The present disclosure pertains to medical devices, and methods for manufacturing and using medical devices. More particularly, the disclosure is directed to devices and methods for removing occlusive material from a body lumen. Further, the disclosure is directed to an atherectomy device for forming a passageway through an occlusion of a body lumen, such as a blood vessel.
Many patients suffer from occluded arteries and other blood vessels which restrict blood flow. Occlusions can be partial occlusions that reduce blood flow through the occluded portion of a blood vessel or total occlusions (e.g., chronic total occlusions) that substantially block blood flow through the occluded blood vessel. In some cases, a stent may be placed in the area of a treated occlusion. However, restenosis may occur in the stent, further occluding the vessel and restricting blood flow. Revascularization techniques include using a variety of devices to pass through the occlusion to create or enlarge an opening through the occlusion. Atherectomy is one technique in which a catheter having a cutting element thereon is advanced through the occlusion to form or enlarge a pathway through the occlusion. A need remains for alternative atherectomy devices to facilitate crossing an occlusion.
This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. As an example, an atherectomy system includes an electric drive mechanism that is adapted to rotatably actuate an atherectomy burr and a controller that is adapted to regulate operation of the electric drive mechanism, the controller regulating operation of the electric drive mechanism in accordance with a power input limit value that limits how much power can be exerted at the atherectomy burr and an energy input limit value that limits how much energy can be exerted at the atherectomy burr.
Alternatively or additionally, the electric drive mechanism may include a drive cable that is adapted to be coupled with an atherectomy burr and an electric drive motor that is adapted to rotate the drive cable.
Alternatively or additionally, the atherectomy system may further include an atherectomy burr that is rotatably secured to the drive cable.
Alternatively or additionally, the controller may be further adapted to regulate operation of the electric drive mechanism in accordance with a dynamic torque limit value.
Alternatively or additionally, the dynamic torque limit value may vary in accordance with operating speed of the electric drive mechanism.
Alternatively or additionally, the controller may be further adapted to provide feedback to an operator of the atherectomy system when either the power input limit value and/or the energy input limit value are exceed during operation of the atherectomy system.
Alternatively or additionally, the feedback may include a temporary reduction in an operating speed of the electric drive mechanism.
Alternatively or additionally, the controller may include a speed reference block that includes the power input limit value and the energy input limit value and is configured to output a reference signal, a control block that is adapted to receive the reference signal from the speed reference block and generate a control effort signal and a drive motor circuit block that is adapted to receive the control effort signal from the control block and regulate operation of the electric drive mechanism accordingly.
Alternatively or additionally, the drive motor circuit block may include the dynamic torque limit value and may regulate operation of the electric drive mechanism accordingly.
Alternatively or additionally, the dynamic torque limit values may include a current limit value.
Alternatively or additionally, the control block may include a Proportional Integral Derivative (PID) controller.
As another example, an atherectomy system includes an electric drive motor that is operably coupled to a drive cable, an atherectomy burr that is operably coupled to the drive cable and a control system that is operably coupled to the drive motor. The control system includes a speed reference block that includes a power input limit value and an energy input limit value and is configured to output a reference signal, a control block that is adapted to receive the reference signal from the speed reference block and generate a control effort signal and a drive motor circuit block that is adapted to receive the control effort signal from the control block and regulate operation of the electric drive mechanism accordingly.
Alternatively or additionally, the control block may further include a state estimation block that receives a position signal from the electric drive motor and outputs a motor speed signal that is summed with the reference signal from the speed reference block.
Alternatively or additionally, the electric drive motor may include a brushless DC electric motor.
Alternatively or additionally, the drive motor circuit block may further include a dynamic torque limit value and regulates operation of the electric drive mechanism accordingly.
Alternatively or additionally, the dynamic torque limit values may include a current limit value.
Alternatively or additionally, the control block may include a Proportional Integral Derivative (PID) controller.
