High power battery powered RF amplifier topology

Information

  • Patent Grant
  • 10159524
  • Patent Number
    10,159,524
  • Date Filed
    Monday, December 22, 2014
    10 years ago
  • Date Issued
    Tuesday, December 25, 2018
    6 years ago
Abstract
The design of high-power RF amplifiers, specifically the design of the output transformer, is complicated by the relatively low voltage provided by battery packs that are practical for handheld devices meant for possibly delicate uses. Provided is an RF amplifier with one or more taps on the primary coil, wherein each tap is controlled by a half bridge driver. The output transformer primary winding may be driven between any two half bridge drivers, with the number of turns between the half bridge drivers and the fixed output winding determining the overall turns ration for the transformer.
Description
INTRODUCTION

The present disclosure relates to the design of high-power radiofrequency amplifiers for use in electrosurgical instruments that employ radiofrequency energy to cauterize or coagulate tissue.


Conventional corded electrosurgical instruments are large in size, have large power supplies and control electronics, and take up a lot of space in the operating room. Corded electrosurgical instruments are particularly cumbersome and difficult to use during a surgical procedure in part due to tethering of the hand-held electrosurgical instrument to the power supply and control electronics and the potential for cord entanglement. Some of these deficiencies have been overcome by providing battery powered hand-held electrosurgical instruments in which the power and control electronics are mounted within the instrument itself, such as within the handle of the instrument, to reduce the size of the electrosurgical instrument and make such instruments easier to use during surgical procedures.


Electrosurgical medical instruments generally include an end effector having an electrical contact, a radiofrequency (RF) generation circuit for generating an RF drive signal and to provide the RF drive signal to the at least one electrical contact where the RF generation circuit also includes a resonant circuit. The RF circuit includes circuitry to generate a cyclically varying signal, such as a square wave signal, from a direct current (DC) energy source and the resonant circuit is configured to receive the cyclically varying signal from the switching circuitry. The DC energy source is generally provided by one or more batteries that can be mounted in a handle portion of the housing of the instrument, for example.


Batteries mounted within the electrosurgical instrument have several limitations. For example, the amount of power the batteries provide must be balanced against their weight and size. Thus electrosurgical instruments employing RF energy typically include a high-power RF amplifier, for instance, one producing 5 A RMS output, 300 W, at 170V RMS.


The design of high-power RF amplifiers, specifically the design of the output transformer, is complicated by the relatively low voltage provided by battery packs that are practical for handheld devices meant for possibly delicate uses. Such battery packs usually provide voltage in multiples of 4.2V (i.e. Lilon cell potential). The upper practical limit for handled devices is up to five cells in series—for example, in a 2P5S (sets of two parallel cells, five sets in a series string)—due to space and weight constraints. Even with a 2P5S battery configuration, selecting a workable turns ratio for the output transformer is at best a compromise between the maximum allowable primary current when in current limit mode and the need for a reasonable turns ratio for generating 170-250V RMS in the voltage control region of an electrosurgical device's power curve. The present disclosure provides a compact, optimally performing high power RF amplifier with significantly less compromise in the design of the output transformer. The present disclosure provides systems and methods for changing the turns ratio at will, synchronously with the carrier frequency of the energy device. Thus it is possible to adapt to the requirements of each region of an electrosurgical or ultrasonic power curve (current limit, power limit and voltage limit).


SUMMARY

In one embodiment, a current amplifier comprises a transformer, the transformer comprising one or more taps on the primary coil, wherein each tap comprises a half bridge driver, wherein the half bridge drivers configured to selectively turn on or turn off the tap.


In another embodiment, the half bridge driver comprises an upper switch element and a lower switch element, a high-side drive input connected to the input of the upper switch element, a low-side drive input connected to the input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and the output of the half bridge driver is taken from the node between the upper and lower switch elements.


In another embodiment, the upper and lower switch elements comprise solid-state switching elements. In another embodiment, the solid-state switching elements comprise MOSFETs.


In another embodiment, the upper and lower switch elements comprise IGBTs.


In another embodiment, the upper and lower switch elements comprise mechanical relays.


In another embodiment the current amplifier comprises a parallel capacitor on the secondary coil, such that the output produced by the amplifier is a sine wave.


In another embodiment, the minimum winding ratio is 4:1.


In another embodiment, the maximum winding ratio is 15:1.


In one embodiment, an electrosurgical medical instrument comprises a radio frequency (RF) generation circuit coupled to and operated by a battery and operable to generate an RF drive signal and to provide the RF drive signal to at least one electrical contact, wherein the RF generation circuit comprises: A current amplifier, comprising a transformer, the transformer comprising one or more taps on the primary coil, wherein each tap comprises a half bridge driver.


In another embodiment, the half bridge driver comprises an upper switch element and a lower switch element, a high-side drive input connected to the input of the upper switch element, a low-side drive input connected to the input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and the output of the half bridge driver is taken from the node between the upper and lower switch elements.


In another embodiment, the upper and lower switch elements comprise solid-state switching elements. In another embodiment, the solid-state switching elements comprise MOSFETs.


In another embodiment, the upper and lower switch elements comprise IGBTs.


In another embodiment, the upper and lower switch elements comprise mechanical relays.


In another embodiment, the medical instrument comprises a parallel capacitor on the secondary coil, such that the output produced by the amplifier is a sine wave.


In another embodiment, the minimum winding ratio is 4:1.


In another embodiment, the maximum winding ratio is 15:1.


In one embodiment, a current amplifier, comprises a transformer comprising one or more taps on the primary coil, wherein each tap comprises a half bridge driver configured to selectively turn on or turn off the tap, wherein the half bridge driver comprises an upper switch element and a lower switch element, a high-side drive input connected to the input of the upper switch element, a low-side drive input connected to the input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and the output of the half bridge driver is taken from the node between the upper and lower switch elements; and a parallel capacitor on the secondary coil, such that the output produced by the amplifier is a sine wave; wherein the minimum winding ratio is 4:1; and wherein the maximum winding ratio is 15:1.


In another embodiment, the upper and lower switch elements comprise solid-state switching elements.





FIGURES

The novel features of the embodiments described herein are set forth with particularity in the appended claims. The embodiments, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:



FIG. 1 illustrates one embodiment of an RF amplifier with one or more of taps on the primary coil, wherein each tap is controlled by a half bridge driver;



FIG. 2 illustrates one embodiment of a half bridge circuit that may be employed by the half bridge driver;



FIG. 3 illustrates an RF drive and control circuit, according to one embodiment;



FIG. 4 illustrates a perspective view of one embodiment of the transformer shown as transformer in connection with the RF drive circuit illustrated in FIG. 3;



FIG. 5 illustrates a perspective view of one embodiment of the primary coil of the transformer illustrated in FIG. 4;



FIG. 6 illustrates a perspective view of one embodiment of a secondary coil of the transformer illustrated in FIG. 4;



FIG. 7 illustrates a bottom view of the primary coil illustrated in FIG. 5;



FIG. 8 illustrates a side view of the primary coil illustrated in FIG. 5;



FIG. 9 illustrates a sectional view of the primary coil illustrated in FIG. 5 taken along section 28-28;



FIG. 10 illustrates a bottom view of the secondary coil illustrated in FIG. 6;



FIG. 11 illustrates a side view of the secondary coil illustrated in FIG. 6;



FIG. 12 illustrates a sectional view of the secondary coil illustrated in FIG. 11 taken along section 31-31;



FIG. 13 is a perspective view of one embodiment of the inductor shown as inductor Ls in connection with the RF drive circuit illustrated in FIG. 3;



FIG. 14 illustrates a bottom view of the inductor illustrated in FIG. 13;



FIG. 15 illustrates a side view of the inductor illustrated in FIG. 13;



FIG. 16 illustrates a sectional view of the inductor illustrated in FIG. 15 taken along section 35-35.



