | Martin et al. | Sep 2015 | B2 |
9219466 | Meltaus et al. | Dec 2015 | B2 |
9240768 | Nishihara et al. | Jan 2016 | B2 |
9276557 | Nordquist et al. | Mar 2016 | B1 |
9369105 | Li et al. | Jun 2016 | B1 |
9425765 | Rinaldi | Aug 2016 | B2 |
9525398 | Olsson | Dec 2016 | B1 |
9640750 | Nakanishi et al. | May 2017 | B2 |
9748923 | Kando et al. | Aug 2017 | B2 |
9762202 | Thalmayr et al. | Sep 2017 | B2 |
9780759 | Kimura et al. | Oct 2017 | B2 |
9837984 | Khlat et al. | Dec 2017 | B2 |
10079414 | Guyette et al. | Sep 2018 | B2 |
10187039 | Komatsu et al. | Jan 2019 | B2 |
10200013 | Bower et al. | Feb 2019 | B2 |
10211806 | Bhattacharjee | Feb 2019 | B2 |
10284176 | Solal | May 2019 | B1 |
10491192 | Plesski et al. | Nov 2019 | B1 |
10601392 | Plesski et al. | Mar 2020 | B2 |
10637438 | Garcia et al. | Apr 2020 | B2 |
10644674 | Takamine | May 2020 | B2 |
10756697 | Plesski et al. | Aug 2020 | B2 |
10790802 | Yantchev et al. | Sep 2020 | B2 |
10797675 | Plesski | Oct 2020 | B2 |
10819319 | Hyde | Oct 2020 | B1 |
10826462 | Plesski et al. | Nov 2020 | B2 |
10868510 | Yantchev | Dec 2020 | B2 |
10868512 | Garcia | Dec 2020 | B2 |
10917070 | Plesski et al. | Feb 2021 | B2 |
11201601 | Yantchev et al. | Dec 2021 | B2 |
20020079986 | Ruby et al. | Jun 2002 | A1 |
20020158714 | Kaitila et al. | Oct 2002 | A1 |
20020189062 | Lin et al. | Dec 2002 | A1 |
20020190814 | Yamada et al. | Dec 2002 | A1 |
20030080831 | Naumenko et al. | May 2003 | A1 |
20030128081 | Ella et al. | Jul 2003 | A1 |
20030199105 | Kub et al. | Oct 2003 | A1 |
20040041496 | Imai et al. | Mar 2004 | A1 |
20040100164 | Murata | May 2004 | A1 |
20040207033 | Koshido | Oct 2004 | A1 |
20040207485 | Kawachi et al. | Oct 2004 | A1 |
20040261250 | Kadota et al. | Dec 2004 | A1 |
20050099091 | Mishima | May 2005 | A1 |
20050185026 | Noguchi et al. | Aug 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20050264136 | Tsutsumi et al. | Dec 2005 | A1 |
20060131731 | Sato | Jun 2006 | A1 |
20060179642 | Kawamura | Aug 2006 | A1 |
20070090898 | Kando et al. | Apr 2007 | A1 |
20070115079 | Kubo | May 2007 | A1 |
20070182510 | Park | Aug 2007 | A1 |
20070188047 | Tanaka | Aug 2007 | A1 |
20070194863 | Shibata et al. | Aug 2007 | A1 |
20070267942 | Matsumoto et al. | Nov 2007 | A1 |
20070278898 | Miura et al. | Dec 2007 | A1 |
20070296304 | Fujii et al. | Dec 2007 | A1 |
20080018414 | Inoue et al. | Jan 2008 | A1 |
20080169884 | Matsumoto et al. | Jul 2008 | A1 |
20080246559 | Ayazi | Oct 2008 | A1 |
20080297280 | Thalhammer et al. | Dec 2008 | A1 |
20090315640 | Umeda et al. | Dec 2009 | A1 |
20100064492 | Tanaka | Mar 2010 | A1 |
20100123367 | Tai et al. | May 2010 | A1 |
20100223999 | Onoe | Sep 2010 | A1 |
20100301703 | Chen et al. | Dec 2010 | A1 |
20110018389 | Fukano et al. | Jan 2011 | A1 |
20110018654 | Bradley et al. | Jan 2011 | A1 |
20110102107 | Onzuka | May 2011 | A1 |
20110109196 | Goto et al. | May 2011 | A1 |
20110278993 | Iwamoto | Nov 2011 | A1 |
20120181898 | Hatakeyama et al. | Jul 2012 | A1 |
20120286900 | Kadota et al. | Nov 2012 | A1 |
20130057360 | Meltaus et al. | Mar 2013 | A1 |
20130207747 | Nishii et al. | Aug 2013 | A1 |
20130234805 | Takahashi | Sep 2013 | A1 |
20130271238 | Onda et al. | Oct 2013 | A1 |
20130278609 | Stephanou et al. | Oct 2013 | A1 |
20130321100 | Wang | Dec 2013 | A1 |
20140009032 | Takahashi et al. | Jan 2014 | A1 |