As another example, an atherectomy system includes an electric drive motor that is operably coupled to a drive cable, an atherectomy burr that is operably coupled to the drive cable and a control system that is operably coupled to the drive motor. The control system includes a speed reference block that includes a power input limit value and an energy input limit value and is configured to output a reference signal that is limited by at least one of the power input limit value and the energy input limit value, a control block that is adapted to receive the reference signal from the speed reference block and generate a control effort signal, and a drive motor circuit block that is adapted to receive the control effort signal from the control block and includes a dynamic torque limit and regulates operation of the electric drive motor in accordance with the control effort signal and the dynamic torque limit.
Alternatively or additionally, the control system may be further adapted to provide feedback to an operator of the atherectomy system when any of the power input limit value, the energy input limit value or the dynamic torque limit are approached or exceeded during operation of the atherectomy system.
Alternatively or additionally, the feedback may include a discernible reduction in an operating speed of the electric drive mechanism.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Many patients suffer from occluded arteries, other blood vessels, and/or occluded ducts or other body lumens which may restrict bodily fluid (e.g. blood, bile, etc.) flow. Occlusions can be partial occlusions that reduce blood flow through the occluded portion of a blood vessel or total occlusions (e.g., chronic total occlusions) that substantially block blood flow through the occluded blood vessel. Revascularization techniques include using a variety of devices to pass through the occlusion to create or enlarge an opening through the occlusion. Atherectomy is one technique in which a catheter having a cutting element thereon is advanced through the occlusion to form or enlarge a pathway through the occlusion. Ideally, the cutting element excises the occlusion without damaging the surrounding vessel wall and/or a previously implanted stent where restenosis has occurred. However, in some instances the cutting element may be manipulated and/or advanced such that it contacts the vessel wall and/or the stent. Therefore, it may be desirable to utilize materials and/or design an atherectomy device that can excise an occlusion without damaging the surrounding vessel and/or a previously implanted stent where restenosis has occurred. Additionally, it may be desirable that a cutting element be useful in removing hard occlusive material, such as calcified material, as well as softer occlusive material. The methods and systems disclosed herein may be designed to overcome at least some of the limitations of previous atherectomy devices while effectively excising occlusive material. For example, some of the devices and methods disclosed herein may include cutting elements with unique cutting surface geometries and/or designs.
The atherectomy system 10 includes a controller 16 that is adapted to regulate operation of the drive mechanism 12. In some cases, the atherectomy system 10 may include a user interface 18 that may be operably coupled to the controller 16 such that the controller 16 is able to display information regarding the performance of the drive mechanism 12. This information may, for example, include one or more of an instantaneous speed of the drive mechanism 12, an instantaneous torque being experienced by the atherectomy burr 14, and the like. In some instances, the atherectomy system 10 may not include the user interface 18. In some cases, the atherectomy burr 14 may also be referred to as being or including a cutting head or a cutting member, and these terms may be used interchangeably.
In some cases, the feedback loop 54 may include a reference block for determining a speed reference and a Proportional Integral Derivative (PID) controller that is operably coupled to the reference block for receiving the speed reference, the PID controller adapted to utilize the speed reference, a Proportional (P) gain value, an Integral (I) gain value and a Derivative (D) gain value in determining the control effort signal. In some cases, the feedback loop 54 may be adapted to add an offset value to a reference signal provided to the reference loop 54 in order to accurately hold speed of the drive motor 22 during a no-load situation. In some instances, for example if the atherectomy burr 14 becomes stuck, the control system 52 may be further adapted to increase the torque provided by the drive motor 22 until a torque threshold is reached for a brief period of time, and to subsequently direct the drive motor 22 to reverse at a slow speed in order to unwind energy in the drive mechanism.
An energy limit block 64 stores an energy input limit value that limits how much energy can be exerted at the atherectomy burr 14. In some cases, the energy input limit value may be considered as being self-resetting in order to account for how fast heat can dissipate. The energy limit block 64 may account for system inefficiency by estimating energy exerted at the atherectomy burr as opposed to energy lost to the ambient environment outside of the patient.