FIG. 17 illustrates the main components of the controller, according to one embodiment;



FIG. 18 is a signal plot illustrating the switching signals applied to the FETs, a sinusoidal signal representing the measured current or voltage applied to the load, and the timings when the synchronous sampling circuitry samples the sensed load voltage and load current, according to one embodiment; and



FIG. 19 illustrates a drive waveform for driving the FET gate drive circuitry, according to one embodiment.





DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols and reference characters typically identify similar components throughout the several views, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the scope of the subject matter presented here.


The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.


Before explaining the various embodiments of the high power battery powered RF amplifier technology in detail, it should be noted that the various embodiments disclosed herein are not limited in their application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. Rather, the disclosed embodiments may be positioned or incorporated in other embodiments, variations and modifications thereof, and may be practiced or carried out in various ways. Accordingly, embodiments of the surgical devices disclosed herein are illustrative in nature and are not meant to limit the scope or application thereof. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the embodiments for the convenience of the reader and are not to limit the scope thereof. In addition, it should be understood that any one or more of the disclosed embodiments, expressions of embodiments, and/or examples thereof, can be combined with any one or more of the other disclosed embodiments, expressions of embodiments, and/or examples thereof, without limitation.


For clarity of disclosure, the terms “proximal” and “distal” are defined herein relative to a human or robotic operator of the surgical instrument. The term “proximal” refers the position of an element closer to the human or robotic operator of the surgical instrument and further away from the surgical end effector of the surgical instrument. The term “distal” refers to the position of an element closer to the surgical end effector of the surgical instrument and further away from the human or robotic operator of the surgical instrument.


Also, in the following description, it is to be understood that terms such as front, back, inside, outside, top, bottom, upper, lower and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various embodiments will be described in more detail with reference to the drawings.


Many surgical procedures require cutting or litigating blood vessels or other vascular tissue. With minimally invasive surgery, surgeons perform surgical operations through a small incision in the patient's body. As a result of the limited space, surgeons often have difficulty controlling bleeding by clamping and/or tying-off transected blood vessels. By utilizing electrosurgical instruments, such as electrosurgical forceps, a surgeon can cauterize, coagulate/desiccate, and/or simply reduce or slow bleeding by controlling the electrosurgical energy applied through jaw members of the electrosurgical forceps, otherwise referred to as clamp arms.


Electrosurgical instruments generally comprise an electronics system for generating and controlling electrosurgical energy. The electronics system comprises an RF generation circuit to generate an RF drive signal and to provide the RF drive signal to at least one electrical contact, where the RF generation circuit also includes a resonant circuit. The electronics system also comprises control elements such as one or more than one microprocessor (or micro-controller) and additional digital electronic elements to control the logical operation of the instrument.


The electronics elements of the power supply and RF amplifier sections should be designed to have the highest efficiency possible in order to minimize heat rejected into the housing of the instrument. Efficiency also provides the longest storage and operational battery life possible. As described in the embodiments illustrated in FIGS. 4-16, litz wire may be wound around a bobbin core to reduce AC losses due to high frequency RF. The litz wire construction provides greater efficiency and thus also prevents heat generation in the device.


In various embodiments, efficiency of the power supply and RF drive and control circuitry sections also may minimize the size of the battery required to fulfill the mission life, or to extend the mission life for a given size battery. In one embodiment, the battery provides a low source impedance at a terminal voltage of 12.6V (unloaded) and a 1030 mA-Hour capacity. Under load, the battery voltage is a nominal 11.1V, for example.


Radio frequency drive amplifier topologies may vary according to various embodiments. In one embodiment, for example, a series resonant approach may be employed where the operating frequency is varied to change the output voltage to force the medical instrument to operate according to a pre-programmed load curve. In a series resonant approach, the impedance of a series resonant network is at a minimum at the resonant frequency, because the reactance of the capacitive and inductive elements cancel, leaving a small real resistance. The voltage maximum for a series resonant circuit also occurs at the resonant frequency (and also depends upon the circuit Q). Accordingly, to produce a high voltage on the output, the series resonant circuit should operate closer to the resonant frequency, which increases the current draw from the DC supply (e.g., battery) to feed the RF amplifier section with the required current. Although the series resonant approach may be referred to as a resonant mode boost converter, in reality, the design is rarely operated at the resonant frequency, because that is the point of maximum voltage. The benefit of a resonant mode topology is that if it is operated very close to the resonant frequency, the switching field effect transistors (FETs) can be switched “ON” or “OFF” at either a voltage or current zero crossing, which dissipates the least amount of power in the switching FETs as is possible.


Another feature of the RF drive and control circuitry section according to one embodiment, provides a relatively high turns ratio transformer which steps up the output voltage to about 85V RMS from the nominal battery voltage of about 11.1V. This provides a more compact implementation because only one transformer and one other inductor are required. In such a circuit, high currents are necessary on the transformer primary to create the desired output voltage or current. Such device, however, cannot be operated at the resonant frequency because allowances are made to take into account for the battery voltage dropping as it is expended. Accordingly, some headroom is provided to maintain the output voltage at the required level. A more detailed description of a series resonant approach is provided in commonly assigned international PCT Patent Application No. PCT/GB2011/000778, titled “Medical Device,” filed May 20, 2011, the disclosure of which is incorporated herein by reference in its entirety.


According to another embodiment, an RF instrument topology is provided for a handheld battery powered RF based generator for the electrosurgical medical instrument. Accordingly, in one embodiment, the present disclosure provides an RF instrument topology with an architecture configured such that each power section of the device operate at maximum efficiency regardless of the load resistance presented by the tissue or what voltage, current, or power level is commanded by the controller. In one embodiment, this may be implemented by employing the most efficient modalities of energy transformation presently known and by minimizing the component size to provide a small and light weight electronics package to fit within the instrument's housing, for example.


In one embodiment, the RF power electronics section of the electronics system may be partitioned as a boost mode converter, synchronous buck converter, and a parallel resonant amplifier. According to one embodiment, a resonant mode boost converter section of the medical instrument may be employed to convert the DC battery voltage to a higher DC voltage for use by the synchronous mode buck converter. One aspect to consider for achieving a predetermined efficiency of the resonant mode boost converter section is ratio between input and output voltages of the boost converter. In one embodiment, although a 10:1 ratio is achievable, the cost is that for any appreciable power on the secondary the input currents to the boost mode transformer become quite heavy, in the range of about 15-25 A, depending on the load. In another embodiment a transformer turns ratio of about 5:1 is provided. It will be appreciated that transformer ratios in the range of about 5:1 to about 10:1 also may be implemented, without limitation. In a 5:1 transformer turns ratio, the design tradeoff is managing the Q of the parallel resonant output against the boost ratio. The resonant output network performs two functions. First, it filters the square, digital pulses from the Class D output amplifier and removes all but the fundamental frequency sine wave from the output. Second, it provides a passive voltage gain due to the Q of the filter network. In other words, current from the amplifier is turned into output voltage, at a gain determined by the circuit's unloaded Q and the load resistance, which affects the Q of the circuit.


Another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section is to utilize a full bridge switcher topology, which allows half the turns ratio for the boost transformer for the same input voltage. The tradeoff is that this approach may require additional FET transistors, e.g., an additional two FETs are required over a half bridge approach, for example. Presently available switchmode FETs, however, are relatively small, and while the gate drive power is not negligible, it provides a reasonable design tradeoff.


Yet another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section and operating the boost converter at maximum efficiency, is to always run the circuit at the resonant frequency so that the FETs are always switching at either a voltage or current minima, whichever is selected by the designer (ZCS vs. ZVS switching), for example. This can include monitoring the resonant frequency of the converter as the load changes, and making adjustments to the switching frequency of the boost converter to allow 35 ZVS or ZCS (Zero Voltage Switching/Zero Current Switching) to occur for minimum power dissipation.


