The present disclosure relates to the design of high-power radiofrequency amplifiers for use in electrosurgical instruments that employ radiofrequency energy to cauterize or coagulate tissue.
Conventional corded electrosurgical instruments are large in size, have large power supplies and control electronics, and take up a lot of space in the operating room. Corded electrosurgical instruments are particularly cumbersome and difficult to use during a surgical procedure in part due to tethering of the hand-held electrosurgical instrument to the power supply and control electronics and the potential for cord entanglement. Some of these deficiencies have been overcome by providing battery powered hand-held electrosurgical instruments in which the power and control electronics are mounted within the instrument itself, such as within the handle of the instrument, to reduce the size of the electrosurgical instrument and make such instruments easier to use during surgical procedures.
Electrosurgical medical instruments generally include an end effector having an electrical contact, a radiofrequency (RF) generation circuit for generating an RF drive signal and to provide the RF drive signal to the at least one electrical contact where the RF generation circuit also includes a resonant circuit. The RF circuit includes circuitry to generate a cyclically varying signal, such as a square wave signal, from a direct current (DC) energy source and the resonant circuit is configured to receive the cyclically varying signal from the switching circuitry. The DC energy source is generally provided by one or more batteries that can be mounted in a handle portion of the housing of the instrument, for example.
Batteries mounted within the electrosurgical instrument have several limitations. For example, the amount of power the batteries provide must be balanced against their weight and size. Thus electrosurgical instruments employing RF energy typically include a high-power RF amplifier, for instance, one producing 5A RMS output, 300 W, at 170V RMS.
The design of high-power RF amplifiers, specifically the design of the output transformer, is complicated by the relatively low voltage provided by battery packs that are practical for handheld devices meant for possibly delicate uses. Such battery packs usually provide voltage in multiples of 4.2V (i.e. LiIon cell potential). The upper practical limit for handled devices is up to five cells in series—for example, in a 2P5S (sets of two parallel cells, five sets in a series string)—due to space and weight constraints. Even with a 2P5S battery configuration, selecting a workable turns ratio for the output transformer is at best a compromise between the maximum allowable primary current when in current limit mode and the need for a reasonable turns ratio for generating 170-250V RMS in the voltage control region of an electrosurgical device's power curve. The present disclosure provides a compact, optimally performing high power RF amplifier with significantly less compromise in the design of the output transformer. The present disclosure provides systems and methods for changing the turns ratio at will, synchronously with the carrier frequency of the energy device. Thus it is possible to adapt to the requirements of each region of an electrosurgical or ultrasonic power curve (current limit, power limit and voltage limit).
In various embodiments, a control circuit for a radio frequency drive of an electrosurgical device is disclosed. The control circuit comprises a voltage data input configured to receive voltge data from a voltage sensing circuit, a current data input configured to receive current data from a current sensing circuit, and a switching signal output configured to source a switching signal to the radio frequency drive of the electrosurgical device. The control circuit is configured to adjust a frequency drive of the electrosurgical device. The control circuit is configured to adjust a frequency of the switching signal based on the voltage data and the current data. The radio frequency drive comprises a transformer. The transformer comprises a first tap including a first half bridge driver, a second tap including a second half bridge driver, a third tap including a third half bridge driver, a first portion of a primary coil located between the first tap and the second tap, a second portion of the primary coil located between the second tap and the third tap and the second tap, a second portion of the primary coil located between the second tap and the third tap, and a secondary coil. The first, second, and third half bridge drivers are configured to selectively turn on or turn off the first, second, and third taps, respectively. Two of the first, second, and third taps are selected to drive the primary coil between the two selected taps, which allows the transformer to provide a plurality of winding ratio values. A number of coil turns of the primary coil between the two selected taps and a number of coil turns of the secondary coil determine an overall winding ratio value of the transformer. The overall winding ratio value is one of the plurality of winding ratio values provided by the transformer.
In various embodiments, a method of controlling a radio frequency drive circuit of an electrosurgical device is disclosed. The method comprises sampling, by a synchronous I/Q sampling circuit, a plurality of output voltage values of an output voltage of the electrosurgical device, sampling, by the synchronous I/Q sampling circuit, a plurality of output current values of an output current of the electrosurgical device, and sourcing, by a square wave generation module, a switching signal to drive the radio frequency drive circuit. The output voltage and the output current are sourced by the radio frequency drive circuit comprising a transformer. The transformer further comprises a first tap including a first half bridge driver, a second tap including a second half bridge driver, a third tap including a third half bridge driver, a first portion of a primary coil located between the first tap and the second tap, a second portion of the primary coil located between the second tap and the third tap, and a secondary coil, wherein the first, second, and third half bridge drivers are configured to selectively turn on or turn off the first, second, and thrid taps, respectively. Two of the first, second, and third taps are selected to drive the primary coil between the two selected taps, which allows the transformer to provide a plurality of winding ratio values. A number of coil turns of the primary coil between the two selected taps and a number of coil turns of the secondary coil determine an overall winding ratio value of the transformer. The overall winding ratio value is one of the plurality of winding ratio values provided by the transformer.
In another embodiment, the upper and lower switch elements comprise solid-state switching elements. In another embodiment, the solid-state switching elements comprise MOSFETs.
In another embodiment, the upper and lower switch elements comprise IGBTs.
In another embodiment, the upper and lower switch elements comprise mechanical relays.
In another embodiment the current amplifier comprises a parallel capacitor on the secondary coil, such that the output produced by the amplifier is a sine wave.
In another embodiment, the minimum winding ratio is 4:1.
In another embodiment, the maximum winding ratio is 15:1.
In one embodiment, an electrosurgical medical instrument comprises a radio frequency (RF) generation circuit coupled to and operated by a battery and operable to generate an RF drive signal and to provide the RF drive signal to at least one electrical contact, wherein the RF generation circuit comprises: A current amplifier, comprising a transformer, the transformer comprising one or more taps on the primary coil, wherein each tap comprises a half bridge driver.
In another embodiment, the half bridge driver comprises an upper switch element and a lower switch element, a high-side drive input connected to the input of the upper switch element, a low-side drive input connected to the input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and the output of the half bridge driver is taken from the node between the upper and lower switch elements.
In another embodiment, the upper and lower switch elements comprise solid-state switching elements. In another embodiment, the solid-state switching elements comprise MOSFETs.
In another embodiment, the upper and lower switch elements comprise IGBTs.