A power limit block 66 stores a power input limit value that limits how much time-averaged power can be exerted at the atherectomy burr 14. The power limit block 66 may, in some cases, reference a known limit to safe average power and only outputs a speed-reducing signal when the known limit is approached or exceeded. The power limit block 66 may account for system inefficiency by estimating power put into the atherectomy burr 14 as opposed to power lost to the ambient environment outside of the patient.
A speed controller 68 receives inputs from each of the speed reference block 62, the energy limit block 64 and the power limit block 66 and determines an appropriate speed for operating the drive mechanism. A current limit block 70 receives a signal from the speed controller 68 and includes a current input limit value that limits how much torque may be applied via the atherectomy system. The current limit block 70 provides a signal to a current controller 72, which monitors for excessive current (torque) and outputs a drive signal to a drive motor 74. It will be appreciated that the drive motor 74 represents the drive motor 22 shown in previous FIGS.
The illustrative control algorithm 60 may be considered as being a feedback algorithm. As can be seen, the drive motor 74 outputs a current signal 76 that may be provided to one or more of the energy limit block 64, the power limit block 66, the current limit block 70 and the current controller 72. Similarly, the drive motor 74 outputs a speed signal 78 that is provided to one or more of the energy limit block 64, the power limit block 66, the speed controller 68 and the current limit block 70. A timer 80 provides a timer signal to the energy limit block 64, which allows the control algorithm 60 to calculate power from energy, and vice versa.
The Control System 92 includes a Proportional Integral Derivative (PID) controller 104 that provides a Proportional (P) term 106, an Integral (I) term 108 and a Derivative (D) term 110 to a Summation Block 112. A Speed Reference Block 114 provides a speed reference value to a Summation Block 116, where the speed reference value is summed with a speed value provided by a State Estimation block 118. The State Estimation block 118 receives a position signal from the drive motor 96. A motor drive block 120 receives a signal from the Summation Block 112 and outputs a drive signal to the drive motor 96.
It will be appreciated that the Control System 92 may be considered as being adapted to provide the functionality described with respect to the control algorithm 60. In some cases, for example, the Speed Reference Block 114 stores or otherwise includes the power input limit value that limits how much time-averaged power can be put into the atherectomy burr 102 and/or the drive coil 100 as well as the energy input limit value that limits how much energy can be put into the atherectomy burr 102 and/or the drive coil 100. In some instances, a moving average may be used that is related to a thermal time constant for the particular tissue of concern. In some cases, the Motor Drive Block 120 may store or otherwise include the dynamic torque limit value. The dynamic torque limit value may be expressed in terms of current, for example.
In some cases, if one or more of the energy input limit value, the power (or time-averaged power input limit value and the dynamic torque limit value approaches or exceeds a predetermined safety limit, the control system 92 may institute a speed reduction that is sufficient to be noticeable to a user of the system. The system is not stopped, just temporarily slowed down. In some cases, this may be stepped, as a first speed reduction may be instituted as one of the safety limits is approached, with perhaps a second speed reduction (greater than the first) may be instituted as one of the safety limits is exceeded.