Yet another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section is to utilize a synchronous rectifier circuit instead of a conventional full-wave diode rectifier block. Synchronous rectification employs FETs as diodes because the on-resistance of the FET is so much lower than that of even a Schottky power diode optimized for low forward voltage drop under high current conditions. A synchronous rectifier requires gate drive for the FETs and the logic to control them, but offers significant power savings over a traditional full bridge rectifier.


In accordance with various embodiments, the predetermined efficiency of a resonant mode boost converter is approximately 98-99% input to output, for example. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.


According to one embodiment, a synchronous buck converter section of the medical instrument may be employed to reduce the DC voltage fed to the RF amplifier section to the predetermined level to maintain the commanded output power, voltage or current as dictated by the load curve, with as little loss as is possible. The buck converter is essentially an LC lowpass filter fed by a low impedance switch, along with a regulation circuit to control the switch to maintain the commanded output voltage. The operating voltage is dropped to the predetermined level commanded by the main controller, which is running the control system code to force the system to follow the assigned load curve as a function of sensed tissue resistance. In accordance with various embodiments, the predetermined efficiency of a synchronous buck regulator is approximately 99%, for example. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.


According to one embodiment, a resonant mode RF amplifier section comprising a parallel resonant network on the RF amplifier section output is provided. In one embodiment, a predetermined efficiency may be achieved by a providing a parallel resonant network on the RF amplifier section output. The RF amplifier section may be driven at the resonant frequency of the output network, which accomplishes three things. First, the high Q network allows some passive voltage gain on the output, reducing the boost required from the boost regulator in order to produce high voltage output levels. Second, the square pulses produced by the RF amplifier section are filtered and only the fundamental frequency is allowed to pass to the output. Third, a full-bridge amplifier is switched at the resonant frequency of the output filter, which is to say at either the voltage zero crossings or the current zero crossings in order to dissipate minimum power. Accordingly, a predetermined efficiency of the RF amplifier section is approximately 98%. Gate drive losses may limit the efficiency to this figure or slightly lower. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.


In view of the RF instrument topology and architecture described above, an overall system efficiency of approximately 0.99*0.99*0.98, which is approximately 96%, may be achieved. Accordingly, to deliver approximately 45 W, approximately 1.8 W would be dissipated by the electronics exclusive of the power required to run the main and housekeeping microprocessors, and the support circuits such as the ADC and analog amplifiers and filters. To deliver approximately 135 W, approximately 5.4 W would be dissipated. This is the amount of power that would be required to implement a large jaw class generator in a hand held electrosurgical medical instrument. Overall system efficiency would likely only be a weak function of load resistance, instead of a relatively strong one as it may be the case in some conventional instruments.


In various other embodiments of the electrosurgical medical instrument, a series resonant topology may be employed to achieve certain predetermined efficiency increase by employing a full bridge amplifier for the primary circuit and isolate the full bridge amplifier from ground to get more voltage on the primary. This provides a larger primary inductance and lower flux density due to the larger number of turns on the primary.



FIG. 3 illustrates an RF drive and control circuit 800, according to one embodiment. FIG. 3 is a part schematic part block diagram illustrating the RF drive and control circuitry 800 used in this embodiment to generate and control the RF electrical energy supplied to the electrosurgical instrument. As will be explained in more detail below, in this embodiment, the drive circuitry 800 is a resonant mode RF amplifier comprising a parallel resonant network on the RF amplifier output and the control circuitry operates to control the operating frequency of the drive signal so that it is maintained at the resonant frequency of the drive circuit, which in turn controls the amount of power supplied to the instrument. The way that this is achieved will become apparent from the following description.


As shown in FIG. 3, the RF drive and control circuit 800 comprises a battery 300 arranged to supply, in this example, about 0V and about 12V rails. An input capacitor (Cin) 802 is connected between the 0V and the 12V for providing a low source impedance. A pair of FET switches 803-1 and 803-2 (both of which are N-channel in this embodiment to reduce power losses) is connected in series between the 0V rail and the 30 12V rail. FET gate drive circuitry 805 is provided that generates two drive signals—one for driving each of the two FETs 803. The FET gate drive circuitry 805 generates drive signals that causes the upper FET (803-1) to be on when the lower FET (803-2) is off and vice versa. This causes the node 807 to be alternately connected to the 12V rail (when the FET 803-1 is switched on) and the 0V rail (when the FET 803-2 is switched on). FIG. 3 also shows the internal parasitic diodes 808-1 and 808-2 of the corresponding FETs 803, which conduct during any periods that the FETs 803 are open.


As shown in FIG. 3, the node 807 is connected to an inductor-inductor resonant circuit 810 formed by an inductor Ls 812 and an inductor Lm 814, which is the primary coil of a transformer 815. The FET gate driving circuitry 805 is arranged to generate drive signals at a drive frequency (fd) that opens and crosses the FET switches 803 at the resonant frequency of the parallel resonant circuit 810. As a result of the resonant characteristic of the resonant circuit 810, the square wave voltage at node 807 will cause a substantially sinusoidal current at the drive frequency (fd) to flow within the resonant circuit 810. As illustrated in FIG. 9, the inductor Lm 814 is the primary coil of a transformer 815, the secondary coil of which is formed by inductor Lsec 816. The inductor Lsec 816 of the transformer 815 secondary is connected to a resonant circuit 817 formed by inductor L2, capacitor C4 820, capacitor C2 822, and capacitor C3 825. The transformer 815 up-converts the drive voltage (Vd) across the inductor Lm 814 to the voltage that is applied to the output parallel resonant circuit 817. The load voltage (VL) is output by the parallel resonant circuit 817 and is applied to the load (represented by the load resistance Road 819 in FIG. 3) corresponding to the impedance of the forceps' jaws and any tissue or vessel gripped by the forceps 108. As shown in FIG. 3, a pair of DC blocking capacitors Cm 840-1 and Cb12 840-2 is provided to prevent any DC signal being applied to the load 819.


In one embodiment, the transformer 815 may be implemented with a Core Diameter (mm), Wire Diameter (mm), and Gap between secondary windings in accordance with the following specifications:


Core Diameter, D (mm)


D=19.9×10-3


Wire diameter, W (mm) for 22 AWG wire


W=7.366×10-4


Gap between secondary windings, in gap=0.125


G=gap/25.4


In this embodiment, the amount of electrical power supplied to the electrosurgical instrument is controlled by varying the frequency of the switching signals used to switch the FETs 803. This works because the resonant circuit 810 acts as a frequency dependent (loss less) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 810, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 810, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 805 is controlled by a controller 841 based on a desired power to be delivered to the load 819 and measurements of the load voltage (VL) and of the load current (IL) obtained by conventional voltage sensing circuitry 843 and current sensing circuitry 845. The way that the controller 841 operates will be described in more detail below.


In one embodiment, the voltage sensing circuitry 843 and the current sensing circuitry 845 may be implemented with high bandwidth, high speed rail-to-rail amplifiers (e.g., LMH6643 by National Semiconductor). Such amplifiers, however, consume a relatively high current when they are operational. Accordingly, a power save circuit may be provided to reduce the supply voltage of the amplifiers when they are not being used in the voltage sensing circuitry 843 and the current sensing circuitry 845. In one-embodiment, a step-down regulator (e.g., LT3502 by Linear Technologies) may be employed by the power save circuit to reduce the supply voltage of the rail-to-rail amplifiers and thus extend the life of the battery 300.


In one embodiment, the transformer 815 and/or the inductor Ls 812 may be implemented with a configuration of litz wire conductors to minimize the eddy-current effects in the windings of high-frequency inductive components. These effects include skin-effect losses and proximity effect losses. Both effects can be controlled by the use of litz wire, which are conductors made up of multiple individually insulated strands of wire twisted or woven together. Although the term litz wire is frequently reserved for conductors constructed according to a carefully prescribed pattern, in accordance with the present disclosure, any wire strands that are simply twisted or grouped together may be referred to as litz wire. Accordingly, as used herein, the term litz wire refers to any insulated twisted or grouped strands of wires.