In another embodiment, the upper and lower switch elements comprise mechanical relays.
In another embodiment, the medical instrument comprises a parallel capacitor on the secondary coil, such that the output produced by the amplifier is a sine wave.
In another embodiment, the minimum winding ratio is 4:1.
In another embodiment, the maximum winding ratio is 15:1.
In one embodiment, a current amplifier, comprises a transformer comprising one or more taps on the primary coil, wherein each tap comprises a half bridge driver configured to selectively turn on or turn off the tap, wherein the half bridge driver comprises an upper switch element and a lower switch element, a high-side drive input connected to the input of the upper switch element, a low-side drive input connected to the input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and the output of the half bridge driver is taken from the node between the upper and lower switch elements; and a parallel capacitor on the secondary coil, such that the output produced by the amplifier is a sine wave; wherein the minimum winding ratio is 4:1; and wherein the maximum winding ratio is 15:1.
In another embodiment, the upper and lower switch elements comprise solid-state switching elements.
The novel features of the embodiments described herein are set forth with particularity in the appended claims. The embodiments, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols and reference characters typically identify similar components throughout the several views, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the scope of the subject matter presented here.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
Before explaining the various embodiments of the high power battery powered RF amplifier technology in detail, it should be noted that the various embodiments disclosed herein are not limited in their application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. Rather, the disclosed embodiments may be positioned or incorporated in other embodiments, variations and modifications thereof, and may be practiced or carried out in various ways. Accordingly, embodiments of the surgical devices disclosed herein are illustrative in nature and are not meant to limit the scope or application thereof. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the embodiments for the convenience of the reader and are not to limit the scope thereof. In addition, it should be understood that any one or more of the disclosed embodiments, expressions of embodiments, and/or examples thereof, can be combined with any one or more of the other disclosed embodiments, expressions of embodiments, and/or examples thereof, without limitation.
For clarity of disclosure, the terms “proximal” and “distal” are defined herein relative to a human or robotic operator of the surgical instrument. The term “proximal” refers the position of an element closer to the human or robotic operator of the surgical instrument and further away from the surgical end effector of the surgical instrument. The term “distal” refers to the position of an element closer to the surgical end effector of the surgical instrument and further away from the human or robotic operator of the surgical instrument.
Also, in the following description, it is to be understood that terms such as front, back, inside, outside, top, bottom, upper, lower and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various embodiments will be described in more detail with reference to the drawings.
Many surgical procedures require cutting or litigating blood vessels or other vascular tissue. With minimally invasive surgery, surgeons perform surgical operations through a small incision in the patient's body. As a result of the limited space, surgeons often have difficulty controlling bleeding by clamping and/or tying-off transected blood vessels. By utilizing electrosurgical instruments, such as electrosurgical forceps, a surgeon can cauterize, coagulate/desiccate, and/or simply reduce or slow bleeding by controlling the electrosurgical energy applied through jaw members of the electrosurgical forceps, otherwise referred to as clamp arms.
Electrosurgical instruments generally comprise an electronics system for generating and controlling electrosurgical energy. The electronics system comprises an RF generation circuit to generate an RF drive signal and to provide the RF drive signal to at least one electrical contact, where the RF generation circuit also includes a resonant circuit. The electronics system also comprises control elements such as one or more than one microprocessor (or micro-controller) and additional digital electronic elements to control the logical operation of the instrument.
The electronics elements of the power supply and RF amplifier sections should be designed to have the highest efficiency possible in order to minimize heat rejected into the housing of the instrument. Efficiency also provides the longest storage and operational battery life possible. As described in the embodiments illustrated in
In various embodiments, efficiency of the power supply and RF drive and control circuitry sections also may minimize the size of the battery required to fulfill the mission life, or to extend the mission life for a given size battery. In one embodiment, the battery provides a low source impedance at a terminal voltage of 12.6V (unloaded) and a 1030 mA-Hour capacity. Under load, the battery voltage is a nominal 11.1V, for example.
Radio frequency drive amplifier topologies may vary according to various embodiments. In one embodiment, for example, a series resonant approach may be employed where the operating frequency is varied to change the output voltage to force the medical instrument to operate according to a pre-programmed load curve. In a series resonant approach, the impedance of a series resonant network is at a minimum at the resonant frequency, because the reactance of the capacitive and inductive elements cancel, leaving a small real resistance. The voltage maximum for a series resonant circuit also occurs at the resonant frequency (and also depends upon the circuit Q). Accordingly, to produce a high voltage on the output, the series resonant circuit should operate closer to the resonant frequency, which increases the current draw from the DC supply (e.g., battery) to feed the RF amplifier section with the required current. Although the series resonant approach may be referred to as a resonant mode boost converter, in reality, the design is rarely operated at the resonant frequency, because that is the point of maximum voltage. The benefit of a resonant mode topology is that if it is operated very close to the resonant frequency, the switching field effect transistors (FETs) can be switched “ON” or “OFF” at either a voltage or current zero crossing, which dissipates the least amount of power in the switching FETs as is possible.
Another feature of the RF drive and control circuitry section according to one embodiment, provides a relatively high turns ratio transformer which steps up the output voltage to about 85V RMS from the nominal battery voltage of about 11.1V. This provides a more compact implementation because only one transformer and one other inductor are required. In such a circuit, high currents are necessary on the transformer primary to create the desired output voltage or current. Such device, however, cannot be operated at the resonant frequency because allowances are made to take into account for the battery voltage dropping as it is expended. Accordingly, some headroom is provided to maintain the output voltage at the required level. A more detailed description of a series resonant approach is provided in commonly assigned international PCT Patent Application No. PCT/GB2011/000778, titled “Medical Device,” filed May 20, 2011, the disclosure of which is incorporated herein by reference in its entirety.
According to another embodiment, an RF instrument topology is provided for a handheld battery powered RF based generator for the electrosurgical medical instrument. Accordingly, in one embodiment, the present disclosure provides an RF instrument topology with an architecture configured such that each power section of the device operate at maximum efficiency regardless of the load resistance presented by the tissue or what voltage, current, or power level is commanded by the controller. In one embodiment, this may be implemented by employing the most efficient modalities of energy transformation presently known and by minimizing the component size to provide a small and light weight electronics package to fit within the instrument's housing, for example.