The handle 132 includes a proximal region 138 and a distal region 140. As can be seen, the distal region 140 includes an aperture 142 that is adapted to permit a drive cable (such as the drive cable 24 of
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
This application claims the benefit of priority under 35 U.S.C. § 119 to U.S. Provisional Application Ser. No. 62/978,600, filed Feb. 19, 2020, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5478344 | Stone | Dec 1995 | A |
5584861 | Swain et al. | Dec 1996 | A |
6086608 | Ek et al. | Jul 2000 | A |
6200329 | Fung et al. | Mar 2001 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6554845 | Fleenor et al. | Apr 2003 | B1 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6719763 | Chung et al. | Apr 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6746457 | Dana et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6908427 | Fleener et al. | Jun 2005 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7063710 | Takamoto et al. | Jun 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
7094246 | Anderson et al. | Aug 2006 | B2 |
7144401 | Yamamoto et al. | Dec 2006 | B2 |
7147646 | Dana et al. | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
7220266 | Gambale | May 2007 | B2 |
7232445 | Kortenbach et al. | Jun 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7344545 | Takemoto et al. | Mar 2008 | B2 |
7347863 | Rothe et al. | Mar 2008 | B2 |
7361180 | Saadat et al. | Apr 2008 | B2 |
7530985 | Takemoto et al. | May 2009 | B2 |
7601161 | Nobles et al. | Oct 2009 | B1 |
7618425 | Yamamoto et al. | Nov 2009 | B2 |
7713277 | Laufer et al. | May 2010 | B2 |
7722633 | Laufer et al. | May 2010 | B2 |
7727246 | Sixto, Jr. et al. | Jun 2010 | B2 |
7736373 | Laufer et al. | Jun 2010 | B2 |
7776057 | Laufer et al. | Aug 2010 | B2 |
7776066 | Onuki et al. | Aug 2010 | B2 |
7842051 | Dana et al. | Nov 2010 | B2 |
7846180 | Cerier | Dec 2010 | B2 |
7857823 | Laufer et al. | Dec 2010 | B2 |
7896893 | Laufer et al. | Mar 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7951157 | Gambale | May 2011 | B2 |
7992571 | Gross et al. | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
8016840 | Takemoto et al. | Sep 2011 | B2 |
8021376 | Takemoto et al. | Sep 2011 | B2 |
3062314 | Sixto, Jr. et al. | Nov 2011 | A1 |
8057494 | Laufer et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8105355 | Page et al. | Jan 2012 | B2 |
8211123 | Gross et al. | Jul 2012 | B2 |
8216253 | Saadat et al. | Jul 2012 | B2 |
8226667 | Viola et al. | Jul 2012 | B2 |
8277468 | Laufer et al. | Oct 2012 | B2 |
8287554 | Cerier et al. | Oct 2012 | B2 |
8287556 | Gilkey et al. | Oct 2012 | B2 |
8308765 | Saadat et al. | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8361089 | Chu | Jan 2013 | B2 |
8388632 | Gambale | Mar 2013 | B2 |
8425555 | Page et al. | Apr 2013 | B2 |
8454631 | Viola et al. | Jun 2013 | B2 |
8480691 | Dana et al. | Jul 2013 | B2 |
8540735 | Mitelberg et al. | Sep 2013 | B2 |
8551120 | Gambale | Oct 2013 | B2 |
8585720 | Gross et al. | Nov 2013 | B2 |
8632553 | Sakamoto et al. | Jan 2014 | B2 |
8679136 | Mitelberg | Mar 2014 | B2 |
8709022 | Stone et al. | Apr 2014 | B2 |
8764771 | Chu | Jul 2014 | B2 |
8882785 | DiCesare et al. | Nov 2014 | B2 |
8926634 | Rothe et al. | Jan 2015 | B2 |
8992570 | Gambale et al. | Mar 2015 | B2 |
9011466 | Adams et al. | Apr 2015 | B2 |
9050126 | Rivers | Jun 2015 | B2 |
9089325 | Mitelberg et al. | Jul 2015 | B2 |
9125646 | Woodard, Jr. et al. | Sep 2015 | B2 |
9198562 | Mitelberg et al. | Dec 2015 | B2 |