20140009247 | Moriya | Jan 2014 | A1 |
20140113571 | Fujiwara et al. | Apr 2014 | A1 |
20140130319 | Iwamoto | May 2014 | A1 |
20140145556 | Kadota | May 2014 | A1 |
20140151151 | Reinhardt | Jun 2014 | A1 |
20140152145 | Kando et al. | Jun 2014 | A1 |
20140173862 | Kando et al. | Jun 2014 | A1 |
20140225684 | Kando et al. | Aug 2014 | A1 |
20140312994 | Meltaus et al. | Oct 2014 | A1 |
20150042417 | Onodera et al. | Feb 2015 | A1 |
20150244149 | Van Someren | Aug 2015 | A1 |
20150319537 | Perois et al. | Nov 2015 | A1 |
20150333730 | Meltaus et al. | Nov 2015 | A1 |
20160028367 | Shealy | Jan 2016 | A1 |
20160049920 | Kishino | Feb 2016 | A1 |
20160079958 | Burak | Mar 2016 | A1 |
20160182009 | Bhattacharjee | Jun 2016 | A1 |
20160285430 | Kikuchi et al. | Sep 2016 | A1 |
20170063332 | Gilbert et al. | Mar 2017 | A1 |
20170104470 | Koelle et al. | Apr 2017 | A1 |
20170179928 | Raihn et al. | Jun 2017 | A1 |
20170187352 | Omura | Jun 2017 | A1 |
20170201232 | Nakamura et al. | Jul 2017 | A1 |
20170214381 | Bhattacharjee | Jul 2017 | A1 |
20170214387 | Burak et al. | Jul 2017 | A1 |
20170222617 | Mizoguchi | Aug 2017 | A1 |
20170222622 | Solal et al. | Aug 2017 | A1 |
20170264266 | Kishimoto | Sep 2017 | A1 |
20170290160 | Takano et al. | Oct 2017 | A1 |
20170370791 | Nakamura et al. | Dec 2017 | A1 |
20180005950 | Watanabe | Jan 2018 | A1 |
20180013400 | Ito et al. | Jan 2018 | A1 |
20180013405 | Takata | Jan 2018 | A1 |
20180026603 | Wamoto | Jan 2018 | A1 |
20180033952 | Yamamoto | Feb 2018 | A1 |
20180062615 | Kato et al. | Mar 2018 | A1 |
20180062617 | Yun et al. | Mar 2018 | A1 |
20180123016 | Gong | May 2018 | A1 |
20180191322 | Chang et al. | Jul 2018 | A1 |
20180212589 | Meltaus et al. | Jul 2018 | A1 |
20190007022 | Goto et al. | Jan 2019 | A1 |
20190068155 | Kimura | Feb 2019 | A1 |
20190068164 | Houlden et al. | Feb 2019 | A1 |
20190123721 | Takamine | Apr 2019 | A1 |
20190131953 | Gong | May 2019 | A1 |
20190148621 | Feldman et al. | May 2019 | A1 |
20190181825 | Schmalzl et al. | Jun 2019 | A1 |
20190181833 | Nosaka | Jun 2019 | A1 |
20190207583 | Miura et al. | Jul 2019 | A1 |
20190245518 | Ito | Aug 2019 | A1 |
20190246500 | Takano et al. | Aug 2019 | A1 |
20190273480 | Lin et al. | Sep 2019 | A1 |
20190348966 | Campanella-Pineda | Nov 2019 | A1 |
20190386633 | Plesski | Dec 2019 | A1 |
20190386638 | Kimura et al. | Dec 2019 | A1 |
20200021272 | Segovia Fernandez et al. | Jan 2020 | A1 |
20200036357 | Mimura | Jan 2020 | A1 |
20200228087 | Michigami et al. | Jul 2020 | A1 |
20200235719 | Yantchev et al. | Jul 2020 | A1 |
20200244247 | Maeda | Jul 2020 | A1 |
20200295729 | Yantchev | Sep 2020 | A1 |
20200304091 | Yantchev | Sep 2020 | A1 |
20210273631 | Jachowski et al. | Sep 2021 | A1 |
20210328575 | Hammond et al. | Oct 2021 | A1 |
20220103160 | Jachowski et al. | Mar 2022 | A1 |
20220149808 | Dyer et al. | May 2022 | A1 |
20220200567 | Garcia | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
106788318 | May 2017 | CN |
110417373 | Nov 2019 | CN |
210431367 | Apr 2020 | CN |
H10209804 | Aug 1998 | JP |
2001244785 | Sep 2001 | JP |
2002300003 | Oct 2002 | JP |
2003078389 | Mar 2003 | JP |
2004096677 | Mar 2004 | JP |
2004129222 | Apr 2004 | JP |
2004304622 | Oct 2004 | JP |
2006173557 | Jun 2006 | JP |
2007329584 | Dec 2007 | JP |
2010062816 | Mar 2010 | JP |
2010233210 | Oct 2010 | JP |