By way of background, litz wire can reduce the severe eddy-current losses that otherwise limit the performance of high-frequency magnetic components, such as the transformer 815 and/or the inductor Ls 812 used in the RF drive and control circuit 800 of FIG. 3. Although litz wire can be very expensive, certain design methodologies provide significant cost reduction without significant increases in loss, or more generally, enable the selection of a minimum loss design at any given cost. Losses in litz-wire transformer windings have been calculated by many authors, but relatively little work addresses the design problem of how to choose the number and diameter of strands for a particular application. Cost-constrained litz wire configurations are described in C. R. Sullivan, “Cost-Constrained Selection of Strand Wire and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, no. 2, pp. 281-288, which is incorporated herein by reference. The choice of the degree of stranding in litz wire for a transformer winding is described in C. R. Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, no. 2, pp. 283-291, which is incorporated herein by reference.


In one embodiment, the transformer 815 and/or the inductor Ls 812 may be implemented with litz wire by HM Wire International, Inc., of Canton, Ohio or New England Wire Technologies of Lisbon, N.H., which has a slightly different construction in terms of the number of strands in the intermediate windings, but has the same total number of strands of either 44 gauge or 46 gauge wire by HM Wire International, Inc. Accordingly, the disclosure now turns to FIGS. 4-16, which illustrate one embodiment of the transformer 815 and the inductor Ls 81 implemented with litz wire.



FIG. 4 illustrates a perspective view of one embodiment of the transformer shown as transformer 815 in connection with the RF drive circuit 800 illustrated in FIG. 3. As shown in FIG. 4, in one embodiment, the transformer 404 comprises a bobbin 804, a ferrite core 806, a primary coil 821 (e.g., inductor Lm 814 in FIG. 3), and a secondary coil 823 (e.g., inductor Lsec 816 in FIG. 3). In one embodiment, the bobbin 804 may be a 10-pin surface mounted device (SMD) provided by Ferroxcube International Holding B.V. In one embodiment, the ferrite core 806 may be an EFD 20/107 N49. In one embodiment, the transformer 815 has a power transfer of ˜45 W, a maximum secondary current of ˜1.5 A RMS, maximum secondary voltage of ˜90V RMS, maximum primary current of ˜15.5 A RMS, and a turns ratio of 20:2 (secondary turns:primary turns), for example. The operating frequency range of the transformer 404 is from ˜370 kHz to ˜550 kHz, and a preferred frequency of ˜430 kHz. It will be appreciated that these specification are provided as examples and should not be construed to be limiting of the scope of the appended claims.


In one embodiment, the transformer 404 comprises a ferrite core material having particular characteristics. The core used for both the inductor 406 and the transformer 404, albeit with a different gap to yield the required AL for each component. AL has units of Henrys/turns2, so the inductance of a winding may be found by using NTURNS2*AL. In one embodiment, an AL of 37 is used for the inductor 406, and an AL of 55 is used for the transformer 406. This corresponds to a gap of approximately 0.8 mm and 2.0 mm respectively, although the AL or the inductance is the parameter to which the manufacturing process controls, with the AL being an intermediate quantity that we are not measuring directly.


In one embodiment, the inductance of the inductor 406 and transformer 404 winding may be measured directly with “golden bobbins,” which are squarely in the middle of the tolerance bands for the winding statistical distributions. Cores that are ground are then tested using the “golden bobbin” to assess whether the grind is good on the cores. Better results were yielded than the industry standard method, which is to fill a bobbin with as many windings as they can fit on the bobbin, and then back calculating the AL of the core, and controlling AL instead of the inductance. It was found that using a “golden bobbin” in the manufacturing process yielded better results. The bobbin is what the copper windings are secured to, and the ferrite E cores slip through a hole in the bobbin, and are secured with clips.



FIG. 5 illustrates a perspective view of one embodiment of the primary coil 821 (e.g., inductor Lm 814 in FIG. 3) of the transformer 404 illustrated in FIG. 4. In one embodiment, the primary coil 821 windings may be constructed using 300 strand/46 gauge litz wire as indicated in TABLE 1 below, among other suitable configurations. In one embodiment, primary coil 821 has an inductance of ˜270 nH, an AC resistance <46Ω, and a DC resistance of ≤5Ω, for example.









TABLE 1





Primary Coil 821 (Lm 814)


46 Gauge Litz Wire

















300 Strands 46 AWG- 24 turns per foot (TPF)



Single Build MW80 155° C.



Single Nylon Served



Construction: 5 × 3 × 20/46 AWG



Ft per lb: 412 Nominal



OD: 0.039″ Nominal











FIG. 7 illustrates a bottom view of the primary coil 821 (e.g., inductor Lm 814 in FIG. 3) illustrated in FIG. 5. FIG. 8 illustrates a side view of the primary coil 821 illustrated in FIG. 5. FIG. 9 illustrates a sectional view of the primary coil 821 illustrated in FIG. 5 taken along section 28-28.



FIG. 6 illustrates a perspective view of one embodiment of a secondary coil 823 (e.g., inductor Lsec 816 in FIG. 3) of the transformer 404 illustrated in FIG. 4. In one embodiment, the secondary coil 823 windings may be constructed using 105 strand/44 gauge litz wire as indicated in TABLE 2 below, among other suitable configurations. In one embodiment, the secondary coil 823 has an inductance of 22 μH±5% @430 kHz, an AC resistance <2.5Ω, and a DC resistance ≤80 mΩ, for example.









TABLE 2





Secondary Coil 823 (Lsec 816)


44 Gauge Litz Wire

















105 Strands 44 AWG 24 TPF



Single Build MW80 155° C.



Single Nylon Served



Construction: 5 × 21/44 AWG



Ft per lb: 1214 Nominal



OD: 0.023″ Nominal











FIG. 10 illustrates a bottom view of the secondary coil 823 (e.g., inductor Lsec 816 in FIG. 3) illustrated in FIG. 6. FIG. 11 illustrates a side view of the secondary coil 823 illustrated in FIG. 6. FIG. 12 illustrates a sectional view of the secondary coil 8235 illustrated in FIG. 11 taken along section 31-31.



FIG. 13 is a perspective view of one embodiment of the inductor 406 shown as inductor Ls 812 in connection with the RF drive circuit 800 illustrated in FIG. 3. As shown in FIG. 13, in one embodiment, the inductor 406 comprises a bobbin 809, a ferrite core 811, and a coil 813. In one embodiment, the bobbin 809 may be a 10-pin surface mounted device (SMD) provided by Ferroxcube International Holding B.V. In one embodiment, the ferrite core 811 may be an EFD 20/107 N49. In one embodiment, the coil 813 windings may be constructed using 300 strand/46 gauge litz wire wound at 24 TPF. In one embodiment, the inductor Ls 812 may have an inductance of ˜345 nH±6% @430 kHz, an AC resistance <50Ω, and a DC resistance ≤7 mΩ, for example. The operating frequency range of the inductor Ls 812 is from ˜370 kHz to ˜550 kHz, and a preferred frequency of ˜430 kHz, and an operating current of ˜15.5 A RMS. It will be appreciated that these specification are provided as examples and should not be construed to be limiting of the scope of the appended claims.



FIG. 14 illustrates a bottom view of the inductor 406 (e.g., inductor Ls 812 in FIG. 3) illustrated in FIG. 13. FIG. 15 illustrates a side view of the inductor 406 illustrated in FIG. 13. FIG. 16 illustrates a sectional view of the inductor 406 illustrated in FIG. 15 taken along section 35-35.


Accordingly, as described above in connection with FIGS. 4-16, in one embodiment, the transformer 404 (e.g., transformer 815) and/or the inductor 406 (e.g., inductor 812) used in the RF drive and control circuit 800 of FIG. 3 may be implemented with litz wire. One litz wire configuration may be produced by twisting 21 strands of 44 AWG SPN wire at 18 twists per foot (left direction twisting). Another litz wire configuration may be produced by twisting 5×21/44 AWG (105/44 AWG SPN), also at 18 twists per foot (left direction twisting). Other litz wire configurations include 300/46 AWG litz wire as well as 46 AWG or finer gauge size wire.