In one embodiment, the RF power electronics section of the electronics system may be partitioned as a boost mode converter, synchronous buck converter, and a parallel resonant amplifier. According to one embodiment, a resonant mode boost converter section of the medical instrument may be employed to convert the DC battery voltage to a higher DC voltage for use by the synchronous mode buck converter. One aspect to consider for achieving a predetermined efficiency of the resonant mode boost converter section is ratio between input and output voltages of the boost converter. In one embodiment, although a 10:1 ratio is achievable, the cost is that for any appreciable power on the secondary the input currents to the boost mode transformer become quite heavy, in the range of about 15-25A, depending on the load. In another embodiment a transformer turns ratio of about 5:1 is provided. It will be appreciated that transformer ratios in the range of about 5:1 to about 10:1 also may be implemented, without limitation. In a 5:1 transformer turns ratio, the design tradeoff is managing the Q of the parallel resonant output against the boost ratio. The resonant output network performs two functions. First, it filters the square, digital pulses from the Class D output amplifier and removes all but the fundamental frequency sine wave from the output. Second, it provides a passive voltage gain due to the Q of the filter network. In other words, current from the amplifier is turned into output voltage, at a gain determined by the circuit's unloaded Q and the load resistance, which affects the Q of the circuit.
Another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section is to utilize a full bridge switcher topology, which allows half the turns ratio for the boost transformer for the same input voltage. The tradeoff is that this approach may require additional FET transistors, e.g., an additional two FETs are required over a half bridge approach, for example. Presently available switchmode FETs, however, are relatively small, and while the gate drive power is not negligible, it provides a reasonable design tradeoff.
Yet another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section and operating the boost converter at maximum efficiency, is to always run the circuit at the resonant frequency so that the FETs are always switching at either a voltage or current minima, whichever is selected by the designer (ZCS vs. ZVS switching), for example. This can include monitoring the resonant frequency of the converter as the load changes, and making adjustments to the switching frequency of the boost converter to allow 35 ZVS or ZCS (Zero Voltage Switching/Zero Current Switching) to occur for minimum power dissipation.
Yet another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section is to utilize a synchronous rectifier circuit instead of a conventional full-wave diode rectifier block. Synchronous rectification employs FETs as diodes because the on-resistance of the FET is so much lower than that of even a Schottky power diode optimized for low forward voltage drop under high current conditions. A synchronous rectifier requires gate drive for the FETs and the logic to control them, but offers significant power savings over a traditional full bridge rectifier.
In accordance with various embodiments, the predetermined efficiency of a resonant mode boost converter is approximately 98-99% input to output, for example. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.
According to one embodiment, a synchronous buck converter section of the medical instrument may be employed to reduce the DC voltage fed to the RF amplifier section to the predetermined level to maintain the commanded output power, voltage or current as dictated by the load curve, with as little loss as is possible. The buck converter is essentially an LC lowpass filter fed by a low impedance switch, along with a regulation circuit to control the switch to maintain the commanded output voltage. The operating voltage is dropped to the predetermined level commanded by the main controller, which is running the control system code to force the system to follow the assigned load curve as a function of sensed tissue resistance. In accordance with various embodiments, the predetermined efficiency of a synchronous buck regulator is approximately 99%, for example. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.
According to one embodiment, a resonant mode RF amplifier section comprising a parallel resonant network on the RF amplifier section output is provided. In one embodiment, a predetermined efficiency may be achieved by a providing a parallel resonant network on the RF amplifier section output. The RF amplifier section may be driven at the resonant frequency of the output network, which accomplishes three things. First, the high Q network allows some passive voltage gain on the output, reducing the boost required from the boost regulator in order to produce high voltage output levels. Second, the square pulses produced by the RF amplifier section are filtered and only the fundamental frequency is allowed to pass to the output. Third, a full-bridge amplifier is switched at the resonant frequency of the output filter, which is to say at either the voltage zero crossings or the current zero crossings in order to dissipate minimum power. Accordingly, a predetermined efficiency of the RF amplifier section is approximately 98%. Gate drive losses may limit the efficiency to this figure or slightly lower. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.
In view of the RF instrument topology and architecture described above, an overall system efficiency of approximately 0.99*0.99*0.98, which is approximately 96%, may be achieved. Accordingly, to deliver approximately 45 W, approximately 1.8 W would be dissipated by the electronics exclusive of the power required to run the main and housekeeping microprocessors, and the support circuits such as the ADC and analog amplifiers and filters. To deliver approximately 135 W, approximately 5.4 W would be dissipated. This is the amount of power that would be required to implement a large jaw class generator in a hand held electrosurgical medical instrument. Overall system efficiency would likely only be a weak function of load resistance, instead of a relatively strong one as it may be the case in some conventional instruments.
In various other embodiments of the electrosurgical medical instrument, a series resonant topology may be employed to achieve certain predetermined efficiency increase by employing a full bridge amplifier for the primary circuit and isolate the full bridge amplifier from ground to get more voltage on the primary. This provides a larger primary inductance and lower flux density due to the larger number of turns on the primary.
As shown in
As shown in
In one embodiment, the transformer 815 may be implemented with a Core Diameter (mm), Wire Diameter (mm), and Gap between secondary windings in accordance with the following specifications:
In this embodiment, the amount of electrical power supplied to the electrosurgical instrument is controlled by varying the frequency of the switching signals used to switch the FETs 803. This works because the resonant circuit 810 acts as a frequency dependent (loss less) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 810, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 810, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 805 is controlled by a controller 841 based on a desired power to be delivered to the load 819 and measurements of the load voltage (VL) and of the load current (IL) obtained by conventional voltage sensing circuitry 843 and current sensing circuitry 845. The way that the controller 841 operates will be described in more detail below.
In one embodiment, the voltage sensing circuitry 843 and the current sensing circuitry 845 may be implemented with high bandwidth, high speed rail-to-rail amplifiers (e.g., LMH6643 by National Semiconductor). Such amplifiers, however, consume a relatively high current when they are operational. Accordingly, a power save circuit may be provided to reduce the supply voltage of the amplifiers when they are not being used in the voltage sensing circuitry 843 and the current sensing circuitry 845. In one-embodiment, a step-down regulator (e.g., LT3502 by Linear Technologies) may be employed by the power save circuit to reduce the supply voltage of the rail-to-rail amplifiers and thus extend the life of the battery 300.