2013528996 | Jul 2013 | JP |
2013214954 | Oct 2013 | JP |
2015054986 | Mar 2015 | JP |
2016001923 | Jan 2016 | JP |
2018093487 | Jun 2018 | JP |
2018166259 | Oct 2018 | JP |
2018207144 | Dec 2018 | JP |
2020113939 | Jul 2020 | JP |
2015098694 | Jul 2015 | WO |
2016017104 | Feb 2016 | WO |
2016052129 | Jul 2016 | WO |
2016147687 | Sep 2016 | WO |
2017188342 | Nov 2017 | WO |
2018003268 | Jan 2018 | WO |
2018003273 | Jan 2018 | WO |
2018163860 | Sep 2018 | WO |
2019138810 | Jul 2019 | WO |
2020100744 | May 2020 | WO |
Entry |
---|
T. Takai, H. Iwamoto, et al., “I.H.P.Saw Technology and its Application to Microacoustic Components (Invited). ” 2017 IEEE International Ultrasonics Symposium, Sep. 6-9, 2017. pp. 1-8 Sep. 6, 2017. |
Y. Yang, A. Gao et al. “5 Ghz Lithium Niobate MEMS Resonators With High FOM of 153”, 2017 IEEE 30th International Conference in Micro Electro Mechanical Systems (MEMS). Jan. 22-26, 2017. pp. 942-945 Jan. 22, 2017. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2019/036433 dated Aug. 29, 2019. Aug. 29, 2019. |
Buchanan “Ceramit Materials for Electronics” 3rd Edition, first published in 2004 by Marcel Dekker, Inc. pp. 496 (Year 2004). Jan. 2004. |
Sorokin et al. Study of Microwave Acoustic Attenuation in a Multi-frequency Bulk Acoustic Resonator Based on a Synthetic Diamond Single Crystal Published in Acoustical Physics, vol. 61, No. 6, 2015 pp. 675 (Year 2015) Jan. 2015. |
Zou, Jie “High-Performance Aluminum Nitride Lamb Wave Resonators for RF Front-End Technology” University of California, Berkeley, Summer 2015, pp. 63 (Year 2015) Jan. 2015. |
Ekeom, D. & Dubus, Bertrand & Volatier, A., Solidly mounted resonator (SMR) FEM-BEM simulation, 2006, 1474-1477, 10.1109/ULTSYM.2006.371. 2006. |
Santosh, G. , Surface acoustic wave devices on silicon using patterned and thin film ZnO, Ph.D. thesis, Feb. 2016, Indian Institute of technology Guwahati, Assam, India Feb. 2016. |
Merriam Webster, dictionary meaning of the word “diaphragm”, since 1828, Merriam Webster (Year: 1828) 1828. |
Kadota et al. “5.4 Ghz Lamb Wave Resonator on LiNbO3 Thin Crystal Plate and Its Application,” published in Japanese Journal of Applied Physics 50 (2011) 07HD11. (Year: 2011) 2011. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2020/45654 dated Oct. 29, 2020. 2020. |
Bafari et al. “Piezoelectric for Transducer Applications” published by Elsevier Science Ltd., pp. 4 (Year: 2000). 2020. |
Moussa et al. Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound 2015, Bentham Science Publishers, pp. 16 (Year 2005) 2005. |
Acoustic Properties of Solids ONDA Corporation 592 Weddell Drive, Sunnyvale, CA 94089, Apr. 11, 2003, pp. 5 (Year 2003). 2003. |
Bahreyni, B. Fabrication and Design of Resonant Microdevices Andrew William, Inc. 2018, NY (Year 2008). 2008. |
Material Properties of Tibtech Innovations, © 2018 TIBTECH Innovations (Year 2018). 2018. |
R. Olsson III, K. Hattar et al. “A high electromechanical coupling coefficient SHO Lamb wave lithiumniobate micromechanical resonator and a method for fabrication” Sensors and Actuators A: Physical, vol. 209, Mar. 1, 2014, pp. 183-190. 2014. |
M. Kadota, S. Tanaka, “Wideband acoustic wave resonators composed of hetero acoustic layer structure,” Japanese Journal of Applied Physics, vol. 57, No. 7S1. Published Jun. 5, 2018. 5 pages. 2018. |