FIG. 17 illustrates the main components of the controller 841, according to one embodiment. In the embodiment illustrated in FIG. 17, the controller 841 is a microprocessor based controller and so most of the components illustrated in FIG. 3 are software based components. Nevertheless, a hardware based controller 841 may be used instead. As shown, the controller 841 includes synchronous I, Q sampling circuitry 851 that receives the sensed voltage and current signals from the sensing circuitry 843 and 845 and obtains corresponding samples which are passed to a power, Vrms and Irms calculation module 853. The calculation module 853 uses the received samples to calculate the RMS voltage and RMS current applied to the load 819 and, from the voltage and current, the power that is presently being supplied to the load 839. The determined values are then passed to a frequency control module 855 and a medical device control module 857. The medical device control module 857 uses the values to determine the present impedance of the load 819 and based on this determined impedance and a pre-defined algorithm, determines what set point power (Pset) should be applied to the frequency control module 855. The medical device control module 857 is in turn controlled by signals received from a user input module 859 that receives inputs from the user and also controls output devices (lights, a display, speaker or the like) on the handle of the instrument via a user output module 861.


The frequency control module 855 uses the values obtained from the calculation module 853 and the power set point (Pset) obtained from the medical device control module 857 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 863 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 855 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 863 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 863 is output to the FET gate drive circuitry 805, which amplifies the signal and then applies it to the FET 803-1. The FET gate drive circuitry 805 also inverts the signal applied to the FET 803-1 and applies the inverted signal to the FET 803-2.



FIG. 18 is a signal plot illustrating the switching signals applied to the FETs 803, a sinusoidal signal representing the measured current or voltage applied to the load 819, and the timings when the synchronous sampling circuitry 851 samples the sensed load voltage and load current, according to one embodiment. In particular, FIG. 18 shows the switching signal (labeled PWM1 H) applied to upper FET 803-1 and the switching signal (labeled PWM1 L) applied to lower FET 803-2. Although not illustrated for simplicity, there is a dead time between PWM1 H and PWM1 L to ensure that that both FETs 803 are not on at the same time. FIG. 18 also shows the measured load voltage/current (labeled OUTPUT). Both the load voltage and the load current will be a sinusoidal waveform, although they may be out of phase, depending on the impedance of the load 819. As shown, the load current and load voltage are at the same drive frequency (fe) as the switching Signals (PWM1 H and PWM1 L) used to switch the FETs 803. Normally, when sampling a sinusoidal signal, it is necessary to sample the signal at a rate corresponding to at least twice the frequency of the signal being sampled—i.e. two samples per period. However, as the controller 841 knows the frequency of the switching signals, the synchronous sampling circuit 851 can sample the measured voltage/current signal at a lower rate. In this embodiment, the synchronous sampling circuit 851 samples the measured signal once per period, but at different phases in adjacent periods. In FIG. 18, this is illustrated by the “I” sample and the “Q” sample. The timing that the synchronous sampling circuit 851 makes these samples is controlled, in this embodiment, by the two control signals PWM2 and PWM3, which have a fixed phase relative to the switching signals (PWM1 H and PWM1 L) and are out of phase with each other (preferably by quarter of the period as this makes the subsequent calculations easier). As shown, the synchronous sampling circuit 851 obtains an “I” sample on every other rising edge of the PWM2 signal and the synchronous sampling circuit 851 obtains a “0” sample on every other rising edge of the PWM3 signal. The synchronous sampling circuit 851 generates the PWM2 and PWM3 control signals from the square wave signal output by the square wave generator 863 (which is at the same frequency as the switching signals PWM1 H and PWM1 L). Thus control signals PWM2 and PWM3 also change (whilst their relative phases stay the same). In this way, the sampling circuitry 851 continuously changes the timing at which it samples the sensed voltage and current signals as the frequency of the drive signal is changed so that the samples are always taken at the same time points within the period of the drive signal. Therefore, the sampling circuit 851 is performing a “synchronous” sampling operation instead of a more conventional sampling operation that just samples the input signal at a fixed sampling rate defined by a fixed sampling clock.


The samples obtained by the synchronous sampling circuitry 851 are then passed to the power, Vrms and Irms calculation module 853 which can determine the magnitude and phase of the measured signal from just one “I” sample and one “Q” sample of the load current and load voltage. However, in this embodiment, to achieve some averaging, the calculation module 853 averages consecutive “I” samples to provide an average “I” value and consecutive “Q” samples to provide an average “0” value; and then uses the average I and Q values to determine the magnitude and phase of the measured signal (in a conventional manner). As those skilled in the art will appreciate, with a drive frequency of about 400 kHz and sampling once per period means that the synchronous sampling circuit 851 will have a sampling rate of 400 kHz and the calculation module 853 will produce a voltage measure and a current measure every 0.01 ms. The operation of the synchronous sampling circuit 851 offers an improvement over existing products, where measurements can not be made at the same rate and where only magnitude information is available (the phase information being lost).


In one embodiment, the RF amplifier and drive circuitry for the electrosurgical medical instrument employs a resonant mode step-up switching regulator, running at the desired RF electrosurgical frequency to produce the required tissue effect. The waveform illustrated in FIG. 18 can be employed to boost system efficiency and to relax the tolerances required on several custom components in the electronics system 400. In one embodiment, a first generator control algorithm may be employed by a resonant mode switching topology to produce the high frequency, high voltage output signal necessary for the medical instrument. The first generator control algorithm shifts the operating frequency of the resonant mode converter to be nearer or farther from the resonance point in order to control the voltage on the output of the device, which in turn controls the current and power on the output of the device. The drive waveform to the resonant mode converter has heretofore been a constant, fixed duty cycle, with frequency (and not amplitude) of the drive waveform being the only means of control.



FIG. 19 illustrates a drive waveform for driving the FET gate drive circuitry 805, according to one embodiment. Accordingly, in another embodiment, a second generator control algorithm may be employed by a resonant mode switching topology to produce the high frequency, high voltage output signal necessary for the medical instrument. The second generator control algorithm provides an additional means of control over the amplifier in order to reduce power output in order for the control system to track the power curve while maintaining the operational efficiency of the converter. As shown in FIG. 19, according to one embodiment, the second generator control algorithm is configured to not only modulate the drive frequency that the converter is operating at, but to also control the duty cycle of the drive waveform by duty cycle modulation. Accordingly, the drive waveform 890 illustrated in FIG. 19 exhibits two degrees of freedom. Advantages of utilizing the drive waveform 890 modulation include flexibility, improved overall system efficiency, and reduced power dissipation and temperature rise in the amplifier's electronics and passive inductive components, as well as increased battery life due to increased system efficiency.


RF Amplifier Topology



FIG. 1 illustrates one embodiment of an RF amplifier 100 with one or more of taps on the primary coil 104, wherein each tap is controlled by a half bridge driver 108. As discussed below, each half bridge driver 108 may comprise transistors, MOSFETs, insulated-gate bipolar transistors (IGBTs) or any other suitable switching devices configured in a half bridge drive configuration. The output transformer primary winding 104 may be driven between any two of the half bridge drivers 108, with the number of turns between the half bridge drivers 108 and the fixed output winding 106 determining the overall turns ratio for the transformer 102.


This topology allows for a lower turns ratio for high current output on the secondary coil 106 while limiting the primary current to a value that is compatible with currently available lithium-ion (Li-Ion) batteries. For example, a primary current in the range of 20-30 A implies a turns ratio of about 4:1. Conversely, when generating a relatively high voltage on the secondary coil 106, for example in the range of 170-250V RMS, it is desirable to have a relatively higher turns ratio between the primary coil 104 and the secondary coil 106, for example a ratio of about 15:1. This can be accomplished by reducing the number of turns in the primary coil 104 relative to a secondary coil 106 with a fixed number of turns.