In one embodiment, the transformer 815 and/or the inductor Ls 812 may be implemented with a configuration of litz wire conductors to minimize the eddy-current effects in the windings of high-frequency inductive components. These effects include skin-effect losses and proximity effect losses. Both effects can be controlled by the use of litz wire, which are conductors made up of multiple individually insulated strands of wire twisted or woven together. Although the term litz wire is frequently reserved for conductors constructed according to a carefully prescribed pattern, in accordance with the present disclosure, any wire strands that are simply twisted or grouped together may be referred to as litz wire. Accordingly, as used herein, the term litz wire refers to any insulated twisted or grouped strands of wires.
By way of background, litz wire can reduce the severe eddy-current losses that otherwise limit the performance of high-frequency magnetic components, such as the transformer 815 and/or the inductor Ls 812 used in the RF drive and control circuit 800 of
In one embodiment, the transformer 815 and/or the inductor Ls 812 may be implemented with litz wire by HM Wire International, Inc., of Canton, Ohio or New England Wire Technologies of Lisbon, N.H., which has a slightly different construction in terms of the number of strands in the intermediate windings, but has the same total number of strands of either 44 gauge or 46 gauge wire by HM Wire International, Inc. Accordingly, the disclosure now turns to
In one embodiment, the transformer 404 comprises a ferrite core material having particular characteristics. The core used for both the inductor 406 and the transformer 404, albeit with a different gap to yield the required AL for each component. AL has units of Henrys/turns2, so the inductance of a winding may be found by using NTURNS2*AL. In one embodiment, an AL of 37 is used for the inductor 406, and an AL of 55 is used for the transformer 406. This corresponds to a gap of approximately 0.8 mm and 2.0 mm respectively, although the AL or the inductance is the parameter to which the manufacturing process controls, with the AL being an intermediate quantity that we are not measuring directly.
In one embodiment, the inductance of the inductor 406 and transformer 404 winding may be measured directly with “golden bobbins,” which are squarely in the middle of the tolerance bands for the winding statistical distributions. Cores that are ground are then tested using the “golden bobbin” to assess whether the grind is good on the cores. Better results were yielded than the industry standard method, which is to fill a bobbin with as many windings as they can fit on the bobbin, and then back calculating the AL of the core, and controlling AL instead of the inductance. It was found that using a “golden bobbin” in the manufacturing process yielded better results. The bobbin is what the copper windings are secured to, and the ferrite E cores slip through a hole in the bobbin, and are secured with clips.
Accordingly, as described above in connection with
The frequency control module 855 uses the values obtained from the calculation module 853 and the power set point (Pset) obtained from the medical device control module 857 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 863 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 855 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 863 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 863 is output to the FET gate drive circuitry 805, which amplifies the signal and then applies it to the FET 803-1. The FET gate drive circuitry 805 also inverts the signal applied to the FET 803-1 and applies the inverted signal to the FET 803-2.
The samples obtained by the synchronous sampling circuitry 851 are then passed to the power, Vrms and Irms calculation module 853 which can determine the magnitude and phase of the measured signal from just one “I” sample and one “Q” sample of the load current and load voltage. However, in this embodiment, to achieve some averaging, the calculation module 853 averages consecutive “I” samples to provide an average “I” value and consecutive “Q” samples to provide an average “0” value; and then uses the average I and Q values to determine the magnitude and phase of the measured signal (in a conventional manner). As those skilled in the art will appreciate, with a drive frequency of about 400 kHz and sampling once per period means that the synchronous sampling circuit 851 will have a sampling rate of 400 kHz and the calculation module 853 will produce a voltage measure and a current measure every 0.01 ms. The operation of the synchronous sampling circuit 851 offers an improvement over existing products, where measurements can not be made at the same rate and where only magnitude information is available (the phase information being lost).
In one embodiment, the RF amplifier and drive circuitry for the electrosurgical medical instrument employs a resonant mode step-up switching regulator, running at the desired RF electrosurgical frequency to produce the required tissue effect. The waveform illustrated in
RF Amplifier Topology
This topology allows for a lower turns ration for high current output on the secondary coil 106 while limiting the primary current to a value that is compatible with currently available lithium-ion (Li-Ion) batteries. For example, a primary current in the range of 20-30 A implies a turns ration of about 4:1. Conversely, when generating a relatively high voltage on the secondary coil 106, for example in the range of 170-250V RMS, it is desirable to have a relatively higher turns ration between the primary coil 104 and the secondary coil 106, for example a ration of about 15:1. This can be accomplished by reducing the number of turns in the primary coil 104 relative to a secondary coil 106 with a fixed number of turns.
This topology provides the ability to dynamically vary the turns ratio, in real time and in sync the output waveform being generated. This is in keeping with a zero-voltage switching (ZVS) or zero current switching (ZCS) methodology for driving the amplifier at its resonant frequency for maximum efficiency and minimum power dissipation in the switching transistors, MOSFETs, IGBTs or other switching devices.
With this topology, the amplifier 100 can also be dynamically driven in a half bridge or a full bridge mode on a output-cycle-by-cycle basis, within a resonant mode drive scheme. This allows for better output regulation.
This topology also provides the ability to match the turns ratio to the region of tissue resistance. This optimizes the losses in the transformer windings by preventing excessive currents in the primary coil 104. It also optimizes the battery voltage required to produce a high voltage on the secondary coil 106 for large-jaw devices and the types of anatomical structures such devices are typically called upon to seal and cut. Multiple turns ratio values may be provided in order to optimize each region or sub-region of the electrosurgical power curve, as necessary.
With this topology the efficiency of the amplifier may be kept arbitrarily close to the optimal value by selection of taps on the primary coil 104.
An arbitrary number of half bridge driver 108 circuits and transformer taps may be provided, tailored to the performance requirements of the particular RF amplifier 100.
While
Furthermore, the design of half bridge circuits is well understood, and any half bridge circuit may be employed in the amplifier topology described above.
Various embodiments of the amplifier 100 as described above may comprise alternate topologies. For example, some embodiments may use solid-state switching elements, such as MOSFETs or other semiconductors that can be similarly controlled. Other embodiments may use physical relays, though physical relays have limitations, including relatively long switching times and arcing that occurs at the contacts when they are switched, caused because it is not possible to switch mechanical relays at a current or voltage zero crossing at the primary coil 104 or secondary coil 106. Arcing is an issue for designs that are intended to be reprocessed and reused.
It is worthy to note that any reference to “one aspect,” “an aspect,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one embodiment,” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.
Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.