9320515 | Dana et al. | Apr 2016 | B2 |
9486126 | West et al. | Nov 2016 | B2 |
9504465 | Chu | Nov 2016 | B2 |
9510817 | Saadat et al. | Nov 2016 | B2 |
9549728 | Chu | Jan 2017 | B2 |
9750494 | Gross et al. | Sep 2017 | B2 |
9788831 | Mitelberg | Oct 2017 | B2 |
9844366 | Woodard, Jr. et al. | Dec 2017 | B2 |
9867610 | Mitelberg et al. | Jan 2018 | B2 |
10045871 | Saadat et al. | Aug 2018 | B2 |
10052122 | Higgins et al. | Aug 2018 | B2 |
10143463 | Dana et al. | Dec 2018 | B2 |
10194902 | Nobles et al. | Feb 2019 | B2 |
10335142 | Raybin et al. | Jul 2019 | B2 |
20020058956 | Honeycutt | May 2002 | A1 |
20020107530 | Sauer et al. | Aug 2002 | A1 |
20030204205 | Sauer et al. | Oct 2003 | A1 |
20040002699 | Ryan et al. | Jan 2004 | A1 |
20040138706 | Abrams et al. | Jul 2004 | A1 |
20040220519 | Wulfman | Nov 2004 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050250985 | Saadat et al. | Nov 2005 | A1 |
20060282094 | Stokes et al. | Dec 2006 | A1 |
20070270908 | Stokes et al. | Nov 2007 | A1 |
20080086148 | Baker et al. | Apr 2008 | A1 |
20090177031 | Surti et al. | Jul 2009 | A1 |
20100137681 | Ewers et al. | Jun 2010 | A1 |
20100198006 | Greenburg et al. | Aug 2010 | A1 |
20120158023 | Miltelberg et al. | Jun 2012 | A1 |
20120271327 | West et al. | Oct 2012 | A1 |
20130096581 | Gilkey et al. | Apr 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20140121457 | Mort et al. | May 2014 | A1 |
20140128668 | Cox et al. | May 2014 | A1 |
20150126983 | Alvarado et al. | May 2015 | A1 |
20160045197 | Mitelberg et al. | Feb 2016 | A1 |
20170042534 | Nobles et al. | Feb 2017 | A1 |
20170086817 | Mitelberg | Mar 2017 | A1 |
20170086818 | Mitelberg | Mar 2017 | A1 |
20170119371 | Mims et al. | May 2017 | A1 |
20170319197 | Gross et al. | Nov 2017 | A1 |
20180042602 | Mitelberg et al. | Feb 2018 | A1 |
20180042603 | Mitelberg et al. | Feb 2018 | A1 |
20180153381 | Wei et al. | Jun 2018 | A1 |
20180221009 | Mitelberg et al. | Aug 2018 | A1 |
20180235604 | Comee et al. | Aug 2018 | A1 |
20180344501 | Saadat et al. | Dec 2018 | A1 |
20190175211 | Carlson et al. | Jun 2019 | A1 |
20190262032 | Carlson et al. | Aug 2019 | A1 |
20190262034 | Spangler et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2682488 | Oct 2008 | CA |
202005022017 | May 2012 | DE |
1520509 | Apr 2005 | EP |
2108304 | Oct 2009 | EP |
0189393 | Nov 2001 | WO |
2008016592 | Feb 2008 | WO |
2008045376 | Apr 2008 | WO |
2008098124 | Aug 2008 | WO |
2010036227 | Apr 2010 | WO |
2011106053 | Sep 2011 | WO |
2016200811 | Dec 2016 | WO |
2017087856 | May 2017 | WO |
2018156603 | Aug 2018 | WO |
Entry |
---|
International Search Report and Written Opinion dated Aug. 20, 2019 for International Application No. PCT/US2019/033748. |
International Search Report and Written Opinion dated Oct. 1, 2019 for International Application No. PCT/US2019/038006. |
Invitation to Pay Additional Fees dated Sep. 26, 2019 for International Application No. PCT/US2019/037995. |
International Search Report and Written Opinion dated Dec. 6, 2019 for International Application No. PCT/US2019/037995. |
International Search Report and Written Opinion dated Nov. 18, 2019 for International Application No. PCT/US2019/049774. |
International Search Report and Written Opinion dated Sep. 20, 2019 for International Application No. PCT/US2019/039312. |
International Search Report and Written Opinion dated Jun. 4, 2021 for International Application No. PCT/US2021/017939. |
Number | Date | Country | |
---|---|---|---|
20210251653 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62978600 | Feb 2020 | US |