This topology provides the ability to dynamically vary the turns ratio, in real time and in sync the output waveform being generated. This is in keeping with a zero-voltage switching (ZVS) or zero current switching (ZCS) methodology for driving the amplifier at its resonant frequency for maximum efficiency and minimum power dissipation in the switching transistors, MOSFETs, IGBTs or other switching devices.


With this topology, the amplifier 100 can also be dynamically driven in a half bridge or a full bridge mode on a output-cycle-by-cycle basis, within a resonant mode drive scheme. This allows for better output regulation.


This topology also provides the ability to match the turns ratio to the region of tissue resistance. This optimizes the losses in the transformer windings by preventing excessive currents in the primary coil 104. It also optimizes the battery voltage required to produce a high voltage on the secondary coil 106 for large-jaw devices and the types of anatomical structures such devices are typically called upon to seal and cut. Multiple turns ratio values may be provided in order to optimize each region or sub-region of the electrosurgical power curve, as necessary.


With this topology the efficiency of the amplifier may be kept arbitrarily close to the optimal value by selection of taps on the primary coil 104.


An arbitrary number of half bridge driver 108 circuits and transformer taps may be provided, tailored to the performance requirements of the particular RF amplifier 100.



FIG. 2 illustrates one embodiment of a half bridge circuit 110 that may be employed by the half bridge driver 108. The half bridge circuit 110 comprises an upper switch 112 and a lower switch 114, here illustrated as MOSFETs, wherein the upper 112 and lower 114 switches are connected in a cascade arrangement. The half bridge circuit 110 further comprises an input voltage +VBatt that is provided by the instrument's onboard batteries and a ground return. The half bridge circuit 110 further comprises a high-side gate drive input 116 and a low-side gate drive input 118. The output from the half bridge circuit 110 is at the node between the upper 112 and lower 114 switches. In operation, the switches 112, 114 are turned on and off complementary to each other, with non-overlapping dead time, by applying the correct voltage waveforms at each of the gate drive inputs. This half bridge circuit 110 topology provides for four-quadrant switching, zero-voltage switching (ZVS), zero-current switching (ZCS), high-frequency operation, low EMI, and high efficiency.


While FIG. 2 illustrates a half bridge circuit 110 comprising MOSFET switches, any switch may be used, such as for example transistors, IGBTs or any other suitable switching device.


Furthermore, the design of half bridge circuits is well understood, and any half bridge circuit may be employed in the amplifier topology described above.


Various embodiments of the amplifier 100 as described above may comprise alternate topologies. For example, some embodiments may use solid-state switching elements, such as MOSFETs or other semiconductors that can be similarly controlled. Other embodiments may use physical relays, though physical relays have limitations, including relatively long switching times and arcing that occurs at the contacts when they are switched, caused because it is not possible to switch mechanical relays at a current or voltage zero crossing at the primary coil 104 or secondary coil 106. Arcing is an issue for designs that are intended to be reprocessed and reused.



FIG. 1 illustrates on embodiment of an amplifier 100 with a parallel resonant output section, comprising a parallel capacitor 120. Such an amplifier 100 is intended to produce a relatively pure sine wave as an output. The parallel capacitor 120 that forms the other half of the resonant tank circuit, with the transformer secondary inductance and leakage inductance, may be omitted, to produce a square wave approximate output waveform. when a peak-detector type of circuit is used for output voltage and current sensing, then issues with higher Nyquis rate sampling on the output may be avoided: the output pseudo-square wave will contain significant energy at the third, fifth, seventh and ninth harmonics, which will distort the output measurements if the A/D converter in the design does not have adequate bandwidth to sample these harmonics and keep them from aliasing. A lowpass anti-aliasing filter and software linearization (correction) for measured quantities could also be contemplated as solutions to reduce the Nyquist rate sampling rate required to avoid aliasing.


It is worthy to note that any reference to “one aspect,” “an aspect,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one embodiment,” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.


Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.