The present application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/579,543, entitled HIGH POWER BATTERY POWERED RF AMPLIFIER TOPOLOGY, filed Dec. 22, 2014, which issued on Dec. 25, 2018 as U.S. Pat. No. 10,159,524, the entire disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2366274 | Luth et al. | Jan 1945 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2736960 | Armstrong | Mar 1956 | A |
2849788 | Creek | Sep 1958 | A |
2867039 | Zach | Jan 1959 | A |
3015961 | Roney | Jan 1962 | A |
3043309 | McCarthy | Jul 1962 | A |
3166971 | Stoecker | Jan 1965 | A |
3358676 | Frei et al. | Dec 1967 | A |
3525912 | Wallin | Aug 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3580841 | Cadotte et al. | May 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3703651 | Blowers | Nov 1972 | A |
3710399 | Hurst | Jan 1973 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3777760 | Essner | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3906217 | Lackore | Sep 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
3988535 | Hickman et al. | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4047136 | Satto | Sep 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4063561 | McKenna | Dec 1977 | A |
4099192 | Aizawa et al. | Jul 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203430 | Takahashi | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4278077 | Mizumoto | Jul 1981 | A |
4281785 | Brooks | Aug 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4384584 | Chen | May 1983 | A |
4445063 | Smith | Apr 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4492231 | Auth | Jan 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4582236 | Hirose | Apr 1986 | A |
4585282 | Bosley | Apr 1986 | A |
4597390 | Mulhollan et al. | Jul 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4655746 | Daniels et al. | Apr 1987 | A |
4671287 | Fiddian-Green | Jun 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4797803 | Carroll | Jan 1989 | A |
4798588 | Aillon | Jan 1989 | A |
4802461 | Cho | Feb 1989 | A |
4803506 | Diehl et al. | Feb 1989 | A |
4830462 | Karny et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4910633 | Quinn | Mar 1990 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4919129 | Weber, Jr. et al. | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
4961738 | Mackin | Oct 1990 | A |
4967670 | Morishita et al. | Nov 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5007919 | Silva et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5061269 | Muller | Oct 1991 | A |
5093754 | Kawashima | Mar 1992 | A |
5099216 | Pelrine | Mar 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5150102 | Takashima | Sep 1992 | A |
5150272 | Danley et al. | Sep 1992 | A |
5156633 | Smith | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5205817 | Idemoto et al. | Apr 1993 | A |
5209719 | Baruch et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5267091 | Chen | Nov 1993 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5313306 | Kuban et al. | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318565 | Kuriloff et al. | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324260 | O'Neill et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5333624 | Tovey | Aug 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5352219 | Reddy | Oct 1994 | A |
5359992 | Hori et al. | Nov 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5370640 | Kolff | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395331 | O'Neill et al. | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5413575 | Haenggi | May 1995 | A |
5417709 | Slater | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5431640 | Gabriel | Jul 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462604 | Shibano et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5477788 | Morishita | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5483501 | Park et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5542938 | Avellanet et al. | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5562657 | Griffin | Oct 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643175 | Adair | Jul 1997 | A |
5645065 | Shapiro et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5657697 | Murai | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5700243 | Narciso, Jr. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5704900 | Dobrovolny et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722326 | Post | Mar 1998 | A |
5722426 | Kolff | Mar 1998 | A |
5732636 | Wang et al. | Mar 1998 | A |
5733074 | Stock et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5738652 | Boyd et al. | Apr 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5741305 | Vincent et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810718 | Akiba et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5836867 | Speier et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5883454 | Hones et al. | Mar 1999 | A |
5887018 | Bayazitoglu et al. | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5902239 | Buurman | May 1999 | A |
5904147 | Conlan et al. | May 1999 | A |
5906579 | Vander Salm et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944298 | Koike | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957849 | Munro | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5984938 | Yoon | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6007484 | Thompson | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6014580 | Blume et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6080152 | Nardella et al. | Jun 2000 | A |
6083151 | Renner et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6123466 | Persson et al. | Sep 2000 | A |
H001904 | Yates et al. | Oct 2000 | H |
6127757 | Swinbanks | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6173199 | Gabriel | Jan 2001 | B1 |
6173715 | Sinanan et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6219572 | Young | Apr 2001 | B1 |
6221007 | Green | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6241724 | Fleischman et al. | Jun 2001 | B1 |
6248074 | Ohno et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6315789 | Cragg | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
H002037 | Yates et al. | Jul 2002 | H |
6416469 | Phung et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464703 | Bartel | Oct 2002 | B2 |
6471172 | Lemke et al. | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6475216 | Mulier et al. | Nov 2002 | B2 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6520960 | Blocher et al. | Feb 2003 | B2 |
6522909 | Garibaldi et al. | Feb 2003 | B1 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6540693 | Burbank et al. | Apr 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6594517 | Nevo | Jul 2003 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6616600 | Pauker | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620129 | Stecker et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6648817 | Schara et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6719765 | Bonutti | Apr 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6731047 | Kauf et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752815 | Beaupre | Jun 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776165 | Jin | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6789939 | Schrodinger et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6806317 | Morishita et al. | Oct 2004 | B2 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6814731 | Swanson | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6936003 | Iddan | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6939347 | Thompson | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6986738 | Glukhovsky et al. | Jan 2006 | B2 |
6986780 | Rudnick et al. | Jan 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7039453 | Mullick et al. | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044937 | Kirwan et al. | May 2006 | B1 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083579 | Yokoi et al. | Aug 2006 | B2 |