Y. Yang, R. Lu et al. “Towards Ka Band Acoustics: Lithium Niobat Asymmetrical Mode Piezoelectric MEMS Resonators”, Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, May 2018. pp. 1-2. 2018. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2019/058632 dated Jan. 17, 2020. 2020. |
G. Manohar, “Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity.” Doctoral dissertation, University of South Florida, USA, Jan. 2012, 7 pages. 2012. |
Mizutaui, K. and Toda, K., “Analysis of lamb wave propagation characteristics in rotated Y-cut X-propagation LiNbO3 plates.” Electron. Comm. Jpn. Pt. 1, 69, No. 4 (1986): 47-55. doi:10.1002/ecja.4410690406 1986. |
Naumenko et al., “Optimal orientations of Lithium Niobate for resonator SAW filters”, 2003 IEEE Ultrasonics Symposium—pp. 2110-2113. (Year: 2003) 2003. |
Namdeo et al. “Simulation on Effects of Electrical Loading due to Interdigital Transducers in Surface Acoustic Wave Resonator”, published in Procedia Engineering 64 ( 2013) of Science Direct pp. 322-330 (Year: 2013) 2013. |
Rodriguez-Madrid et al., “Super-High-Frequency SAW Resonators on AlN/Diamond”, IEEE Electron Device Letters, vol. 33, No. 4, Apr. 2012, pp. 495-497. Year: 2012) 2012. |
A. C. Guyette, “Theory and Design of Intrinsically Switched Multiplexers With Optimum Phase Linearity,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, No. 9, pp. 3254-3264, Sep. 2013, doi: 10.1109/TMTT.2013.2274963. Sep. 2013. |
Yanson Yang, Ruochen Lu, Songbin Gong, High Q Antisymmetric Mode Lithium Niobate MEMS Resonators With Spurious Mitigation, Journal of Microelectromechanical Systems, vol. 29, No. 2, Apr. 2020. Apr. 2, 2020. |
Yu-Po Wong, Luyan Qiu, Naoto Matsuoka, Ken-ya Hashimoto, Broadband Piston Mode Operation for First-order Antisymmetric Mode Resonators, 2020 IEEE International Ultrasonics Symposium, Sep. 2020. Sep. 2020. |
International Search Report and Written Opinion in PCT/US2022/081068, dated Apr. 18, 2023, 17 pages. |
Office Action in JP2021175220, dated Apr. 25, 2023, 10 pages. |
Gorisse et al., “Lateral Field Excitation of membrane-based Aluminum Nitride resonators,” 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, 2011, 5 pages. |
Pang et al., “Self-Aligned Lateral Field Excitation Film Acoustic Resonator with Very Large Electromechanical Coupling,” 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference, 2004, pp. 558-561. |
Xue et al., High Q Lateral-Field-Excited Bulk Resonator Based on Single-Crystal LiTao3 for 5G Wireless Communication Journal of Electron Devices Society, Mar. 2021, vol. 9, pp. 353-358. |
Yandrapalli et al., “Toward Band n78 Shear Bulk Accoustic Resonators Using Crystalline Y-Cut Lithium Niobate Films without Spurious Suppresstion,” Journal of Microelectromechanical Systems, Aug. 2023, vol. 32, No. 4, pp. 327-334. |
Number | Date | Country | |
---|---|---|---|
20210281240 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62753815 | Oct 2018 | US | |
62748883 | Oct 2018 | US | |
62741702 | Oct 2018 | US | |
62701363 | Jul 2018 | US | |
62685825 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17167909 | Feb 2021 | US |
Child | 17317383 | US | |
Parent | 16996381 | Aug 2020 | US |
Child | 17167909 | US | |
Parent | 16829617 | Mar 2020 | US |
Child | 16996381 | US | |
Parent | 16578811 | Sep 2019 | US |
Child | 16829617 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16230443 | Dec 2018 | US |
Child | 16578811 | US |