Claims
  • 1. A current amplifier, comprising a transformer, the transformer comprising: a first tap including a first half bridge driver;a second tap including a second half bridge driver;a third tap including a third half bridge driver;a first portion of a primary coil located between the first tap and the second tap;a second portion of the primary coil located between the second tap and the third tap; anda secondary coil, wherein the first, second, and third half bridge drivers are configured to selectively turn on or turn off the first, second, and third taps, respectively,wherein two of the first, second, and third taps are selected to drive the primary coil between the two selected taps, which allows the transformer to provide a plurality of winding ratio values,wherein a number of coil turns of the primary coil between the two selected taps and a number of coil turns of the secondary coil determine an overall winding ratio value of the transformer, wherein the overall winding ratio value is one of the plurality of winding ratio values provided by the transformer.
  • 2. The current amplifier of claim 1, wherein at least one of the first, second, and third half bridge drivers comprises an upper switch element and a lower switch element, a high-side drive input connected to an input of the upper switch element, a low-side drive input connected to an input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and an output of the at least one of the first, second, and third half bridge drivers is taken from a node between the upper and lower switch elements.
  • 3. The current amplifier of claim 2, wherein the upper and lower switch elements comprise solid-state switching elements.
  • 4. The current amplifier of claim 3, wherein the solid-state switching elements comprise MOSFETs.
  • 5. The current amplifier of claim 2, wherein the upper and lower switch elements comprise IGBTs.
  • 6. The current amplifier of claim 2, wherein the upper and lower switch elements comprise mechanical relays.
  • 7. The current amplifier of claim 1, comprising a parallel capacitor on the secondary coil, such that an output produced by the current amplifier is a sine wave.
  • 8. The current amplifier of claim 1, wherein a minimum overall winding ratio value is 4:1.
  • 9. The current amplifier of claim 1, wherein a maximum overall winding ratio value is 15:1.
  • 10. A medical instrument comprising: a radio frequency (RF) generation circuit coupled to and operated by a battery and operable to generate an RF drive signal and to provide the RF drive signal to at least one electrical contact, wherein the RF generation circuit comprises: a current amplifier, comprising a transformer, the transformer comprising: a first tap including a first half bridge driver;a second tap including a second half bridge driver;a third tap including a third half bridge driver;a first portion of a primary coil located between the first tap and the second tap;a second portion of the primary coil located between the second tap and the third tap; anda secondary coil, wherein the first, second, and third half bridge drivers are configured to selectively turn on or turn off the first, second, and third taps, respectively,wherein two of the first, second, and third taps are selected to drive the primary coil between the two selected taps, which allows the transformer to provide a plurality of winding ratio values,wherein a number of coil turns of the primary coil between the two selected taps and a number of coil turns of the secondary coil determine an overall winding ratio value of the transformer, wherein the overall winding ratio value is one of the plurality of winding ratio values provided by the transformer.
  • 11. The medical instrument of claim 10, wherein at least one of the first, second, and third half bridge drivers comprises an upper switch element and a lower switch element, a high-side drive input connected to an input of the upper switch element, a low-side drive input connected to an input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and an output of the at least one of the first, second, and third half bridge drivers is taken from a node between the upper and lower switch elements.
  • 12. The medical instrument of claim 11, wherein the upper and lower switch elements comprise solid-state switching elements.
  • 13. The medical instrument of claim 12, wherein the solid-state switching elements comprise MOSFETs.
  • 14. The medical instrument of claim 11, wherein the upper and lower switch elements comprise IGBTs.
  • 15. The medical instrument of claim 11, wherein the upper and lower switch elements comprise mechanical relays.
  • 16. The medical instrument of claim 10, comprising a parallel capacitor on the secondary coil, such that an output produced by the current amplifier is a sine wave.
  • 17. The medical instrument of claim 10, wherein a minimum overall winding ratio value is 4:1.
  • 18. The medical instrument of claim 10, wherein a maximum overall winding ratio value is 15:1.
  • 19. A current amplifier, comprising: a transformer comprising: a first tap including a first half bridge driver;a second tap including a second half bridge driver;a third tap including a third half bridge driver;a first portion of a primary coil located between the first tap and the second tap;a second portion of the primary coil located between the second tap and the third tap; anda secondary coil, wherein the first, second, and third half bridge drivers are configured to selectively turn on or turn off the first, second, and third taps, respectively,wherein two of the first, second, and third taps are selected to drive the primary coil between the two selected taps, which allows the transformer to provide a plurality of winding ratio values,wherein a number of coil turns of the primary coil between the two selected taps and a number of coil turns of the secondary coil determine an overall winding ratio value of the transformer, wherein the overall winding ratio value is one of the plurality of winding ratio values provided by the transformer,wherein at least one of the first, second, and third half bridge drivers comprises an upper switch element and a lower switch element, a high-side drive input connected to an input of the upper switch element, a low-side drive input connected to an input of the lower switch element, wherein the upper and lower switch elements are connected in a cascade arrangement and an output of the at least one of the first, second, and third half bridge drivers is taken from a node between the upper and lower switch elements; anda parallel capacitor on the secondary coil, such that an output produced by the current amplifier is a sine wave;wherein a minimum overall winding ratio value is 4:1; andwherein a maximum overall winding ratio value is 15:1.
  • 20. The current amplifier of claim 19, wherein the upper and lower switch elements comprise solid-state switching elements.
US Referenced Citations (863)
Number Name Date Kind
2366274 Luth et al. Jan 1945 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2867039 Zach Jan 1959 A
3166971 Stoecker Jan 1965 A
3525912 Wallin Aug 1970 A
3580841 Cadotte et al. May 1971 A
3703651 Blowers Nov 1972 A
3777760 Essner Dec 1973 A
4005714 Hiltebrandt Feb 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4203430 Takahashi May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4281785 Brooks Aug 1981 A
4304987 van Konynenburg Dec 1981 A
4314559 Allen Feb 1982 A
4463759 Garito et al. Aug 1984 A
4492231 Auth Jan 1985 A
4535773 Yoon Aug 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4582236 Hirose Apr 1986 A
4617927 Manes Oct 1986 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4797803 Carroll Jan 1989 A
4830462 Karny et al. May 1989 A
4849133 Yoshida et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4910389 Sherman et al. Mar 1990 A
4920978 Colvin May 1990 A
4936842 D'Amelio et al. Jun 1990 A
5020514 Heckele Jun 1991 A
5061269 Muller Oct 1991 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5217460 Knoepfler Jun 1993 A
5234428 Kaufman Aug 1993 A
5258006 Rydell et al. Nov 1993 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318589 Lichtman Jun 1994 A
5326013 Green et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5339723 Huitema Aug 1994 A
5342359 Rydell Aug 1994 A
5361583 Huitema Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5417709 Slater May 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5496317 Goble et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5558671 Yates Sep 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573534 Stone Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5599350 Schulze et al. Feb 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5624452 Yates Apr 1997 A
5632432 Schulze et al. May 1997 A
5647871 Levine et al. Jul 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5827323 Klieman Oct 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5853412 Mayenberger Dec 1998 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5880668 Hall Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5906625 Bito et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5984938 Yoon Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6033399 Gines Mar 2000 A
6039734 Goble Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6063098 Houser et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6091995 Ingle et al. Jul 2000 A
6099483 Palmer et al. Aug 2000 A
6099550 Yoon Aug 2000 A
H1904 Yates et al. Oct 2000 H
6132368 Cooper Oct 2000 A
6144402 Norsworthy et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6162208 Hipps Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6190386 Rydell Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6259230 Chou Jul 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6292700 Morrison et al. Sep 2001 B1
6325799 Goble Dec 2001 B1
6340878 Oglesbee Jan 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6387109 Davison et al. May 2002 B1
6391026 Hung et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6458128 Schulze Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6480796 Wiener Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6503248 Levine Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6562037 Paton et al. May 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6589200 Schwemberger et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682501 Nelson et al. Jan 2004 B1
6695840 Schulze Feb 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6789939 Schrödinger et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6821273 Mollenauer Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6860880 Treat et al. Mar 2005 B2
6877647 Green et al. Apr 2005 B2
6893435 Goble May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6953461 McClurken et al. Oct 2005 B2
6977495 Donofrio Dec 2005 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7041102 Truckai et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7094235 Francischelli et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7156846 Dycus et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7220951 Truckai et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7329257 Kanehira et al. Feb 2008 B2
7354440 Truckai et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7582086 Privitera et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7621930 Houser Nov 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708751 Hughes et al. May 2010 B2
7717915 Miyazawa May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Sheltoin, IV et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
7935114 Takashino et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8038693 Allen Oct 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8070036 Knodel et al. Dec 2011 B1