7083617 | Kortenbach et al. | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7096560 | Oddsen, Jr. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7120498 | Imran et al. | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169104 | Ueda et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7170823 | Fabricius et al. | Jan 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7211094 | Gannoe et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235064 | Hopper et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241290 | Doyle et al. | Jul 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7276065 | Morley et al. | Oct 2007 | B2 |
7282773 | Li et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367973 | Manzo et al. | May 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422586 | Morris et al. | Sep 2008 | B2 |
7422592 | Morley et al. | Sep 2008 | B2 |
7429259 | Cadeddu et al. | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431704 | Babaev | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7439732 | LaPlaca | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7448993 | Yokoi et al. | Nov 2008 | B2 |
7449004 | Yamada et al. | Nov 2008 | B2 |
7450998 | Zilberman et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7511733 | Takizawa et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7520877 | Lee, Jr. et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544200 | Houser | Jun 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7566318 | Haefner | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7599743 | Hassler, Jr. et al. | Oct 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7611512 | Ein-Gal | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7621910 | Sugi | Nov 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7640447 | Qiu | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7662151 | Crompton, Jr. et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7678105 | McGreevy et al. | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691103 | Fernandez et al. | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7753909 | Chapman et al. | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789283 | Shah | Sep 2010 | B2 |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7799027 | Hafner | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7850688 | Hafner | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7867228 | Nobis et al. | Jan 2011 | B2 |
7871392 | Sartor | Jan 2011 | B2 |
7871423 | Livneh | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7877852 | Unger et al. | Feb 2011 | B2 |
7877853 | Unger et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7896878 | Johnson et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7922953 | Guerra | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7935114 | Takashino et al. | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942868 | Cooper | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7988567 | Kim et al. | Aug 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8033173 | Ehlert et al. | Oct 2011 | B2 |
8038612 | Paz | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8052672 | Laufer et al. | Nov 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8062211 | Duval et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070748 | Hixson et al. | Dec 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8092475 | Cotter et al. | Jan 2012 | B2 |
8100894 | Mucko et al. | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8105324 | Palanker et al. | Jan 2012 | B2 |
8114104 | Young et al. | Feb 2012 | B2 |
8114119 | Spivey et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128657 | Shiono et al. | Mar 2012 | B2 |
8133218 | Daw et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8147508 | Madan et al. | Apr 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162940 | Johnson et al. | Apr 2012 | B2 |
8177794 | Cabrera et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8187166 | Kuth et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
8192433 | Johnson et al. | Jun 2012 | B2 |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197494 | Jaggi et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8206212 | Iddings et al. | Jun 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241312 | Messerly | Aug 2012 | B2 |
8244368 | Sherman | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8257352 | Lawes et al. | Sep 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267854 | Asada et al. | Sep 2012 | B2 |
8267935 | Couture et al. | Sep 2012 | B2 |
8273085 | Park et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8277471 | Wiener et al. | Oct 2012 | B2 |
8282581 | Zhao et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298228 | Buysse et al. | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8306629 | Mioduski et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8328834 | Isaacs et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348880 | Messerly et al. | Jan 2013 | B2 |
8348947 | Takashino et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8353297 | Dacquay et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8361569 | Saito et al. | Jan 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8377053 | Orszulak | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382754 | Odom et al. | Feb 2013 | B2 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8382792 | Chojin | Feb 2013 | B2 |
8388646 | Chojin | Mar 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8394094 | Edwards et al. | Mar 2013 | B2 |
8394115 | Houser et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8409076 | Pang et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430897 | Novak et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8454599 | Inagaki et al. | Jun 2013 | B2 |
8454639 | Du et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469956 | McKenna et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8475361 | Barlow et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8484833 | Cunningham et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491625 | Homer | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512364 | Kowalski et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8529437 | Taylor et al. | Sep 2013 | B2 |
8529565 | Masuda et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8542501 | Kyono | Sep 2013 | B2 |
8553430 | Melanson et al. | Oct 2013 | B2 |
8562516 | Saadat et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8574187 | Marion | Nov 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8591459 | Clymer et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
8596513 | Olson et al. | Dec 2013 | B2 |
8597182 | Stein et al. | Dec 2013 | B2 |
8597297 | Couture et al. | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8632539 | Twomey et al. | Jan 2014 | B2 |
8636648 | Gazdzinski | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8636761 | Cunningham et al. | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8641712 | Couture | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8663223 | Masuda et al. | Mar 2014 | B2 |
8668691 | Heard | Mar 2014 | B2 |
RE44834 | Dumbauld et al. | Apr 2014 | E |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8696662 | Eder et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8721640 | Taylor et al. | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795274 | Hanna | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
8814865 | Reschke | Aug 2014 | B2 |
8814870 | Paraschiv et al. | Aug 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8827995 | Schaller et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834488 | Farritor et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852184 | Kucklick | Oct 2014 | B2 |
8864757 | Klimovitch et al. | Oct 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8882766 | Couture et al. | Nov 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8887373 | Brandt et al. | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888783 | Young | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8911438 | Swoyer et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8929888 | Rao et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8939287 | Markovitch | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8939975 | Twomey et al. | Jan 2015 | B2 |
8944997 | Fernandez et al. | Feb 2015 | B2 |
8945125 | Schechter et al. | Feb 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968308 | Horner et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968332 | Farritor et al. | Mar 2015 | B2 |
8978845 | Kim | Mar 2015 | B2 |
8979838 | Woloszko et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989855 | Murphy et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992526 | Brodbeck et al. | Mar 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9031667 | Williams | May 2015 | B2 |
9033983 | Takashino et al. | May 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9039705 | Takashino | May 2015 | B2 |
9039731 | Joseph | May 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050093 | Aldridge et al. | Jun 2015 | B2 |
9050098 | Deville et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078664 | Palmer et al. | Jul 2015 | B2 |
9089327 | Worrell et al. | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9094006 | Gravati et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107672 | Tetzlaff et al. | Aug 2015 | B2 |
9113889 | Reschke | Aug 2015 | B2 |
9113900 | Buysse et al. | Aug 2015 | B2 |
9119630 | Townsend et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9138289 | Conley et al. | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9155585 | Bales, Jr. et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9168089 | Buysse et al. | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186204 | Nishimura et al. | Nov 2015 | B2 |
9187758 | Cai et al. | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192421 | Garrison | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9198715 | Livneh | Dec 2015 | B2 |
9198716 | Masuda et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204919 | Brandt et al. | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9254165 | Aronow et al. | Feb 2016 | B2 |
9259234 | Robertson et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265567 | Orban, III et al. | Feb 2016 | B2 |
9265571 | Twomey et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9271784 | Evans et al. | Mar 2016 | B2 |
9274988 | Hsu et al. | Mar 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9308014 | Fischer | Apr 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9326812 | Waaler et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9339323 | Eder et al. | May 2016 | B2 |
9339326 | McCullagh et al. | May 2016 | B2 |
9344042 | Mao | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375256 | Cunningham et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9381060 | Artale et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421060 | Monson | Aug 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9456876 | Hagn | Oct 2016 | B2 |
9492224 | Boudreaux et al. | Nov 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526565 | Strobl | Dec 2016 | B2 |
9549663 | Larkin | Jan 2017 | B2 |
9554845 | Arts | Jan 2017 | B2 |
9554846 | Boudreaux | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9585709 | Krapohl | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9610091 | Johnson et al. | Apr 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9622810 | Hart et al. | Apr 2017 | B2 |
9627120 | Scott et al. | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9642669 | Takashino et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649144 | Aluru et al. | May 2017 | B2 |
9649151 | Goodman et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668806 | Unger et al. | Jun 2017 | B2 |
9687295 | Joseph | Jun 2017 | B2 |
9700339 | Nield | Jul 2017 | B2 |
9707005 | Strobl et al. | Jul 2017 | B2 |
9707027 | Ruddenklau et al. | Jul 2017 | B2 |
9707030 | Davison et al. | Jul 2017 | B2 |
9713491 | Roy et al. | Jul 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724152 | Horlle et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9737358 | Beckman et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757186 | Boudreaux et al. | Sep 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9782220 | Mark et al. | Oct 2017 | B2 |
9795436 | Yates et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808308 | Faller et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9820771 | Norton et al. | Nov 2017 | B2 |
9833239 | Yates et al. | Dec 2017 | B2 |
9848937 | Trees et al. | Dec 2017 | B2 |
9848939 | Mayer et al. | Dec 2017 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9872725 | Worrell et al. | Jan 2018 | B2 |
9877720 | Worrell et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
9877782 | Voegele et al. | Jan 2018 | B2 |
9888958 | Evans et al. | Feb 2018 | B2 |
9901390 | Allen, IV et al. | Feb 2018 | B2 |
9901754 | Yamada | Feb 2018 | B2 |
9907563 | Germain et al. | Mar 2018 | B2 |
9913680 | Voegele et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9931157 | Strobl et al. | Apr 2018 | B2 |
9937001 | Nakamura | Apr 2018 | B2 |
9943357 | Cunningham et al. | Apr 2018 | B2 |
9949620 | Duval et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9949788 | Boudreaux | Apr 2018 | B2 |
9974539 | Yates et al. | May 2018 | B2 |
9993289 | Sobajima et al. | Jun 2018 | B2 |
10010339 | Witt et al. | Jul 2018 | B2 |
10016207 | Suzuki et al. | Jul 2018 | B2 |
10022142 | Aranyi et al. | Jul 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10058376 | Horner et al. | Aug 2018 | B2 |
10070916 | Artale | Sep 2018 | B2 |
10080606 | Kappus et al. | Sep 2018 | B2 |
10092310 | Boudreaux et al. | Oct 2018 | B2 |
10092348 | Boudreaux | Oct 2018 | B2 |
10092350 | Rothweiler et al. | Oct 2018 | B2 |
10105174 | Krapohl | Oct 2018 | B2 |
10111699 | Boudreaux | Oct 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10130410 | Strobl et al. | Nov 2018 | B2 |
10130414 | Weiler et al. | Nov 2018 | B2 |
10159524 | Yates et al. | Dec 2018 | B2 |
10166060 | Johnson et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10194911 | Miller et al. | Feb 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194977 | Yang | Feb 2019 | B2 |
10211586 | Adams et al. | Feb 2019 | B2 |
10231776 | Artale et al. | Mar 2019 | B2 |
10238387 | Yates et al. | Mar 2019 | B2 |
10245095 | Boudreaux | Apr 2019 | B2 |
10258404 | Wang | Apr 2019 | B2 |
10265118 | Gerhardt | Apr 2019 | B2 |
10278721 | Dietz et al. | May 2019 | B2 |
10314638 | Gee et al. | Jun 2019 | B2 |
10321950 | Yates et al. | Jun 2019 | B2 |
10342602 | Strobl et al. | Jul 2019 | B2 |
10413352 | Thomas et al. | Sep 2019 | B2 |
10420607 | Woloszko et al. | Sep 2019 | B2 |
10433900 | Harris et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10463421 | Boudreaux et al. | Nov 2019 | B2 |
10478243 | Couture et al. | Nov 2019 | B2 |
10485607 | Strobl et al. | Nov 2019 | B2 |
10524852 | Cagle et al. | Jan 2020 | B1 |
10524854 | Woodruff et al. | Jan 2020 | B2 |
10568682 | Dycus et al. | Feb 2020 | B2 |
10575868 | Hall et al. | Mar 2020 | B2 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030066938 | Zimmerman | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040093039 | Schumert | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050119640 | Sverduk et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050215858 | Vail | Sep 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050272972 | Iddan | Dec 2005 | A1 |
20050273139 | Krauss et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070008744 | Heo et al. | Jan 2007 | A1 |
20070010709 | Reinschke | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070020065 | Kirby | Jan 2007 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070032704 | Gandini et al. | Feb 2007 | A1 |
20070051766 | Spencer | Mar 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070135686 | Pruitt et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070182842 | Sonnenschein et al. | Aug 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070270651 | Gilad et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070276424 | Mikkaichi et al. | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20080015413 | Barlow et al. | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20080312502 | Swain et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100204802 | Wilson et al. | Aug 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100280368 | Can et al. | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20110009857 | Subramaniam et al. | Jan 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110087224 | Cadeddu et al. | Apr 2011 | A1 |
20110257680 | Reschke et al. | Oct 2011 | A1 |