8105323 Buysse et al. Jan 2012 B2
8128624 Couture et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8221415 Francischelli Jul 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8298232 Unger Oct 2012 B2
8323310 Kingsley Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8357158 McKenna et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8397971 Yates et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8542501 Kyono Sep 2013 B2
8553430 Melanson Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
D695407 Price et al. Dec 2013 S
8608044 Hueil et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8638428 Brown Jan 2014 B2
8647350 Mohan et al. Feb 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8764747 Cummings et al. Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8827992 Koss et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8876858 Braun et al. Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9039731 Joseph May 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9094006 Gravati Jul 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9192380 Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9259265 Harris et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9314292 Trees et al. Apr 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9344042 Mao May 2016 B2
9351754 Vakharia et al. May 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9724118 Schulte et al. Aug 2017 B2
20020022836 Goble et al. Feb 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020165541 Whitman Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030105474 Bonutti Jun 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030216722 Swanson Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040019350 O'Brien et al. Jan 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040092992 Adams et al. May 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040232196 Shelton, IV et al. Nov 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050085809 Mucko et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050103819 Racenet et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050203507 Truckai et al. Sep 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261581 Hughes et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060069388 Truckai et al. Mar 2006 A1
20060159731 Shoshan Jul 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070008744 Heo Jan 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070106158 Madan et al. May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070146113 Truckai et al. Jun 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175949 Shelton, IV et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070191830 Cromton, Jr. et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070232920 Kowalski et al. Oct 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232927 Madan et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239025 Wiener et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080015575 Odom et al. Jan 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080114355 Whayne et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080167522 Giordano et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080188851 Truckai et al. Aug 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080221565 Eder et al. Sep 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262491 Swoyer et al. Oct 2008 A1
20080269862 Elmouelhi et al. Oct 2008 A1
20080281315 Gines Nov 2008 A1
20080294158 Pappone et al. Nov 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090076534 Shelton, IV et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090099582 Isaacs et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090125026 Rioux et al. May 2009 A1
20090125027 Fischer May 2009 A1
20090131929 Shimizu May 2009 A1
20090138003 Deville et al. May 2009 A1
20090138006 Bales et al. May 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090206140 Scheib et al. Aug 2009 A1
20090209979 Yates et al. Aug 2009 A1
20090248002 Takashino et al. Oct 2009 A1
20090248021 McKenna Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090318915 Hosier et al. Dec 2009 A1
20090320268 Cunningham et al. Dec 2009 A1
20090326530 Orban, III et al. Dec 2009 A1
20100032470 Hess et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100036380 Taylor et al. Feb 2010 A1
20100076433 Taylor et al. Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081882 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100168620 Klimovitch et al. Jul 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228246 Marion Sep 2010 A1
20100237132 Measamer et al. Sep 2010 A1
20100264194 Huang et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20110015627 DiNardo et al. Jan 2011 A1
20110082486 Messerly et al. Apr 2011 A1
20110087214 Giordano et al. Apr 2011 A1
20110087215 Aldridge et al. Apr 2011 A1
20110087216 Aldridge et al. Apr 2011 A1
20110087217 Yates et al. Apr 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110118754 Dachs et al. May 2011 A1
20110155781 Swensgard et al. Jun 2011 A1
20110172660 Bales, Jr. et al. Jul 2011 A1
20110224668 Johnson et al. Sep 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110301605 Homer Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078247 Worrell et al. Mar 2012 A1
20120078248 Worrell et al. Mar 2012 A1
20120083783 Davison et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116379 Yates et al. May 2012 A1
20120116380 Madan et al. May 2012 A1
20120116391 Houser et al. May 2012 A1
20120130256 Buysse et al. May 2012 A1
20120136353 Romero May 2012 A1
20120138660 Shelton, IV Jun 2012 A1
20120150170 Buysse et al. Jun 2012 A1
20120150192 Dachs, II et al. Jun 2012 A1
20120172859 Condie et al. Jul 2012 A1
20120265196 Turner et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20120323238 Tyrrell et al. Dec 2012 A1
20130023925 Mueller Jan 2013 A1
20130030428 Worrell et al. Jan 2013 A1
20130030433 Heard Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130079762 Twomey et al. Mar 2013 A1
20130085496 Unger et al. Apr 2013 A1
20130103023 Monson Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130253502 Aronow et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20130338661 Behnke, II Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140001235 Shelton, IV Jan 2014 A1
20140001236 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005653 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005680 Shelton, IV et al. Jan 2014 A1
20140005681 Gee et al. Jan 2014 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140005694 Shelton, IV et al. Jan 2014 A1
20140005695 Shelton, IV Jan 2014 A1
20140005701 Olson et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005703 Stulen et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140094801 Boudreaux et al. Apr 2014 A1
20140180281 Rusin Jun 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140194915 Johnson et al. Jul 2014 A1
20140214019 Baxter, III et al. Jul 2014 A1
20140228844 Hörlle et al. Aug 2014 A1
20140257284 Artale Sep 2014 A1
20140303551 Germain et al. Oct 2014 A1
20140316408 Davison et al. Oct 2014 A1
20140330271 Dietz et al. Nov 2014 A1
20140343550 Faller et al. Nov 2014 A1
20150018826 Boudreaux Jan 2015 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080879 Trees et al. Mar 2015 A1
20150080891 Shelton, IV et al. Mar 2015 A1
20150133915 Strobl et al. May 2015 A1
20150133929 Evans et al. May 2015 A1
20150141981 Price et al. May 2015 A1
20150190189 Yates et al. Jul 2015 A1
20150196352 Beckman et al. Jul 2015 A1
20150230853 Johnson et al. Aug 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150265347 Yates et al. Sep 2015 A1
20150272602 Boudreaux et al. Oct 2015 A1
20150272657 Yates et al. Oct 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150289925 Voegele et al. Oct 2015 A1
20150297286 Boudreaux et al. Oct 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051315 Boudreaux Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160051317 Boudreaux Feb 2016 A1
20160058492 Yates et al. Mar 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160135875 Strobl et al. May 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175028 Trees et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160175030 Boudreaux Jun 2016 A1
20160175031 Boudreaux Jun 2016 A1
20160175032 Yang Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160228171 Boudreaux Aug 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160296268 Gee et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160296271 Danziger et al. Oct 2016 A1
20160302844 Strobl et al. Oct 2016 A1
20160317215 Worrell et al. Nov 2016 A1
Foreign Referenced Citations (110)
Number Date Country
2868227 Feb 2007 CN
102834069 Dec 2012 CN
4300307 Jul 1994 DE
19608716 Apr 1997 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
10201569 Jul 2003 DE
0340803 Aug 1993 EP
0630612 Dec 1994 EP
0705571 Apr 1996 EP
0557806 May 1998 EP
0640317 Sep 1999 EP
0722696 Dec 2002 EP
1293172 Apr 2006 EP
0875209 May 2006 EP
1704824 Sep 2006 EP
1749479 Feb 2007 EP
1767157 Mar 2007 EP
1254637 Aug 2007 EP
1878399 Jan 2008 EP
1915953 Apr 2008 EP
1532933 May 2008 EP
1707143 Jun 2008 EP
1943957 Jul 2008 EP
1435852 Dec 2008 EP
1849424 Apr 2009 EP
2042117 Apr 2009 EP
2060238 May 2009 EP
1810625 Aug 2009 EP
2090238 Aug 2009 EP
2090256 Aug 2009 EP
2092905 Aug 2009 EP
2105104 Sep 2009 EP
1747761 Oct 2009 EP
1769766 Feb 2010 EP
2151204 Feb 2010 EP
2153791 Feb 2010 EP
2243439 Oct 2010 EP
1510178 Jun 2011 EP
1728475 Aug 2011 EP
2353518 Aug 2011 EP
2436327 Apr 2012 EP
2529681 Dec 2012 EP
1767164 Jan 2013 EP
2316359 Mar 2013 EP
2578172 Apr 2013 EP
2508143 Feb 2014 EP
2472216 Feb 2011 GB
H 08-229050 Sep 1996 JP
2008-018226 Jan 2008 JP
5714508 May 2015 JP
WO 8103272 Nov 1981 WO
WO 9307817 Apr 1993 WO
WO 9322973 Nov 1993 WO
WO 9510978 Apr 1995 WO
WO 9635382 Nov 1996 WO
WO 9710764 Mar 1997 WO
WO 9800069 Jan 1998 WO
WO 9840020 Sep 1998 WO
WO 9857588 Dec 1998 WO
WO 9923960 May 1999 WO
WO 9940857 Aug 1999 WO
WO 9940861 Aug 1999 WO
WO 0024330 May 2000 WO
WO 0024331 May 2000 WO
WO 0025691 May 2000 WO
WO 0128444 Apr 2001 WO
WO 02062241 Aug 2002 WO
WO 02080797 Oct 2002 WO
WO 03001986 Jan 2003 WO
WO 03013374 Feb 2003 WO
WO 03020339 Mar 2003 WO
WO 03028541 Apr 2003 WO
WO 03030708 Apr 2003 WO
WO 03068046 Aug 2003 WO
WO 2004011037 Feb 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004078051 Sep 2004 WO
WO 2004112618 Dec 2004 WO
WO 2005052959 Jun 2005 WO
WO 2006021269 Mar 2006 WO
WO 2006036706 Apr 2006 WO
WO 2006055166 May 2006 WO
WO 2006119139 Nov 2006 WO
WO 2008020964 Feb 2008 WO
WO 2008045348 Apr 2008 WO
WO 2008099529 Aug 2008 WO
WO 2008101356 Aug 2008 WO
WO 2009022614 Feb 2009 WO
WO 2009036818 Mar 2009 WO
WO 2009039179 Mar 2009 WO
WO 2009059741 May 2009 WO
WO 2009082477 Jul 2009 WO
WO 2009149234 Dec 2009 WO
WO 2010017266 Feb 2010 WO
WO 2010104755 Sep 2010 WO
WO 2011008672 Jan 2011 WO
WO 2011044343 Apr 2011 WO
WO 2011084768 Jul 2011 WO
WO 2011089717 Jul 2011 WO
2011144911 Nov 2011 WO
WO 2012044606 Apr 2012 WO
WO 2012166510 Dec 2012 WO
WO 2013034629 Mar 2013 WO
WO 2013062978 May 2013 WO
WO 2013102602 Jul 2013 WO
WO 2013154157 Oct 2013 WO
WO 2015197395 Dec 2015 WO
Non-Patent Literature Citations (35)
Entry
International Search Report for PCT/US2015/065509, dated Mar. 30, 2016 (4 pages).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Glaser and Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med.com/erbe/media/Marketingmaterialien/85140-170_ERBE_EN_VIO_200_S_D027541.
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393,453-496, 535-549.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.n1rn.nih.gov/pmc/articles/PMC2597841/.
Related Publications (1)
Number Date Country
20160175024 A1 Jun 2016 US