20110270245 | Horner et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120041358 | Mann et al. | Feb 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120085358 | Cadeddu et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116222 | Sawada et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130035685 | Fischer et al. | Feb 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140194864 | Martin et al. | Jul 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140207135 | Winter | Jul 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150257819 | Dycus et al. | Sep 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150327918 | Sobajima et al. | Nov 2015 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160066980 | Schall et al. | Mar 2016 | A1 |
20160143687 | Hart et al. | May 2016 | A1 |
20160157923 | Ding | Jun 2016 | A1 |
20160157927 | Corbett et al. | Jun 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160199124 | Thomas et al. | Jul 2016 | A1 |
20160199125 | Jones | Jul 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160270843 | Boudreaux et al. | Sep 2016 | A1 |
20160278848 | Boudreaux et al. | Sep 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20170056097 | Monson et al. | Mar 2017 | A1 |
20170105787 | Witt et al. | Apr 2017 | A1 |
20170105789 | Boudreaux et al. | Apr 2017 | A1 |
20170135751 | Rothweiler et al. | May 2017 | A1 |
20170164972 | Johnson et al. | Jun 2017 | A1 |
20170189102 | Hibner et al. | Jul 2017 | A1 |
20170312014 | Strobl et al. | Nov 2017 | A1 |
20170312015 | Worrell et al. | Nov 2017 | A1 |
20170312017 | Trees et al. | Nov 2017 | A1 |
20170312018 | Trees et al. | Nov 2017 | A1 |
20170312019 | Trees et al. | Nov 2017 | A1 |
20170325878 | Messerly et al. | Nov 2017 | A1 |
20170367751 | Ruddenklau et al. | Dec 2017 | A1 |
20180085156 | Witt et al. | Mar 2018 | A1 |
20180125571 | Witt et al. | May 2018 | A1 |
20180228530 | Yates et al. | Aug 2018 | A1 |
20180263683 | Renner et al. | Sep 2018 | A1 |
20180280075 | Nott et al. | Oct 2018 | A1 |
20190000468 | Adams et al. | Jan 2019 | A1 |
20190000470 | Yates et al. | Jan 2019 | A1 |
20190000528 | Yates et al. | Jan 2019 | A1 |
20190000530 | Yates et al. | Jan 2019 | A1 |
20190000555 | Schings et al. | Jan 2019 | A1 |
20190099209 | Witt et al. | Apr 2019 | A1 |
20190099212 | Davison et al. | Apr 2019 | A1 |
20190099213 | Witt et al. | Apr 2019 | A1 |
20190099217 | Witt et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1634601 | Jul 2005 | CN |
1922563 | Feb 2007 | CN |
2868227 | Feb 2007 | CN |
4300307 | Jul 1994 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
10201569 | Jul 2003 | DE |
102005032371 | Jan 2007 | DE |
0171967 | Feb 1986 | EP |
0705571 | Apr 1996 | EP |
1862133 | Dec 2007 | EP |
2060238 | May 2009 | EP |
1747761 | Oct 2009 | EP |
1767164 | Jan 2013 | EP |
2578172 | Apr 2013 | EP |
2419159 | Aug 2013 | ES |
2032221 | Apr 1980 | GB |
S537994 | Jan 1978 | JP |
H08229050 | Sep 1996 | JP |
2002186627 | Jul 2002 | JP |
2009213878 | Sep 2009 | JP |
2010057926 | Mar 2010 | JP |
WO-8103272 | Nov 1981 | WO |
WO-9314708 | Aug 1993 | WO |
WO-9800069 | Jan 1998 | WO |
WO-9923960 | May 1999 | WO |
WO-0024330 | May 2000 | WO |
WO-0128444 | Apr 2001 | WO |
WO-02080794 | Oct 2002 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2008130793 | Oct 2008 | WO |
WO-2009067649 | May 2009 | WO |
WO-2010104755 | Sep 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2011144911 | Nov 2011 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061638 | May 2012 | WO |
WO-2013131823 | Sep 2013 | WO |
Entry |
---|
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(34), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/. |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
Abbott, et al. Proceedings of the 2007 IEEEIRDJ International Conference on Intelligent Robots and Systems. 410-416, 2007. |
Cadeddu et al., “Magnetic positioning system for trocarless laparoscopic instruments,” American College of Surgeons Poster, 2004. |
Cadeddu et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single site surgery: initial human experience,” Surgical Endoscopy, SAGES Oral Manuscript, 2009. |
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” American Urological Association Poster, 2002. |
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” Journal of Urology Abstract, 2002. |
Castellvi et al., “Completely transvaginal NOTES cholecystectomy in a porcine model using novel endoscopic instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009. |
Castellvi et al., “Hybrid transgastric NOTES cholecystectomy in a porcine model using a magnetically anchored cautery and novel instrumentation,” Submitted for Presentation, ASGE, 2009. |
Castellvi et al., “Hybrid transvaginal Notes sleeve gastrectomy in a porcine model using a magnetically anchored camera and novel instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009. |
Duchene et al., “Magnetic positioning system for trocarless laparoscopic instruments,” Engineering and Urology Society Poster, 2004. |
Fernandez et al., “Development of a transabdominal anchoring system for trocar-less laparoscopic surgery,” ASME Proceedings of/MECE, 2003. |
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” Submittedfor Presentation, Poster, SAGES Annual Meeting, 2008. |
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” SAGES Annual Meeting Poster, 2008. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-Abdominal Camera and Retractor”, Annals of Surgery, vol. 245, No. 3, pp. 379-384, Mar. 2007. |
Peirs et al., “A miniature manipulator for integration in self-propelling endoscope,” Sensors and Actuators, 92:343-9, 2001. |
Raman et al., “Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation,” Journal of Endourology, 23(3):, 2009.367-371,2009. |
Rapaccini et al., “Gastric Wall Thickness in Normal and Neoplastic Subjects: A Prospective Study Performed by Abdominal Ultrasound”, Gastrointestinal Radiology, vol. 13, pp. 197-199. 1988. |
Scott et al., “A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic Notes cameras on ex-vivo and in-vivo surgical performance,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008. |
Scott et al., “Completely transvaginal Notes cholecystectomy using magnetically anchored instruments,” Surg. Endosc., 21:2308-2316, 2007. |
Scott et al., “Evaluation of a novel air seal access port for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008. |
Scott et al., “Magnetically anchored instruments for transgastric endoscopic surgery,” Oral Presentation for SAGES Annual Meeting, Emerging Technology Oral Abstract ET005, 2006. |
Scott et al., “Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008. |
Scott et al., “Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Oral Presentation, ASGE Annual Meeting/DDW, 2007. |
Scott et al., “Trans gastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments,” SAGES Annual Meeting Poster, 2007. |
Scott et al., “Transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Abstract for Video Submission, ASGE II1h Annual Video Forum, 2007. |
Scott et al., “Transvaginal single access ‘pure’ Notes sleeve gastrectomy using a deployable magnetically anchored video camera,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Poster, 2008. |
Swain et al., “Linear stapler formation of ileo-rectal, entero-enteral and gastrojejunal anastomoses during dual and single access ‘pure’ NOTES procedures: Methods, magnets and stapler modifications,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (Asge) Annual Meeting Abstract, 2008. |
Swain et al., “Wireless endosurgery for NOTES,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008. |
Tang et al., “Live video manipulator for endoscopy and natural orifice transluminal endoscopic surgery (with videos),” Gastrointestinal Endoscopy, 68:559-564, 2008. |
Zeltser et al., “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, 178:288-291, 2007. |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541. |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335393, 453-496, 535-549. |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Number | Date | Country | |
---|---|---|---|
20180368906 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14579543 | Dec 2014 | US |
Child | 16021493 | US |